人工智能复习重点
人工智能复习重点

人工智能复习重点一、选择题。
(30分)1、人工智能英文:Artificial Intelligence(注意不就是Rengongzhineng!!)2、任课老师得名字:郑波尽邮箱:zhengbojingmail、3、据说还会考亚里士多德得功绩……(您们自己去网上查查,老师说就是常识来着)4、可能会出选择题得几个点:黄帝得“指南车”、诸葛亮得“木牛流马”、亚里士多德得形式逻辑、布莱尼茨得关于数理逻辑得思想、“机器人”一词得来源。
5、AI(人工智能)得本质问题:研究如何制造出人造得智能机器或系统,来模拟人类智能活动得能力,以延伸人们智能得科学。
6、研究对象:模拟人类智能7、研究目标:研究瞧上去具有人类智能得系统,解决需要人类智能才能解决得问题二、简答题。
1、图灵测试:三个重点(1)一个测试者,一个受试者,一台机器(2)所有交流信息无泄漏(3)如果提问者区分两者得正确率小于50%,则可以认为机器具有智能2、希尔勒得中文屋子:一个对中文一窍不通得,以英语作母语得人被关闭在一只有两个通口得封闭房间中。
房间里有一本中英翻译手册。
房外得人不断向房间内递进用中文写成得问题。
房内得人便按照手册得说明,用中文回答出问题,并将答案递出房间。
(希尔勒中文屋子得实验表明用图灵测试来定义智慧还就是远远不够充分得)3、人工智能得思想流派:(1)基于符号处理得符号主义(Symbolism)人类思维得基本单元就是符号,思维过程就是对符号得处理过程,自然语言也就是用符号表示得理论基础: 物理符号系统假设与有限合理性原理、物理符号系统假设:物理符号系统就是表现智能行为必要与充分得条件有限合理性原理:人类行为表现出有限得合理性(2)以人工神经网络为代表得连接主义(Connectionism)人工神经网络就是典型代表,其理论基础就是脑模型。
人工神经网络具有良好得自学习,自适应与自组织能力,以及大规模并行,分布式信息存储与处理得特点、可以处理不确定性问题、(3)以演化计算为代表得演化主义(Evolutionism)模拟自然界得生物演化过程入手,以解决智能系统如何从环境中进行学习得问题、理论基础为达尔文得进化论。
人工智能期末复习

人工智能期末复习一、名词解释1、人工智能(学科):人工智能学科是计算机科学中涉及研究、设计和应用智能机器的一个分支,是一门综合性的交叉学科和边缘学科。
2、语义网络:语义网络是一种用实体及其语义关系来表达知识的有向图。
3、机器学习:机器学习就是让机器(计算机)来模拟和实现人类的学习功能。
4、正向推理产生式系统:正向推理也称数据驱动方式,它是从初始状态出发,朝着目标状态前进,正向使用规则的一种推理方法。
所谓正向使用规则,是指以问题的初始状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的前提时,该规则才被使用。
正向推理产生式系统简单明了,且能求出所有解,但是执行效率较低,具有一定的盲目性。
5、遗传算法:遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法。
6、人工智能(能力):是智能机器执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
7、机器学习系统:机器学习系统是指能够在一定程度上实现机器学习的系统。
8、逆向推理产生式系统:逆向推理也称目标驱动方式,它是从目标状态出发,朝着初始状态前进,反向使用规则的一种推理方法。
所谓逆向使用规则,是指以问题的目标状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的后件时,该规则才被使用。
