人工智能考试复习资料解读
人工智能复习资料整理(修正版-如发现计算错误请指出)

一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
【2024版】人工智能导论复习

可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
人工智能导论复习资料

人工智能导论复习资料一、什么是人工智能人工智能,简单来说,就是让机器像人一样思考和行动。
它不是一种单一的技术,而是一个涵盖了多种学科和技术的领域,包括计算机科学、数学、统计学、心理学、语言学等等。
想象一下,你有一个智能助手,它能理解你的需求,回答你的问题,甚至帮你完成一些复杂的任务,比如规划旅行、管理财务。
这就是人工智能在日常生活中的一种应用。
人工智能的目标是创建能够执行需要人类智能才能完成的任务的计算机系统。
这些任务包括学习、推理、解决问题、理解语言、识别图像和声音等等。
二、人工智能的发展历程人工智能的发展并非一蹴而就,它经历了几个重要的阶段。
在早期,科学家们就开始思考机器能否像人类一样思考。
20 世纪50 年代,人工智能的概念被正式提出,当时的研究主要集中在基于规则的系统和符号推理上。
然而,由于计算能力的限制和对智能本质理解的不足,人工智能在20 世纪 70 年代遭遇了第一次寒冬。
到了 20 世纪 80 年代,随着专家系统的出现,人工智能迎来了一次小的复兴。
专家系统是一种基于知识库和推理规则的系统,可以解决特定领域的问题。
但随着问题的复杂度增加,专家系统的局限性也逐渐显现。
近年来,由于大数据的出现、计算能力的大幅提升以及深度学习算法的突破,人工智能再次取得了巨大的进展。
图像识别、语音识别、自然语言处理等领域都取得了令人瞩目的成果。
三、人工智能的核心技术(一)机器学习机器学习是人工智能的核心领域之一。
它让计算机通过数据自动学习模式和规律。
机器学习有监督学习、无监督学习和强化学习等多种方法。
监督学习是最常见的一种,比如通过大量已标记的图片(比如猫和狗的图片)来训练计算机识别新的猫和狗的图片。
无监督学习则是让计算机在没有标记的数据中自己发现模式,例如将相似的客户分组。
强化学习是通过奖励和惩罚机制来训练智能体做出最优决策,比如让机器人学会走路。
(二)深度学习深度学习是机器学习的一个分支,它使用多层神经网络来学习数据的表示。
ai总结试卷知识点

ai总结试卷知识点一、人工智能的基本概念1. 人工智能的定义和特点人工智能是指利用计算机技术模拟人类智能的能力,包括感知、认知、学习、推理、规划和行动等方面。
具有智能的特点,如自主性、学习能力、推理能力、语言能力等。
2. 人工智能的分类根据不同的方法和技术,人工智能可以分为强人工智能和弱人工智能。
强人工智能是指具有人类智能水平的人工智能系统,能够思考、学习和创造;弱人工智能则是指专门针对某一领域或任务的人工智能系统,无法与人类智能相提并论。
二、人工智能的技术原理1. 机器学习机器学习是一种基于数据的自动化学习方法,通过训练数据和算法的迭代优化,使计算机系统能够从中提取知识、模式和规律。
常见的机器学习方法包括监督学习、无监督学习和强化学习。
2. 深度学习深度学习是一种基于人工神经网络的学习方法,具有多层次的表示和抽象特征提取能力。
它能够处理大规模的数据,并在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
3. 自然语言处理自然语言处理是指通过计算机技术处理和理解自然语言的能力,包括文本分析、语义理解、机器翻译等。
它是人工智能技术的重要应用领域之一,已经在搜索引擎、智能对话系统等方面得到了广泛应用。
4. 强化学习强化学习是一种基于奖励信号进行学习的方法,通过试错和反馈机制,使智能体在与环境的交互中学习并优化策略。
它在游戏、机器人控制、自动驾驶等领域具有重要应用价值。
5. 人工智能的伦理和安全问题随着人工智能技术的发展,一些伦理和安全问题也愈发突出。
包括数据隐私保护、算法歧视、自动化生产带来的社会影响等。
需要制定相关政策和法规来保障个人权益和社会稳定。
三、人工智能的应用领域1. 医疗健康领域人工智能技术在医疗影像诊断、药物研发、健康管理等方面得到了广泛应用,能够提高诊断精度和治疗效果,促进健康产业的发展。
2. 金融领域人工智能技术在风险管理、信用评估、市场预测等方面具有重要作用,能够提高金融机构的运营效率和风险控制能力。
