人教版高中数学选修部分知识点总结(理科)

合集下载

高中数学知识点归纳(理科)

高中数学知识点归纳(理科)

高中数学知识点归纳(理科)高中数学知识点归纳(理科)一、代数与函数1. 多项式函数- 定义与性质- 常见多项式函数类型(一次函数、二次函数、三次函数等) - 图像特征与变化规律2. 指数函数与对数函数- 指数函数与对数函数的基本概念- 常见指数函数与对数函数的性质- 指数函数与对数函数的应用举例3. 三角函数- 弧度与角度的转换- 常见三角函数的定义与性质- 三角函数的图像与变化规律4. 数列与数列极限- 数列与通项公式的关系- 常见数列类型(等差数列、等比数列等) - 数列极限的概念与性质二、平面几何1. 平面几何基本概念- 点、线、面的定义与性质- 垂直、平行线与角的关系2. 三角形的性质与判定- 三角形的分类与性质- 三角形的判定方法与应用3. 圆的性质与判定- 圆的基本性质与术语- 圆的判定方法与应用4. 二次曲线方程- 抛物线、椭圆、双曲线的定义与性质- 二次曲线的标准方程与图像特征三、立体几何1. 空间几何基本概念- 空间中的点、线、面与体的性质- 空间几何基本定理与推论2. 空间图形的性质- 空间中常见几何体的性质(立方体、正四面体等) - 空间图形的计算与应用3. 空间向量- 向量的定义与性质- 向量的运算与应用- 平面与直线的向量表示与方程四、数学推理与证明1. 数学归纳法- 数学归纳法的基本原理与应用- 数学归纳法在数列、不等式证明中的应用2. 数学推理与等价命题- 命题、命题连接词与命题的真值- 数学推理法则与常用的等价命题3. 数学证明方法- 直接证明法与间接证明法- 数学证明中的常见方法与技巧五、概率与统计1. 随机事件与概率- 随机事件的基本概念与性质- 概率的计算方法与应用2. 排列与组合- 排列与组合的基本概念与性质- 排列与组合的计算公式与应用3. 统计与统计图- 数据的收集与整理- 基本统计量与统计图的绘制与分析以上是高中数学理科知识点的归纳总结。

掌握这些知识点有助于提高数学学科的理解与应用能力,为进一步的学习打下坚实的基础。

人教版高中数学(理科)选修函数的连续性

人教版高中数学(理科)选修函数的连续性

函数的连续性一、教学目标:1.了解函数在一点处连续的定义及函数在点x x =处连续必须满足的三个条件。

2.理解闭区间上连续函数的性质。

二、教学重点: 三、教学过程: (一)主要知识:1.连续函数的定义: ; 2.初等函数的连续性: ; 3.连续函数具有以下性质(最大值最小值定理): 。

(二)知识点详析1.连续函数的定义:如果函数y=f(x)在点x x =处及其附近有定义,而且)()(lim 00x f x f x x =→,就说函数f(x)在点x 连续。

这个定义包含三层含义:⑴f(x)在点0x x =处及其附近有定义;⑵)(lim 0x f x x →存在;⑶)()(lim 00x f x f x x =→。

以上三个条件只要缺少其中的任意一个,f(x)在x x =处都不连续。

在函数于x x =处连续的定义的基础上,我们可以定义函数在区间上连续:如果函数f(x)在开区间(a ,b)内每一点都连续,就说函数f(x)在开区间(a ,b)内连续;如果函数f(x)在开区间(a ,b)内连续,在x=a 处有)()(lim a f x f a x =+→,在x=b 处有)()(lim b f x f b x =-→,就说函数f(x)在闭区间[a ,b]上连续,这种环环相扣、层层推进的定义方式能很好地培养我们严谨的逻辑思维。

2.关于闭区间上的连续函数的性质,课本中借助于函数的几何图像只给出一个性质:最大值最小值定理。

因为闭区间[a ,b]上的连续函数f(x)的图像是坐标平面内的一条有始点(a ,f(a))和终点(b ,f(b))的连续曲线,所以函数f(x)在闭区间[a ,b]上的函数值必存在最大值和最小值。