逆向推理产生式系统不寻找无用数据,不使用与问题无关的规则。
9、演绎推理:演绎推理是从已知的一般性知识出发,去推出蕴含在这些已知知识中的适合于某种个别情况的结论。
是一种由一般到个别的推理方法,其核心是三段论,如假言推理、拒取式和假言三段论。
10、启发式搜索:状态空间的启发式搜索是一种能够利用搜索过程所得到的问题自身的一些特性信息来引导搜索过程尽快达到目标的搜索方法。
二、填空题1、目前人工智能的主要学派有下列三家:符号主义、联结主义和行为主义。
2、常用的知识表示方法有一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法和过程表示法。
《人工智能》复习要点

名词解释5X6分/简答题5X10分/论述题1X20分一、选择题1.下列哪个不是人工智能的研究领域( D )A.机器证明B.模式识别C.人工生命D.编译原理2.人工智能是一门( C )A.数学和生理学B.心理学和生理学C.语言学D.综合性的交叉学科和边缘学科3.神经网络研究属于下列( B )学派A.符号主义B.连接主义C.行为主义D.都不是4.(A->B)∧A => B是( C )A.附加律B.拒收律C.假言推理5.命题是可以判断真假的( D )A.祈使句B.疑问句C.感叹句D.陈述句6.MGU是(A)A.最一般合一B.最一般替换C.最一般谓词D.基替换7.要想让机器具有智能,必须让机器具有知识。
因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫( B )。
A.专家系统B.机器学习C.神经网络D.模式识别8.下列不在人工智能系统的知识包含的4个要素中( D )A.事实B.规则C.控制D.关系9.语义网络表达知识时,有向弧AKO 链、ISA 链是用来表达节点知识的( C )。
A.无悖性B.可扩充性C.继承性10.仅个体变元被量化的谓词称为( A )A.一阶谓词B.原子公式C.二阶谓词D.全称量词11.或图通常称为( D )A.框架网络B.语义图C.博亦图D.状态图12.不属于人工智能的学派是( B )A.符号主义B.机会主义C.行为主义D.连接主义。
13.所谓不确定性推理就是从( )的初始证据出发,通过运用( )的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
( A )A.不确定性, 不确定性B.确定性, 确定性C.确定性, 不确定性D.不确定性确定性14.C(B|A) 表示在规则A->B中,证据A为真的作用下结论B为真的( B )A.可信度B.信度C.信任增长度D.概率15.已知初始问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的解可以直接得到,从而解决了初始问题。
人工智能重点

1.AI学科体系分为三个层次: 人工智能理论基础,人工智能原理,人工智能工程系统
2.人工智能的定义:狭义-从计算机科学的角度来看,AI是用计算机来模拟人类的某些智能
活动,或是计算机具有人类的某些局部职能和功能;从应用的角度看,AI的最终目标是编制出具有智能的程序(推理、学习、思考)。
广义-人类智能行为规律、智能理论方面的研究。
3.同传统的计算机程序相比较:1.人工智能首先研究的是以符号表示的知识而不是数值数
据为研究对象.2.人工智能采用的是启发式推理方法而不是常规算法.3.人工智能的控制结构与知识领域是分离的,并允许出现不正确的解答
4.产生式系统组成三要素:1.一个综合数据库——存放信息2.一组产生式规则——知识3.