人工智能应用开发复习资料

人工智能应用开发复习资料一、人工智能的基本概念在探讨人工智能应用开发之前,我们首先需要明确什么是人工智能。
简单来说,人工智能就是让计算机能够像人类一样思考和学习,具备智能行为的能力。
它涉及到多个学科领域,如计算机科学、数学、统计学、神经科学等。
人工智能的目标是创建能够执行各种任务的智能系统,这些任务包括但不限于图像识别、语音识别、自然语言处理、决策制定等。
通过使用大量的数据进行训练,计算机模型可以学习到模式和规律,从而能够对新的输入做出准确的预测和决策。
二、人工智能应用开发的流程1、数据收集与预处理数据是人工智能应用的基础。
首先需要收集大量相关的数据,这些数据的质量和数量对模型的性能有着至关重要的影响。
收集到的数据往往存在噪声、缺失值等问题,需要进行清洗、预处理和标注,以便模型能够有效地学习。
2、选择合适的模型架构根据具体的应用场景和问题,选择合适的人工智能模型架构,如神经网络、决策树、支持向量机等。
不同的模型在处理不同类型的数据和任务时具有不同的优势和局限性。
3、训练模型使用预处理后的数据对模型进行训练。
训练过程中,模型会不断调整参数,以最小化损失函数,提高预测的准确性。
训练的时间和计算资源取决于数据量和模型的复杂度。
4、模型评估与优化使用测试集对训练好的模型进行评估,常用的评估指标包括准确率、召回率、F1 值等。
根据评估结果,对模型进行优化,如调整超参数、增加数据量、使用更复杂的模型等。
5、部署与应用将优化后的模型部署到实际的应用环境中,如网站、移动应用、服务器等。
在应用过程中,不断监测模型的性能,根据实际情况进行调整和更新。
三、常见的人工智能应用领域1、图像识别图像识别是指计算机能够识别和理解图像中的内容。
例如,人脸识别、物体识别、场景识别等。
在安防监控、自动驾驶、医疗诊断等领域有着广泛的应用。
2、语音识别语音识别技术能够将人类的语音转换为文字。
常见的应用包括语音助手、语音输入法、智能客服等。
人工智能试题答案及解析

人工智能试题答案及解析一、单项选择题(每题2分,共20分)1. 人工智能的英文缩写是()。
A. AIB. MLC. DLD. RL答案:A解析:人工智能的英文缩写是AI,即Artificial Intelligence。
2. 下列哪个选项是人工智能的典型应用之一?()A. 语音识别B. 量子计算C. 云计算D. 区块链答案:A解析:语音识别是人工智能的典型应用之一,它涉及到将语音信号转换为文本信息的技术。
3. 机器学习的主要目标是()。
A. 预测未来B. 自动驾驶C. 数据分析D. 使计算机能够利用数据进行学习答案:D解析:机器学习的主要目标是使计算机能够利用数据进行学习,从而提高其性能和智能。
4. 深度学习是机器学习的一个子集,它主要依赖于()。
A. 决策树B. 支持向量机C. 神经网络D. 随机森林答案:C解析:深度学习是机器学习的一个子集,它主要依赖于神经网络,尤其是深度神经网络。
5. 下列哪个算法不是监督学习算法?()A. 线性回归B. 逻辑回归C. 聚类D. 支持向量机答案:C解析:聚类是一种无监督学习算法,它不依赖于标签数据,而是将数据点分组到多个簇中。
6. 在人工智能中,过拟合是指()。
A. 模型在训练数据上表现太好B. 模型在训练数据上表现太差C. 模型在新数据上表现太好D. 模型在新数据上表现太差答案:A解析:过拟合是指模型在训练数据上表现太好,但在新数据上表现差,即模型对训练数据过度敏感。
7. 下列哪个选项是强化学习的特点?()A. 需要大量标记数据B. 通过与环境的交互进行学习C. 通过反向传播算法进行学习D. 通过梯度下降算法进行学习答案:B解析:强化学习的特点是通过与环境的交互进行学习,以获得最大的累积奖励。
8. 在自然语言处理中,词嵌入的目的是()。
A. 将文本转换为数值表示B. 将图像转换为数值表示C. 将音频转换为数值表示D. 将视频转换为数值表示答案:A解析:词嵌入的目的是将文本转换为数值表示,以便机器学习模型可以处理。
《人工智能》考试复习资料

中南大学人工智能习题:1-1、什么是人工智能?试从学科和能力两方面加以说明。
从学科方面定义:人工智能是计算机科学中涉及研究、涉及应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模范和执行人脑的某些智力功能,并开发相关理论和技术。