(三)例题分析:例1.讨论下列函数在给定点或区间上的连续性:⑴⎪⎪⎩⎪⎪⎨⎧=≠+-=0)(x 1-0)(x 11)(11xxe e xf ,点x=0;⑵22)(2+--=x x x x f ,区间[0,2];⑶⎩⎨⎧>+≤+=-1)(x 4x -1)(x 2)(2x x f ,点x=-1。

高三数学理科选修一知识点

高三数学理科选修一知识点

高三数学理科选修一知识点在高中数学学科中,高三学生将面临着重要的选择——选修一或选修二。

其中,数学理科选修一是对数学知识的深入拓展和应用,提供了更高层次的数学思维和解题技巧。

本文将深入探讨高三数学理科选修一中的一个重要知识点——概率与统计。

一、概率基础知识概率是数学中一个非常重要的概念。

在现实生活中,我们时常会遇到各种各样的学问,而概率就是帮助我们预测和描述这些学问发生的可能性的一种工具。

概率的基础知识包括事件、样本空间、随机事件以及概率的计算等。

1.1 事件在概率中,一个事件指的是样本空间中的某些元素组成的子集。

事件可以是简单的,也可以是复合的。

对于一个随机试验,它的样本空间是所有可能的结果构成的集合,而事件是样本空间的子集。

1.2 样本空间样本空间是一个包含了所有可能结果的集合。

比如,投掷一枚骰子,其样本空间就是{1, 2, 3, 4, 5, 6}。

样本空间的大小也称为这个随机实验的基本结果总数。

1.3 随机事件随机事件是对样本空间的划分或分类。

简单来说,就是我们关心的事件。

比如,投掷一枚骰子,出现奇数点数的事件可以表示为{1, 3, 5}。

1.4 概率的计算概率的计算方法有多种。

在概率问题中,我们经常使用频率概率和几何概率来计算。

频率概率指的是在随机试验的重复实验中,一个事件发生的次数与试验次数的比值。

几何概率指的是根据事件发生的空间大小来计算概率。

二、统计学基本概念统计学是一门研究样本数据的收集、分析和解释的学科。

在高三数学理科选修一中,统计学的基本概念是必须掌握的。

2.1 总体与样本在统计学中,总体是指我们想要研究的对象的全体,而样本则是总体的一部分。

总体是比较大的,而样本则是对总体的一个观察或抽样。

2.2 参数与统计量在统计学中,参数是总体特征的度量。

在实践中,我们无法观察到总体的全部信息,因此我们需要通过样本来估计总体参数。

估计总体参数的一种方法是通过统计量,即从样本数据中计算得到的数值。

人教版高中数学(理科)选修对数函数与指数函数的导数

人教版高中数学(理科)选修对数函数与指数函数的导数

●课题§3.5.1 对数函数与指数函数的导数(一)——对数函数的导数●教学目标(一)教学知识点对数函数的导数的两个求导公式:(ln x )′=x 1、(log a x )′=x 1log a e . (二)能力训练要求1.理解掌握对数函数的导数的两个求导公式.2.在学习了函数四那么运算的求导法那么与复合函数求导法那么的基础上,应用对数函数的求导公式,能求简单的初等函数的导数.(三)德育渗透目标1.培养学生的推理论证能力.2.培养学生灵活运用知识和综合运用知识的能力.●教学重点结合函数四那么运算的求导法那么与复合函数求导法那么,应用对数函数的求导公式.●教学难点对数函数的导数的记忆,以及运用对数函数的导数法那么.●教学方法讲、练结合.●教具准备幻灯片两X第一X :(ln x )′=x1的证明记作§3.5.1 A第二X :(log a x )′=x1log a e 的证明记作§3.5.1 B●教学过程Ⅰ.课题导入[师]我们已经学习了六种基本初等函数中的三种:常数函数,幂函数,三角函数的导数.这节课就来学习一下另一种基本初等函数的导数,对数函数的导数.Ⅱ.讲授新课[师]我们先给出以e 为底的自然对数函数的导数,然后介绍一下它的证明过程,不过要用到一个结论x x x 10)1(lim +→=e[板书](一)对数函数的导数 1.(ln x )′=x 1 (打出幻灯片§3.5.1 A ,给学生讲解)[师]下面给出一般的对数函数的导数.这里要用到对数函数的换底公式a x x b b alog log log = (b >0,b ≠1).证明过程只作了解.2.(log a x )′=x1log a e . (打出幻灯片§3.5.1 B ,给学生讲解).[师]我们运用学过的函数四那么运算的求导法那么与复合函数求导法那么,来看一下有关含有对数的一些函数的导数.(二)课本例题[例1]求y =ln(2x 2+3x +1)的导数.分析:要用到对数函数的求导法那么和复合函数的求导法那么,以及函数四那么运算的求导法那么. 解:y ′=[ln(2x 2+3x +1)]′=13212++x x (2x 2+3x +1)′ =132342+++x x x [例2]求y =lg21x -的导数. 解法一:y ′=(lg 21x -)′=211x -lg e ·(21x -)′ =21lg x e-·21·(1-x 2)21-(1-x 2)′=21lg x e -·2121x -·(-2x ) =1lg 1lg 22-=--x e x x e x 分析:对数函数,可以先把它化简,然后根据求导法那么进行求导.解法二:y =lg 2112=-x lg(1-x 2) ∴y ′=[21lg(1-x 2)]′=21121x-lg e (1-x 2)′ =)1(2lg 2x e -·(-2x )=1lg 2-x e x (三)精选例题[例1]求函数y =ln(12+x -x )的导数.