八年级数学相似多边形的性质

合集下载

八年级数学 相似多边形的性质(一)

八年级数学 相似多边形的性质(一)

八年级数学相似多边形的性质(一)●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两X第一X:(记作§4.8.1 A)第二X:(记作§4.8.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解投影片(§4.8.1 A)(4)D C CD ''等于多少?你是怎么做的?与同伴交流.图4-38[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43 (2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=C A AC '' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′)∵由△ABC ∽△A ′B ′C ′得∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43 ∵△BDC ∽△B ′D ′C ′∴D C CD ''=C B BC ''=43已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么DC CD ''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD ''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′,CD 、C ′D ′是它们的对应高,那么D C ''=CB ''=k . [生乙]如4-39图,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''=C A AC ''=k .图4-39∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线.∴∠ACD =∠A ′C ′D ′∴△ACD ∽△A ′C ′D ′∴D C CD ''=CA AC ''=k . [生丙]如图4-40中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''=C A AC ''=k .图4-40∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,C A AC ''=B A AB ''=k . ∵CD 、C ′D ′分别是中线 ∴D A AD ''=B A AB ''2121=B A AB ''=k . ∴△ACD ∽△A ′C ′D ′∴D C ''=CA ''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.投影片(§4.8.1 B )图4-41如图4-41所示,在等腰三角形ABC 中,底边BC =60 cm,高AD =40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么?(2)求正方形PQRS 的边长.解:(1)△ASR ∽△ABC ,理由是:四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△AB C.根据相似三角形对应高的比等于相似比,可得BCSR AD AE = 设正方形PQRS 的边长为x cm ,则AE =(40-x )cm ,所以604040x x =- 解得:x =24所以,正方形PQRS 的边长为24 cm.Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5).Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比. Ⅴ.课后作业 习题4.10. 1.解:∵△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,且C A AC ''=23. ∴D B BD ''=C A AC ''=23 ∴234=BD ∴BD =6 2.解:∵△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应角平分线,且AD =8 cm, A ′D ′=3 cm. ∴D A AD ''=B A AB '', 设△ABC 与△A ′B ′C ′对应高为h 1,h 2.∴B A AB ''=21h h ∴21h h =D B A ABD '''=38. Ⅵ.活动与探索图4-42如图4-42,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=D A AD '' 你认为△ABC ∽△A ′B ′C ′吗?解:△ABC ∽△A ′B ′C ′成立.∵B A AB ''=D B BD ''=D A AD '' ∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD ,∠B ′A ′C ′=2∠B ′A ′D ′∴∠BAC =∠B ′A ′C ′∴△ABC ∽△A ′B ′C ′●板书设计§4.8.1 相似多边形的性质(一)二、课堂练习三、课时小节四、课后作业●备课资料如图4-43,CD 是Rt △ABC 的斜边AB 上的高.图4-43(1)则图中有几对相似三角形.(2)若AD =9 cm,CD =6 cm,求BD .(3)若AB =25 cm,BC =15 cm,求BD . 解:(1)∵CD ⊥AB∴∠ADC =∠BDC =∠ACB =90°在△ADC 和 △ACB 中∠ADC =∠ACB =90°∠A =∠A∴△ADC ∽△ACB同理可知,△CDB ∽△ACB∴△ADC ∽△CDB所以图中有三对相似三角形.(2)∵△ACD ∽△CBD∴BDCD CD AD即BD669= ∴BD =4 (cm )(3)∵△CBD ∽△ABC ∴BC BD BA BC =. ∴152515BD =∴BD =251515⨯=9 (cm ).。