一个控制系统——规则的解释或执行程序(控制策略)
5.当前人工智能的研究热点:分布式处理、智能Agent、数据挖掘、环境自适应
6.人工智能的三个学派:符号主义、连接主义、行为主义
7.人工智能的九个最终目标:理解人类的认识、有效的自动化、有效的智能拓展、超人的
智力、通用问题求解、连贯性交谈、自治、学习、储存信息
8.。
人工智能复习重点

填空:1、人工智能(Artificial Intelligence,AI)主要研究用人的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。
2、人工智能之父:麦卡锡3、1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言4、产生式系统是1943年铂斯特提出,他用这种规则对符号串作替换运算产生式系统又:MYCIN、CLIPS、JESS5、语义网络是一种通过概念及其语义联系来表示知识的有向图,结点和弧必须带有标注6、问题求解系统的划分:知识贫乏系统知识丰富系统;前者依靠搜索技术解决问题,后者需求助推理技术7、盲目搜索有深度优先搜索和宽度优先搜索典型的启发式搜索有A算法A*算法为了节约计算机的存储容量,提高搜索效率,通常采用隐式存储方式进行隐式图搜索推理8状态空间很大的问题,设计搜索策略的关键是解决组合爆炸问题所谓组合爆炸是指:问题因素很多时,因素可能的组合个数会爆炸性增长,引起状态空间的急剧膨胀。
9所谓推理就是按照某种策略从已有事实和知识推出结论的过程。
推理又程序实现的,称为推理机。
简答:一、人工智能定义:就是要让机器的行为看起来就像人所表现出来的智能行为一样。
也就是人造机器所表现出来的智能。
二、人工智能的应用领域:1.机器学习:就是要让计算机能够像人那样自动获取新知识,并在实践中不断地完善自我和增强能力,是的系统下一次执行相同或类似的任务时,会比现在做的更好或效率更高。
2.专家系统:在特定的领域内具有相应的知识和经验的程序系统,并能够达到或接近专家的水平3.模式识别:研究如何是机器具有感知能力,主要是研究视觉模式和听觉模式下信息的识别4.自然语言处理:5.智能决策支持系统三、什么是知识:知识就是人类认识自然界的精神产物,是人类进行智能活动的基础表示:为描述世界所做的一组约定,就是把知识符号化的过程。
重要性:知识的表示与知识的获取、管理、处理、解释等有直接关系,对于问题能否求解,以及问题的效率有重大的影响1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言四、命题的定义和举例:具有真假意义的陈述句:今天要下雨五、产生式系统的组成:规则库、综合数据库和推理机六、推理分类演绎推理:从全称判断推出特称判断或单称判断的过程。
人工智能 复习要点汇总

人工智能第一章1、什么是人工智能?从学科角度来看:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
从能力角度来看:人工智能是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
2、物理符号系统的六种基本功能信息处理系统又叫符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。
一个完善的符号系统应具有下列6种基本功能:(1)输入符号(input);(2)输出符号(output);(3)存储符号(store);(4)复制符号(copy);(5)建立符号结构:通过找出各符号间的关系,在符号系统中形成符号结构;(6)条件性迁移(conditional transfer):根据已有符号,继续完成活动过程。
人和计算机具备这6种功能。
3、知识表示(Knowledge Representation)主要方法有:状态空间法、问题归约法、谓词逻辑法、语义网络法、框架表示法、本体表示法、过程表示法、神经网络表示法等。
第二章1、谓词逻辑。
2、设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?答:设X:传教士人数,Y:野人人数;设D(X,Y) 为运输过程,当X,Y为正时,表示去程;当X,Y为负时,表示返程。
另外还必须满足:,(X为0时除外)第三章1、1)宽度优先搜索定义: 以接近起始节点的程度逐层扩展节点的搜索方法。
特点:一种高代价搜索,但若有解存在,则必能找到它。
2)深度优先搜索定义:首先扩展最新产生的(即最深的)节点。