分析:由复合函数求导法那么:y ′x =y ′u ·u ′x 对原函数由外向内逐个拆成几个简单的基本初等函数. [学生板演]解:)1(1122'-+⋅-+='x x x x y111111)11(11)12)1(21[112222222122+-=++-⋅-+=-+-+=-⋅+-+=-x x x x x x x x x x x x x x [例2]假设f (x )=ln(ln x ),那么f ′(x )|x =e =.(B)A.eB.e 1C.1D.以上都不对解:f ′(x )=[ln(ln x )]′=x ln 1·(ln x )′=xx ln 1 f ′(x )|x =e =e e ln 1⋅=e1 [例3]y =ln [ln(ln x )]的导数是 (C) A.)ln(ln 1x x B.)ln(ln ln 1x x C.)ln(ln ln 1x x x D.)ln(ln 1x 解:y ′=)ln(ln 1x [ln(ln x )]′=)ln(ln 1x ·xln 1 (ln x )′ =)ln(ln 1x ·x ln 1·x 1=)ln(ln ln 1x x x ⋅ [师生共议]所以用复合函数的求导法那么时,要由外向内逐层求导,直到不能求导为止.[例4]求y =ln|x |的导数.[生甲]y ′=(ln|x |)′=||1x [生乙]当x >0时,y =ln x .y ′=(ln x )′=x1 当x <0时,y =ln(-x ),y ′=[ln(-x )]′=x -1 (-1)= x 1, ∴y ′=x1 [师生共评]学生乙的做法是正确的.学生甲做的时候,|x |可以看成ln|x |的中间变量,对|x |还要求导.所以以后遇到要求含有绝对值的函数的导数时,首先要把绝对值去掉,分情况讨论.[例5]求y =n x x )(ln 的导数.[师析]这类函数是指数上也是含有x 的幂函数.这样用以前学过的幂函数的求导公式就行不通了.以前指数是常数的幂函数.像形如(u (x ))v (x )的函数的求导,它的方法可以是两边取自然对数,然后再对x 求导.解:y =n x x )(ln 两边取自然对数.ln y =ln n x x )(ln =(ln x )n ·ln x =(ln x )n +1.两边对x 求导,y1 y ′=(n +1)(ln x )n ·(ln x )′=(n +1)x x n )(ln ∴y ′=x x n n ))(ln 1(+·y =x x n n))(ln 1(+·nx x )(ln =(n +1)(ln x )n ·1)(ln -n x x .[例6]求y =log a 21x +的导数. [学生板演]解:y ′=(log a 21x +)′=211x +log a e ·(21x +)′221221log 2)1(211log x e x x x x e a a +=⋅+⋅+=-. Ⅲ.课堂练习求以下函数的导数.1.y =x ln x解:y ′=(x ln x )′=x ′ln x +x (ln x )′=ln x +x ·x1=ln x +1 2.y =ln x1 解:y ′=(ln x1)′=x11 (x 1)′ =x ·(-1)·x -2=-x -1=-x1. 3.y =log a (x 2-2). 解:y ′=[log a (x 2-2)]′=2log 2-x e a (x 2-2)′=2log 22-x e x a . 4.y =lg(sin x )解:y ′=[lg(sin x )]′=xe sin lg (sin x )′ =xe sin lg cos x =cot x lg e .5.y =ln x -1.解:y ′=(ln x -1)′)1(11'--=x x )1()1(211121---=-x x )1(21)1(21-=--=x x 6.y =ln 12+x解:y ′=(ln12+x )′)1(1122'++=x x ⋅+⋅+=-2122)1(2111x x 122+=x x x . 7.y =1ln +x x x -ln(x +1). 解:y ′=(1ln +x x x )′-[ln(x +1)]′ 2222)1(ln )1(1ln 1ln ln 11)1(ln )1)(1(ln 11)1()1(ln )1)(1(ln +=+---+++=+-+-++=+-+'+-+⋅+=x x x x x x x x x x x x x x x x x x x x x x x x x8.y =aa x x a a x x 22222ln 22++⋅++. 解:y ′=)ln 2()2(22222'+++'+aa x x a a x x22222222222222222222222222222122222222222222221222222)(22)1()(2221]2)(211[)(2221)(122)(21221a x a x a a x a x x a x a x x a a x x a x a x x a x x a a x x a x x a x a x x a a x x a x a x x aa x x a a x a x x a x +=+++=+++++++++=++⋅++++++=⋅++++++++='++⋅++⋅+⋅+⋅++=-- Ⅳ.课时小结(学生总结)本节课主要学习了对数函数的两个公式(ln x )′=x 1(log a x )′=x 1log a e .以及运用函数的四那么运算的求导法那么和复合函数的求导法那么,求一些含有对数的函数的导数.Ⅴ.课后作业(一)课本P 127、1、3(2)(4)(二)预习内容.课本P 127指数函数的导数.2.预习提纲.(1)预习(e x )′=e x 及它的应用.(2)预习(a x )′=a x ln a 及它的应用.●板书设计。