相似多边形的性质的应用

相似多边形的性质的应用

相似多边形的性质的应用1、相似多边形的性质(1)相似多边形中,对应的三角形相似,其相似比等于原相似多边形的相似比.(2)相似多边形中,对应线段的比等于相似比.(3)相似多边形周长的比等于相似比;面积的比等于相似比的平方.2、重要方法相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便.性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用.如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根.例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为()A.12 B.18 C.24 D.30思路与技巧由相似多边形对应边成比例,设最长边为x.∴,∴2x=36,x=18.答案 B点评本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错.例2 如图在□ABCD中,AB=6,AD=4,EF∥AD,若□ABCD∽□EFDA,求AE的长.思路与技巧(1)图形中有几对相似的平行四边形?为什么?对应边分别是什么?(2)AE的对应边应是哪条线段?为什么?(3)试一试:求S□ABCD∶S□EFDA的值.解∵EF∥AD,四边形ABCD是平行四边形,AD=4 ∴EF=AD=4,∵□ABCD∽□EFDA,∴(相似多边形对应边成比例),又∵AB=6,∴∴.点评由相似的条件,可知AE的对应边是DA,一般的在条件中,若使用的是相似符号,则对应边则是确定的,因此书写相似多边形时,对应的字母要写在对应的位置上.例3 已知:如图,正方形ABCD中,E是AC上一点,EF⊥AB于F,EG⊥AD于G,AB=6,AE∶EC=2∶1,求S四边形AFEG.思路与技巧(1)四边形AFEG是什么图形?为什么?(2)AE∶EC的值与哪两条线段的比相等?为什么?如何求出AF的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解∵正方形ABCD,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DC∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG是正方形,∴正方形ABCD∽正方形AFEG,∴S正ABCD∶S正AFEG=AB2∶AF2(相似多边形的面积比等于相似比的平方),在△ABC中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又A B=6 ∴AF=4 ∴S正ABCD∶S正AFEG=36∶16,∴.点评本题中的正方形是特殊的多边形,但在一般的多边形中,一定要注意对应关系.(1)相似多边形的对应边的比,等于相似比的平方;(2)所有的正方形都是相似的,此题中只须证出四边形AFEG是正方形,即可得到它与正方形ABCD相似例4 已知:如图所示,△ABC中,DE//FG//BC.(1)若AD=DF=FB,求S1:S2:S3;(2)若S1:S2:S3=1:8:27,求AD:DF:FB.思路与技巧注意在(2)中,不能由S1:S2=1:8,就得出AD:DF=1:,因为此处不能直接运用面积的比等于相似比的平方,S1,S2不是两个相似三角形的对应面积.解(1)令,则,(2)∴可设,则∴AD:AF:AB=1:3:6AD:DF:FB=1:2:3.点评根据相似形,实施比例转化,应用面积比等于相似比的平方.例5 如图所示,△ABC的面积为16,,D为AB上任一点,F为BD的中点,DE//BC,FG//BC,分别交AC于E、G,设AD=x.(1)把△ADE的面积S1,用含x的代数式表示;(2)把梯形DFGE的面积S2,用含x的代数式表示.思路与技巧转化为相似三角形,利用其性质解决.解(1),即(2)∵F为BD的中点,.例6 如图所示,已知O是四边形ABCD的一边AB上的任意一点,EH//AD,HG//DC,GF//BC.试说明四边形EFGH与四边形ABCD是否相似,并说明你的理由.思路与技巧证明两个四边形的对应边成比例,对应角相等.解四边形四边形.理由:因为,所以,所以,所以又因为,所以,所以,所以.而,所以.因为,所以,所以.而,所以.设,所以,所以,所以因此,所以四边形四边形.点评通过图形的分割,转化为三角形问题加以研究.例7 已知:ABCD是梯形,AB//DC,对角线AC,BD交于E,ΔDCE的面积与ΔCEB的面积比为1∶3.求:ΔDCE的面积与ΔABD的面积比.分析:题目中已知条件是面积比,要求的也是面积比,因此根据图形找到面积之间的关系是很重要的.ΔDCE与ΔCEB是等高三角形,因此面积比为底的比,而ΔDCE与ΔABE是相似三角形,面积的比等于相似比的平方,又可证出ΔADE与ΔBCE的面积相等,这样ΔDCE与ΔABD的面积比就可求了.解∵SΔ DCE∶SΔCEB=1∶3,而ΔDCE与ΔCEB是等高三角形,∴DE∶EB=1∶3,∵DC//AB,∴ΔDCE∽ΔBAE,∴SΔDCE∶SΔBAE=(DE∶EB)2=1∶9,∵ΔADC与ΔBDC为等底、等高三角形,∴SΔADC=SΔBDC,∴SΔADC-SΔDCE=SΔBDC-SΔDCE,∴SΔAED=SΔBEC设SΔDCE=k, 则SΔAED=SΔBEC=3k, SΔBAE=9k,∴SΔABD=SΔABE+SΔADE=12k,∴SΔDCE∶SΔABD=1∶12.点评相似三角形的面积比等于相似比的平方,计算时不要丢掉平方;若从面积比求相似三角形的相似比,则要注意开平方.例8 如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2,解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;思路与技巧本题考点有等腰三角形;正方形;相似三角形.第一问,思路,作PEQR,E为垂足,运用相似三角形的性质,面积比第于相似比的平方,可求出面积.第二问方法与第一问类似,但是要注意图形的位置.解(1):作PE⊥QR,E为垂足∵PQ=PR,∴QE=RE=QR=4.∴PE==3.当t=3时,QC=3.设PQ与DC交于点G.∵PE∥DC,∴△QCG∽△QEP,∴=()2.∵S△QEP=×4×3=6,∴S=()2×6=(cm2).(2)当t=5时,QC=5,B、C两点重合,CR=3,设PR与DC交于G. 由△RCG∽△REP,可求出S△RCG=.S=12-=(cm2).点评本题是代数,几何综合问题,等腰三角形,正方形等多种知识,解答本题的基本思想是数形结合,构造函数,用运动观点考虑.每种情况画一图形,结合图形,认真分析,实现数形结合的思想.。