与宽度优先搜索算法最根本的不同在于:将扩展的后继节点放在OPEN表的前端。
自考人工智能原理重点复习大纲

自考人工智能原理重点复习大纲
一、概述
- 人工智能的基本概念和定义
- 人工智能的发展历史和应用领域
- 人工智能的基本原理和方法
二、知识表示与推理
- 逻辑表示和推理的基本概念和方法
- 谓词逻辑与一阶谓词逻辑
- 归结推理和演绎推理
- 产生式规则与专家系统
三、机器研究
- 机器研究的基本概念和分类
- 监督研究、无监督研究和半监督研究的基本原理
- 决策树、朴素贝叶斯和支持向量机的原理和应用
- 神经网络和深度研究的基本原理和应用
四、自然语言处理
- 自然语言理解和生成的基本概念和方法
- 词法分析、句法分析和语义分析的原理和技术
- 文本分类、信息抽取和机器翻译的基本原理和应用
五、计算机视觉
- 计算机视觉的基本概念和方法
- 图像特征提取和图像识别的原理和技术
- 目标检测、图像分割和人脸识别的基本原理和应用
六、智能系统与伦理
- 智能系统的发展现状和前景
- 人工智能在社会和经济中的应用
- 人工智能带来的伦理、法律和社会问题
七、人工智能的挑战和发展方向
- 当前人工智能面临的挑战和问题
- 未来人工智能的发展方向和趋势
- 人工智能与人类的关系和合作
以上为自考人工智能原理的重点复习大纲,希望能对你的学习有所帮助。
《人工智能》复习要点

名词解释5X6分/简答题5X10分/论述题1X20分一、选择题1.下列哪个不是人工智能的研究领域( D )A.机器证明B.模式识别C.人工生命D.编译原理2.人工智能是一门( C )A.数学和生理学B.心理学和生理学C.语言学D.综合性的交叉学科和边缘学科3.神经网络研究属于下列( B )学派A.符号主义B.连接主义C.行为主义D.都不是4.(A->B)∧A => B是( C )A.附加律B.拒收律C.假言推理5.命题是可以判断真假的( D )A.祈使句B.疑问句C.感叹句D.陈述句6.MGU7.8.9.10.11.12.13.15.16.17.A.用户B.综合数据库C.推理机D.知识库18.产生式系统的推理不包括( D )A.正向推理B.逆向推理C.双向推理D.简单推理19.子句~P?Q和P经过消解以后,得到( B )A. PB. QC.~PD.P?Q20. 反演归结(消解)证明定理时,若当前归结式是( C )时,则定理得证。
A.永真式B.包孕式(subsumed)C.空子句21. 谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨C2‘,?若σ是互补文字的(最一般)合一置换,则其归结式C=( A )A.C1’σ∨C2’σB.C1’∨C2’C.C1’σ∧C2’σD.C1’∧C2’22.A?(A?B)?A 称为(),~(A?B)?~A?~B称为( C )A.结合律B.分配律C.吸收律D.摩根律23. 如果问题存在最优解,则下面几种搜索算法中,( A )必然可以得到该最优解。
A.广度优先搜索B.深度优先搜索C.有界深度优先搜索D.启发式搜索24.AI的英文缩写是(A)A)Automatic Intelligence B)Artifical IntelligenceC)Automatice Information D)Artifical Information25. 从已知事实出发,通过规则库求得结论的产生式系统的推理方式是( A )A.正向推理B.反向推理C.双向推理26.1997年5月,着名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为( A )A.深蓝B.IBMC.深思D.蓝天27.人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是( C )A.明斯基B.扎德C.图林D.冯.诺依曼二、填空题综合数据库,知识库和推理机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基,80%)→战略导弹(Y) / 发射方式和比例(Z,陆基,20%)→战术导弹(Z)
(4)战术导弹可以由陆基发射、飞机发射和军舰发射。
表示为:战术导弹(Z)→发射方式(Z,陆基) 发射方式(Z,飞机) 发射方式(Z,军
舰)
2、语义网络
(1)二元谓词用语义网络来表示(实际上 n 元谓词都可以用二元谓词表示)
}
算法流程: • 定义三个变量,分别代表三个水壶。int h3,h4,h10; • 定义一个规则集执行方法:void Rules(); • 定义一个冲突解决机制:
h3 =0; h4 =0;h10=10;
while ((h3!=2 ) && (h4!=2)) // (h10!=5) {
Rules(); printf("RST: %d, %d, %d\n",h3,h4,h10); } 8 条规则的规则集 • case 1: if (h4<4) {h10 -= 4-h4; h4=4;}break; • case 2: if(h3 <3) {h10-=3-h3;h3 =3;}break; • case 3: if (h4>0){h10+=h4;h4=0;}break; • case 4: if (h3>0){h10+=h3;h3=0;}break; • case 5: if ((h3 + h4) >=4 ){h3 = h3+h4 -4; h4=4;}break; • case 6: if ((h3 + h4) >=3 ){h4 = h3+h4 -3; h3=3;}break; • case 7: if ((h3 + h4) <=4 ){h4=h3+h4;h3 = 0; }break; • case 8: if ((h3 + h4) <=3 ){h3 = h3+h4;h4=0; }break;
例(1)吴小菲喜欢狗
(2)李云给了吴小菲一本书
3、框架表示 框架具有以下 6 条主要特征 (1)每个框架有一个框架名(可带参数) (2)每个框架有一组属性,每个属性称一个槽,存放属性值 (3)属性有一定的数据类型,不同属性类型不同 (4)属性值可以是子框架调用,调用可以带参数 (5)有些属性值可以事先确定,有些属性值需要在生成实例时代入 (6)属性值在代入时需要满足一定条件,不同属性值之间有时也要满足一定的约束条
表示为: Girl(吴小菲) Is A(吴小菲,女孩)
(2)李云给了吴小菲一本书
表示为: Gave(李云,吴小菲,书)
或 ∃x(Gave(李云,吴小菲,x)∧Book(x))
(3)潜艇发射的导弹都是战略导弹,而陆基发射的 80%是战略导弹,20%是战术导弹
表示为:发射方式和比例(Y,潜艇,100%)→战略导弹(Y) / 发射方式和比例(Y,陆
人工智能复习重点
一、选择题。(30 分) 1、人工智能 英文:Artificial Intelligence(注意不是 Rengongzhineng!!) 2、任课老师的名字:郑波尽 邮箱:zhengbojin@ 3、据说还会考亚里士多德的功绩……(你们自己去网上查查,老师说是常识来着) 4、可能会出选择题的几个点:黄帝的“指南车”、诸葛亮的“木牛流马”、亚里士多德的形
∃(x)Q(x)
(10) ∀(x)P(x)等价于∀(y)P(y), ∃(x)P(x)等价于∃(y)P(y)
例如:(1)所有的人都是要死的。
(2) 有的人活到一百岁以上。
在个体域 D 为人类集合时,可符号化为:
(1) xP(x),其中 P(x)表示 x 是要死的。
(2) x Q(x), 其中 Q(x)表示 x 活到一百岁以上。
int h3,h4,h10; void Rules(); int main() {
#include "time.h" srand( (unsigned)time( NULL ) );
h3 =0; h4 =0;h10=11;
while ((h3!=2 ) && (h4!=2)) // (h10!=5)
合适公式。
(3)、几个定律
(1) 否定之否定 ~(~P)等价于 P
(2) P∨Q 等价于~P→Q
(3) 狄·摩根定律 ~(P∨Q)等价于~P∧~Q
~(P∧Q)等价于~P∨~Q
(4) 分配律 P∧(Q∨R)等价于(P∧Q)∨(P∧R) P∨(Q∧R)等价于(P∨Q)∧(P∨R)
(5) 交换律 P∧Q 等价于 Q∧P
case 4: if (h3>0) {
h10+=h3; h3=0; } break; case 5: if ((h3 + h4) >=4 ) { h3 = h3+h4 -4; h4=4; } break; case 6: if ((h3 + h4) >=3 ) { h4 = h3+h4 -3; h3=3; } break; case 7: if ((h3 + h4) <=4 ) { h4=h3+h4; h3 = 0; } break; case 8: if ((h3 + h4) <=3 ) { h3 = h3+h4; h4=0; } break; default: printf("ERROR!"); }