(新课标人教版)高中数学必修选修全部知识点精华归纳总结

(新课标人教版)高中数学必修选修全部知识点精华归纳总结

高中数学必修+选修知识点归纳新课标人教A版引言1.课程换元法待定系数法定义法数学归纳法参数法反证法消去法分析与综合法特殊与一般法十一、类比与归纳法十二、观察与实验法高中数学常用的数学思想一、数形结合思想二、类讨论思想三、函数与方程思想四转化(化归)思想2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算- 2 -第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:N*或,Z,有理数集合:Q,实数集合:R.在[a,b]上是增函数;在[a,b]上是减函数.步骤:取值—作差—变形—定号—判断格式:解:设且,则:(2)导数法:设函数在某个区间⑥;⑦(logax‘xx‘x‘‘xlna’‘‘‘‘1;⑧1x(1)(2)(3)vvu‘‘‘复合函数的导数和函数的导数间的关系为,即y对x的导数等于y对u的导数与u对x的导数的乘积.解题步骤:分层—层层求导—作积还原.极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值;极值是在x0附近所有的点,都有f(x)>f(x0),则f(x0)是函数f(x)的极小值. (2)判别方法:①如果在x0附近的左侧f’(x)>0,右侧f’(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f’(x)<0,右侧f’(x)>0,那么f(x0)是极小值. (1)求在(a,b)内的极值(极大或者极小值)§2.1.2、指数函数及其性质1、记住图象:2、性质:(2)将的各极值点与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为极小值。

高中数学理科选修知识点(2-2,2-3,4-1,4-4,4-5)

高中数学理科选修知识点(2-2,2-3,4-1,4-4,4-5)

数学选修2-2知识点总结 第一章 导数及其应用 一、导数概念的引入1.导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x ∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x ∆→+∆-'=∆二.导数的计算1.函数()y f x c ==的导数2.函数()y f x x ==的导数3.函数2()y f x x ==的导数4.函数1()y f x x ==的导数基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '= 6 若()x f x e =,则()x f x e '=7 若()logxa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x '=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=∙三.导数在研究函数中的应用 1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理. 类比推理的一般步骤:找出两类事物的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