4.8 相似多边形的性质 课件3(北师大版八年级下)

4.8 相似多边形的性质 课件3(北师大版八年级下)
听故事
想问题
很久以前,某地发生大旱, 地里的庄稼都干死了,于是大家 到庙里向神祈求下雨。神说,如 果你们做一个比现在的方桌大一 倍的方桌来祭我,我就给你们降 水。于是大家重新做了一个摆设 祭品的方桌。新方桌的边长是原 来的2倍。可是神愈发怒了。
边长扩大2倍, 面积 也扩大 2 倍吗?
相似多边形的性质
的周长比是多少?
C1 、A2C2 (2)连结相应的对角线 A1
B2 A2 C2
所得到的 ∧A1B1C1 与 ∧A2B2C2 相似吗?
∧A1C1D1 与 ∧A2C2D2 呢?为什么?
如果相似, 相似比是多少?
自学指导 (二)
(3) ∧A1B1C1 与 ∧A2B2C2
B1
的面积比,∧A1C1D1与
∧A2C2D2 的面积比分别各是 A1 C1 D1 ==
多少?
(4 )
四边形A1B1C1D1面积 四边形A2B2C2D2面积 A2

B2
你是如何得到的?(与同伴交流)
C2
尝试练习
1。课本P135 习题且使 其周长是原来的5倍,对应边应该怎样取? 要 1 使周长缩小到原来的 3 呢?要使面积扩大到 原来的16倍,对应边怎样取 ?
zxxkw
3。两相似多边形面积比为9:4,则它们的周长 比为( D )。 A9:4 B9:2 C3:4 D3:2
应用练习
1。课本P135 随堂练习 1题
2。课本P134
“做一做”
xkw
作业
必做题
课本 P135 习题4。11 3 题
选做题
易: 课本P135 难: 课本P136
2 题 4 题
(北师大版)
初二数学
学习目标
1.探索相似多边形的周长比、面积比 与相似比的关系 。