{ int i =rand() % 8 + 1; Rules(i); printf("RST: %d, %d, %d,
RULE: %d\n",h3,h4,h10,i); }
return 0; }
void Rules(int i) {
switch (i) {
case 1: if (h4<4) {
h10 -= 4-h4; h4=4; } break; case 2: if(h3 <3) { h10-=3-h3; h3 =3; } break; case 3: if (h4>0) { h10+=h4; h4=0; } break;
(1)一个测试者,一个受试者,一台机器 (2)所有交流信息无泄漏 (3)如果提问者区分两者的正确率小于 50%,则可以认为机器具有智能 2、希尔勒的中文屋子:
一个对中文一窍不通的,以英语作母语的人被关闭在一只有两个通口的封闭房间中。房 间里有一本中英翻译手册。房外的人不断向房间内递进用中文写成的问题。房内的人便 按照手册的说明,用中文回答出问题,并将答案递出房间。 (希尔勒中文屋子的实验表明用图灵测试来定义智慧还是远远不够充分的) 3、人工智能的思想流派: (1)基于符号处理的符号主义(Symbolism)
2、演化算法 演化算法本质上是一种迭代算法 是一种生成测试法 生成新个体的规则是统一的
pop= rand(20,1)*10; %随机产生初始群体
objvalue =10*sin(5*pop)+7*cos(4*pop)
for i=1:200 %200 为迭代次数
for j=1:19
a =rand();
(1)真值 0 和 1 是命题公式 (2)命题变量、命题常量是命题公式 (3)如果 A 是命题公式,则¬A 也是命题公式 (4)如果 A,B 是命题公式,则 A(∨或→或↔或∧)也是命题公式 (5)有限次使用以上规则构成的符号串也是命题公式
1、谓词逻辑
(1)、语法和语义
谓词逻辑的基本组成部分是谓词符号、变量符号、函数符号和常量符号,并用圆括弧、
两项合并后化为合取范式:
(~P ∨ Q)∧~Q ∧ P
(3)则子句集为:
{ ~P∨Q,~Q,P}
(4)对子句集中的子句进行归结可得:
• ① ~P∨Q
• ② ~Q
• ③P
• ④ Q,
(1,3 归结)
• ⑤ ,
(2,4 归结)
由上可得原公式成立。
2、若已知公理集:~P→Q, Q→R, P→T, ~T,求证:R 答:(1)将命题转换成合取范式
P∨Q 等价于 Q∨P
(6) 结合律 (P∧Q)∧R 等价于 P∧(Q∧R) (P∨Q)∨R 等价于 P∨(Q∨R)
(7) 逆否律 P→Q 等价于~Q→~P
此外,还可建立下列等价关系:
(8) ~∃(x)P(x)等价于∀(x)[~P(x)] ~∀(x)P(x)等价于∃(x)[~P(x)]
(9) ∀(x)[P(x)∧Q(x)]等价于∀(x)P(x)∧ ∀(x)Q(x), ∃(x)[P(x)∨Q(x)]等价于∃(x)P(x)∨
即由(~P→Q)∧(Q→R) ∧ (P→T) ∧ (~T) ∧ (~R) 转变为(P∨Q)∧(~Q ∨ R) ∧ (~P ∨ T) ∧ (~T) ∧ (~R) (2)建立子句集 S={P∨Q, ~Q ∨ R, ~P ∨ T, ~T, ~R} (3)对子句集归结,归结过程如归结树.由于算法最终找到了空子句.定理成立. (归结 树略)
人类思维的基本单元是符号,思维过程是对符号的处理过程,自然语言也是用符号 表示的
理论基础: 物理符号系统假设和有限合理性原理. 物理符号系统假设:物理符号系统是表现智能行为必要和充分的条件 有限合理性原理:人类行为表现出有限的合理性 (2)以人工神经网络为代表的连接主义(Connectionism) 人工神经网络是典型代表,其理论基础是脑模型。人工神经网络具有良好的自学习, 自适应和自组织能力,以及大规模并行,分布式信息存储和处理的特点.可以处理不确定 性问题. (3)以演化计算为代表的演化主义(Evolutionism) 模拟自然界的生物演化过程入手,以解决智能系统如何从环境中进行学习的问题. 理论基础为达尔文的进化论。 (4)以多智能体系统为代表的行为主义(Actionism) 在没有对简单的智能系统有清楚的了解和大量的实践以前,不可能准确地理解构造 更为复杂的人类智能的方法。从简单的系统开始,逐步构造出更为复杂的系统理论基础 为控制论 Cybernetics 。 三、程序题 1、倒水问题(14 分) 一个 10 升的桶里有 10 升水,现有 3 升和 4 升两个空桶,如何得到 5 升的水?用程序实 现。