从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
1-2、在人工智能的发展过程中,有哪些思想和思潮起了重要作用?1、数理逻辑和关于计算本质的新思想2、1956年第一次人工智能研讨会召开3、控制论思想的影响4、计算机的发明发展5、专家系统和知识工程6、机器学习、计算智能、人工神经网络和行为主义研究1-3、为什么能够用机器(计算机)模仿人的智能?物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件性迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论:推论一:既然人具有智能,那么他(她)就一定是个物理符号系统。
推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能。
推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。
1-4、人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。
新的研究热点:概率图模型(隐马尔可夫模型、贝叶斯网络)、统计学习理论(SLT)& 支持向量机(SVM)、数据挖掘与知识发现(超市市场商品数据分析),人工生命1-5、人工智能有哪几种学派?1)符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
人工智能期末复习

人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。
3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。
4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
相对正确性、不确定性、可表示性与可利用性。
分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。
5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。
一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。
进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。
产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。
框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。
语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能第一章 绪论1、智能(intelligence )人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
2、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
3、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。
4、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。
5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表人物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。
行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图人类 计算机认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。
研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。
7、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。
2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。
一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。
两者具有不可分割的关系,一方面,近期目标的实现为远期目标研究做好理论和技术准备,打下了必要的基础,并增强人们实现远期目标的信心。
另一方面,远期目标则为近期目标指明了方向,强化了近期研究目标的战略地位。
8、人工智能研究的基本内容:(1)认知建模;(2)知识表示;(3)知识推理;(4)知识应用;(5)机器感知;(6)机器思维;(7)机器学习;(8)机器行为(9)智能系统构建9、人工智能研究的主要方法:(1)、功能模拟法(2)、结构模拟法(3)、行为模拟法(4)、集成模拟法10、人工智能研究和应用领域:(1)计算智能(2)专家系统(3)机器学习(4)机器视觉(5)神经网络第二章知识表示方法1、人工智能课程三大内容:知识表示;知识推理;知识应用。
2、知识表示方法:(9种)重点掌握这4种:状态空间法,谓词演算法,产生表示法,语义网络法(重点),问题归约法、框架表示、面向对象表示、剧本表示和过程表示。
3、状态空间法状态空间法三要点:①状态:表示问题求解法中每一步问题状况的数据结构;②算符:把问题从一种状态变换为另一种状态的手段;③状态空间方法:基于解答空间的问题表示和求解方法,它是以状态与算符为基础来表示和求解问题的。
(看p29的图2.2)4有圆弧的表示“与”,无圆弧的表示“或”或节点:只要解决某个问题就可以解决其父辈问题的节点集合,如图中(M\N\H).与节点:只有解决所有子问题,才能解决其父辈问题的节点八集合,如图中(B,C)和(D,E,F)各个节点之间用一段小圆弧连接标记。
5、谓词逻辑法(1)连词A、合取:就是用连词(∧)把几个公式连接起来而构成的公式。
相当于“与”B、析取:就是用连词(∨)把几个公式连接起来而构成的公式。
相当与“或”C、蕴涵:(→)表示“如果….那么”的语句。
D、非:表示否定,用符号(~,)表示。
(2)量词A、全称量词:若一个原子公式P(x),对于所有可能变量x都具有T值,则用(∃)表示。
B、存在量词:若一个原子公式P(x),至少有一个变元x,可使P(x)为T值,则用(∀)P(x)表示。
6、置换与合一(1)置换例2.2表达式P[x,f(y),B]的4个置换为s1={z/x,w/y}(出现x和y的地方,分别z和w替换,下同)s2={A/y}s3={q(z)/x,A/y}s4={c/x,A/y}用Es来表示一个表达式E 用置换s所得到的表达式的置换。
于是,可得到P[x,f(y),B]的4个置换的例,如下:P[x,f(y),B]s1=P[z,f(w),B]P[x,f(y),B]s2=P[x,f(A),B]P[x,f(y),B]s3=P[q(z),f(A),B]P[x,f(y),B]s4=P[c,f(A),B](2)合一例2.3表达式集{P[x,f(y),B],P[x,f(B),B]}的合一者为s={A/x,B/y}因为 P[x,f(y),B]s=P[x,f(B),B]s=P[A,f(B),B]即s使表达式成为单一形式 P[A,f(B),B]7、二元语义网络的表示(1)语义网络的组成:词法部分;结构部分;过程部分;语义部分。
例,所有的燕子(SWALLOW)都是鸟(BIRD)。
建立两个节点SWALLOW和 BIRD,分别表示燕子和鸟。
两个节点以“是一个”(ISA)链相连,如图一,如果再希望表示小燕(XIAOYAN)是一只燕子,那么,只需要在语义网络上增加一个节点(XIAOYAN)和一根ISA链。
如图二图一,图二除了按分类学对物体进行分类以外,人们通常需要表示有关物体性质的知识。
假设希望表示小燕子有一个巢(NEST)这个事实,那么,可用所有权连(OWNS)连到表示是小燕子的巢的节点巢-1(NEST-1)。
巢-1是巢中的一个,即NEST节点表示物体的各类,而NEST-1表示这种物体中的一个例子。
如下图ISA(2)语义网络中的推理过程主要有两种:继承和匹配。
(3)3种继承过程:①值继承;②“如果需要”继承;③“默认”继承。
值继承:除了ISA链以外,另外还有一种AKO(是某种)链也可被用于语义网络中的描述或特性的继承。
AKO是A-KIND-OF的缩写。
NEST-1 NESTManager第三章确定性推理1、盲目搜索(无信息搜索):图搜索策略、宽度优先搜索、深度优先搜索、等代价搜索。