多边形的相似性质

多边形的相似性质

多边形的相似性质在几何学中,多边形是由连续的直线段组成的封闭图形,它是我们研究的重要对象之一。

在多边形的研究中,相似性质是一个关键概念,它描述了在一些特定条件下,两个多边形之间的形状和大小的关系。

本文将介绍多边形相似性质的定义、判定方法以及相关的应用。

一、多边形的相似性质定义在几何学中,两个多边形被认为是相似的,当且仅当它们每两个对应边的长度之比相等,并且对应的角度也相等。

简而言之,两个多边形相似意味着它们具有相似的形状,只是尺寸不同。

例如,在图形学中,我们常常遇到的问题是,如何判断两个多边形是否相似,并且根据相似性质进行进一步的推导和计算。

二、多边形的相似性质判定判断两个多边形是否相似的一种常用方法是通过比较它们的对应边的长度之比,并且对应的角度是否相等。

如果两个多边形的边长比和角度比都相等,那么它们就是相似的。

具体来说,可以通过以下步骤进行判定:1. 确定两个多边形的对应边;2. 计算对应边的长度之比;3. 计算对应角度之间的差值;4. 比较长度之比和角度差值是否满足相似性质。

三、多边形的相似性质应用多边形的相似性质在现实生活和各个学科中有广泛应用。

以下是一些具体的例子:1.建筑设计:在建筑设计中,多边形的相似性质可以应用于模型放大缩小、结构设计等方面,从而实现建筑设计的灵活性和优化效果;2.地图制作:在地图制作中,多边形的相似性质可以用于测量和推算地理距离、比例尺等,从而准确地绘制地理形状和位置;3.工程测量:在工程测量中,多边形的相似性质可以应用于实际测量,通过已知的尺寸计算未知的尺寸;4.数学推导:在数学推导中,多边形的相似性质可以用于证明几何定理和解决几何问题。

总结:多边形的相似性质是几何学中重要的概念,它描述了两个多边形之间的形状和大小的关系。

判断多边形的相似性质可以通过比较对应边的长度之比和对应角度之间的差值。

多边形的相似性质在实际应用中具有广泛的应用,涉及建筑设计、地图制作、工程测量等多个领域。

相似多边形的性质(1)说课稿 4

相似多边形的性质(1)说课稿 4

《相似多边形的性质(1)》的说课稿尊敬的各位评委,老师:大家好!我是来自永宁县回民中学的刘翠鸿。

今天我说课的内容是北师大版八年级下册第四章第八节《相似多边形的性质》第一课时,一、学习任务分析1、教材所处的地位和作用本节内容是在学习了相似三角形以及探索三角形相似判定条件的基础上,进一步探索相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。

从知识的前后联系来看,相似三角形比全等三角形更具有一般性,也是研究相似多边形性质的基础和圆中有关线段关系的有效方式。

因此本节课具有承上启下的作用。

2、学情分析在前面的学习中,学生已经具备了一些探索图形性质的经验,也具备了一定的合作交流能力。

因此通过类比、合作交流并结合已有的活动经验,对本节课结论的直观发现比较容易,但严格的逻辑推理能力和书写格式需进一步的强化。

二、教学目标分析根据课程标准的要求,并考虑到学生已有的认知结构和心理特征,制定如下教学目标:1、理解并掌握相似三角形对应高的比,对应角平分线的比、对应中线的比与相似比的关系,并运用这些性质来解决实际问题;2、经历探索相似三角形性质的过程,体会数学逻辑推理的合理性和严谨性,体验解决问题策略的多样性;3、通过主动探究,合作交流,感受探索的乐趣和成功的体验,使学生养成积极思考、合作交流的习惯。

三、教学重点、难点分析根据课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点教学重点探究验证相似三角形的性质并运用相似三角形的性质解决简单的实际问题。

教学难点:由于八年级学生逻辑推理能力、概括总结能力还较低,所以理解和运用三角形相似的性质解决简单的实际问题是本节课的难点。

四、教法分析和学法指导1、教法分析八年级学生已经养成了良好的数学学习习惯,具有一定的自主探索,合作交流的学习能力。

本节课以提出问题、解决问题为主线,以独立思考和小组合作交流的形式,在教师的指导下发现、探索相似三角形的性质。

2、学法指导学生在七年级下学期已经学习全等三角形的判定和性质,对全等三角形的对应边的比已有所了解。

4.8 相似多边形的性质 课件1(北师大版八年级下)