理科数学高考选修的知识点

理科数学高考选修的知识点

理科数学高考选修的知识点随着社会技术的发展,数学在理科高考中的地位越来越重要。

无论是工科还是理科类专业,数学都是考察学生计算能力和逻辑思维的重要科目。

而在高考数学中,选修的知识点更是考察学生综合能力的重要指标。

接下来,我们将会介绍一些常见的高考数学选修知识点。

一、函数与导数函数与导数是高考数学中的重要学科,也是理科数学中的基础知识。

在函数与导数这一部分,常见的知识点有函数的极值、函数的最值问题、函数的应用、函数的平移等等。

在解题过程中,学生需要掌握函数的基本性质、函数图像的变化规律等,以便灵活运用到具体问题的解题过程中。

二、数列与数学归纳法数列与数学归纳法是高考数学中的另一大知识点。

数列是一系列有序的数字,而数学归纳法是一种证明方法。

在这部分内容中,学生需要掌握数列的求和公式、数列的通项公式等重要概念。

此外,学生还需要掌握数学归纳法的基本原理和应用方法,以便解决与数列相关的问题。

三、平面向量平面向量是高考数学中的又一重要知识点。

平面向量可以表示物体的位移、速度等量。

在这一部分内容中,学生需要掌握向量的基本概念、向量的线性运算、向量的模和方向、向量的共线性等等。

在解题过程中,学生还需要灵活运用向量的性质,解决与平面向量相关的几何问题。

四、概率与统计概率与统计是高考数学中的一大难点。

在这个部分中,学生需要掌握概率的基本概念、事件的计算方法、概率的加法和乘法定理等重要内容。

此外,学生还需要掌握统计的基本概念、统计数据的处理与分析方法等。

在解题过程中,学生需要综合运用概率与统计的知识,解决与实际问题相关的高考题目。

以上只是高考数学中的一部分选修知识点,但这些知识点涵盖了高考数学考试中的大部分题型。

在备考过程中,学生需要加强对这些知识点的理解和掌握。

要想提高自己的数学水平,首先要掌握基本概念和定理,然后通过大量的练习题加深对知识点的理解和运用能力。

此外,学生还可以通过参加数学竞赛、听讲座等方式,进一步拓宽自己的数学视野。

高中理科选修数学知识点

高中理科选修数学知识点

高中理科选修数学知识点数学作为一门学科,对于高中生来说是必修课程,同时也有一些选修内容。

在高中理科选修数学中,有许多重要的知识点需要我们掌握。

本文将从基础概念、公式和解题技巧等方面,逐步介绍高中理科选修数学的一些重要知识点。

一、数列与数列的通项公式数列是由一系列的数字按照一定规律排列而成的。

在高中理科选修数学中,学习了数列的概念后,我们需要掌握数列的通项公式的求解方法。

通项公式可以帮助我们快速计算数列中的任意一项,提高计算的效率。

二、概率与统计概率是研究随机事件发生可能性的数学方法。

在高中理科选修数学中,我们需要学习概率的基本概念、概率的计算方法以及与其相关的统计学知识。

通过学习概率与统计,我们可以更好地理解随机事件的发生规律,进行数据的分析和统计。

三、函数与方程函数是数学中一种重要的概念,它描述了输入和输出之间的关系。

高中理科选修数学中,我们学习了各种类型的函数,如一元函数、二次函数、指数函数等。

同时,我们也需要掌握方程的解法,包括一元一次方程、一元二次方程等。

函数与方程是数学中的基础内容,也是我们理解其他数学知识的基石。

四、三角函数三角函数是数学中的重要分支之一,它研究了角和边之间的关系。

在高中理科选修数学中,我们学习了正弦函数、余弦函数、正切函数等常见的三角函数,并且学习了三角函数的性质和运用方法。

三角函数在物理、工程等领域具有广泛的应用,掌握三角函数的知识对于我们的学习和将来的发展都具有重要意义。

五、数学证明数学证明是数学中的一项重要技能,它要求我们基于已知的数学定理和规律,通过逻辑推理得出结论。

高中理科选修数学中,我们需要掌握一些常见的证明方法,如数学归纳法、反证法等。

通过学习数学证明,我们可以提高逻辑思维能力和问题解决能力,培养良好的数学思维方式和方法。

六、平面向量平面向量是高中理科选修数学中的重要内容,它研究了平面上的向量运算和向量之间的关系。

学习平面向量可以帮助我们更好地理解几何问题,解决几何证明,并在物理、工程等领域中应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学选修部分知识点总结(理科)高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210x ya b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c =± 2a y c =± 渐近线方程b y x a =± a y x b=± 17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+; 若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.21、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p > 图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤第三章 空间向量与立体几何22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

相关文档
最新文档