2、宽度优先搜索和深度优先搜索的优缺点:并作图(简答题)宽度优先搜索:这种搜索是从上到下逐层进行的,在对下一层的任一节点进行搜索之前,必须先搜索完上层的所有节点。
它是图搜索一般过程的特殊情况,实际是将OPEN表作为“先进先出”的队列进行操作。
并能够保证在搜索树种找到一条通向目标节点的最短途径;这颗搜索树提供了所有存在的路径(缺点:如果没有路径存在,那么对有限图来说,该算法失败退出;对于无限图来说,则永远不会终止。
)深度优先搜索:首先扩展最新产生的(即最深的)节点,深度相等的节点可以任意排序。
其中起始节点(即根节点)的深度为0,任何其他节点的深度等于其父辈节点深度加上1。
深度优先搜索可能会使搜索过程沿着无益的路径扩展下去,造成路径太长,即使应用了深度界限来避免该问题,但所求得的解答路径并不一定就是最短路径。
启发式搜索:(盲目搜索的不足:效率低,耗费过多的计算空间与时间)(1)启发式搜索策略:用估价函数(evaluation function)来估算节点希望程度(promise)(2)有序搜索;(3)A*算法新的智能搜索算法:遗传算法、模拟退火算法和免疫算法3、谓词演算公式可以化成一个子句集的变换过程步骤:(1)消去蕴涵符号(2)减少否定符号辖域(3)对变量标准化(4)消去存在量词(5)化为前束形(6)把母式化为合取范式(7)消去全称量词(8)消去连词符号^(9)更换变量名称4、(题4—4)基于规则的演绎系统和产生式系统,均有两种推理方式:正向推理和逆向推理正向推理:从if部分向then部分推理的过程,它是从事实或状况向目标或动作进行操作的。
逆向推理:从then部分向if部分推理的过程,它是从目标或动作向事实或状况进行操作的。
5、规则演绎系统:(1)正向规则演绎系统(2)逆向规则演绎系统(3)双向规则演绎系统6、产生式的基本形式(4)(1)产生式规则是一种因果关系或推理关系,通常形式如下:(5) IF P THEN Q (如果P则Q) 或者P→Q(6)其中,P称为条件、前向或产生式的左边,Q称为操作、结果或产生式的右边。
其还可以是“如果P被满足,则可推出结论Q,或应该执行操作Q”。
(7)(2)产生式推理(8)如果已有产生式规则 P→Q(9)并且观察到P,或者知识库中已p,则可得得到结论Q,或执行操作Q。
(10)这种推理的一个关键之处是如何有效解决规则匹配的冲突问题。
7、产生式系统的推理方式分为(按搜索方向):(1)正向推理(2)反向推理(3)双向推理第四章非经典推理1、不确定性推理:在推理过程中所使用的知识、证据等有不确定性。
第五章计算智能1、人工神经网络人工神经网络(ANN)或模拟神经网络是由人工神经元组成的,可把人工神经网络看成是以处理单元(PE)为节点、用加权的向弧(链)相互连接而成的有向图。
它的三层结构:输入层、输出层、隐层。
2、模糊计算3、遗传算法是仿真和自然选择机理,通过人工方式所构造的一类搜索法,从某种程度上来说遗传算法是对生物进化过程的数学方式仿真。
遗传算法的基本原理:A、编码与译码:将问题结构变换为位串形式编码表示的过程叫编码;反之,将位串形式编码表示变换为原问题结构的过程叫译码。
位串形式编码表示称为染色体或个体。
B、适应度函数:为了体现个体的适应能力,引入了对问题中的每一个个体都能进行度量的函数,称为适应度函数。
C、遗传操作:主要有三种(选择、交叉、变异)选择操作也叫复制操作,根据个体的适应度函数值所度量的优劣程度决定它在下一代是被淘汰还是被遗传。
交叉操作:它的简单方式是将被选择出的两个个体P1和P2作为父母个体,将两者的部分码值进行交换。
变异操作:它的简单方式是改变数码串的某个位置上的数码。
D、控制参数(交叉概率取0.6~0.95之间的值,变异概率取0.001~0.01之间的值,种群规模为30~100)。
第六章专家系统1、专家系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。
2、专家系统的特点:(1)启发性(2)透明性(3)灵活性3、专家系统的优点:(1)能够高效率、准确、周到、迅速和不知疲倦地进行工作。
(2)解决实际问题时不受周围环境的影响,也不可能遗漏忘记。
(3)能够不受时间和空间的限制,保存、推广珍贵和稀缺的专家知识与经验。
(4)能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼。
(5)能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力。