4.8 相似多边形的性质 课件1(北师大版八年级下)
B
又∵AM,DN分别是△ABC和△DEF的中线.
BM BC AB BM . .且∠B =∠E. EN EF DE EN AM AB E . DN DE (相似三角形对应边成比例).
M
C
D
∴△AMB∽△DNE.(两边对应成比 例且夹角相等的两个三角形相似).
N
F
即,相似三角形对应中线的比等于相似比.
做一做P132
好汉的歌
• 下图是阳泉市城区外环路示意图,比例尺为1∶100 000 • (1)设法求出图上外环路的长度,并由此求出外环路的实 际长度; • (2)估计外环路所围成的区域的面积.你是怎么做的?与同 伴交流. 平坦立交桥
• 点拨 • (1)用一根线绳沿图中 的外环路重叠放置,此 时线绳的长度就是外 环路的图上距离; • (2)把图上的外环路近 似地看作一个矩形.
E
A B
D
AB AC BC . DE DC CE
C
开启
智慧 内涵与外延
A
如图, 已知△ABC, DE ∥ BC, 交AB,AC 或其延长线于D,E,则有如下结论: D E 结论1:平行于三角形一边直线 B C 截其它两边(或其延长线),所截 A 得的三角形与原三角形相似; B C 如图:在△ABC中, 如果DE∥BC,那么△ADE∽△ABC. D E 结论2:平行于三角形一边直线截 E D 其它两边(或其延长线),所得的对 A 应线段成比例. 如图:在△ABC中,如果DE∥BC, B C AD AE AD AE DB EC DB EC 那么 ;或 ;或 ;或 . DB EC AB AC AD AE AB AC
大阳泉
义井桥
随 堂 阳泉是我家 练 人人热爱它 习 • 阳泉市城市广场,是一个因周边环境设计建造

相似多边形的性质

相似多边形的性质

相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。

在几何学中,相似多边形具有一些独特的性质和特征。

本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。

1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。

两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。

由此定义可知,如果两个多边形相似,它们的边长比例是相等的。

2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。

设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。

根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。

3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。

这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。

这对于计算多边形的角度和解决三角学问题非常有用。

4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。

假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。

同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。

5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。

其中最常见的应用是解决相似三角形问题。

通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。

例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。

6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。

相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。

比例的概念在解决与相似多边形有关的计算问题中起着关键作用。

综上所述,相似多边形具有一些独特的性质和特征。

相似多边形的性质与应用

相似多边形的性质与应用

相似多边形的性质与应用相似多边形是指具有相同对应角度的多边形,并且对应边的比例相等的多边形。

相似多边形在几何学中具有重要的性质和广泛的应用。

本文将探讨相似多边形的性质及其在实际问题中的应用。

一、相似多边形的性质1. 边比例性质在相似多边形中,对应边的比例是相等的。

设两个相似多边形分别为多边形ABCDEF和多边形A'B'C'D'E'F',则有:AC / A'C' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'2. 角度相等性质在相似多边形中,对应角度是相等的。

对于相似多边形ABCDEF 和多边形A'B'C'D'E'F',有:∠A = ∠A', ∠B = ∠B', ∠C = ∠C', ∠D = ∠D', ∠E = ∠E', ∠F = ∠F'3. 周长比例性质在相似多边形中,每条边的比例相等,则两个多边形的周长比例也相等。

设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:周长(ABCDEF) / 周长(A'B'C'D'E'F') = AB / A'B' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'4. 面积比例性质在相似多边形中,对应边的比例的平方等于面积的比例。

设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:面积(ABCDEF) / 面积(A'B'C'D'E'F') = (AB / A'B')^2 = (BC / B'C')^2 = (CD / C'D')^2 = (DE / D'E')^2 = (EF / E'F')^2二、相似多边形的应用1. 测量距离与高度通过相似多边形的性质,我们可以使用三角形的相似性来测量无法直接测量的距离或高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下列哪种败血症病死率最高A.金葡菌败血症B.绿脓杆菌败血症C.脆弱类杆菌败血症D.大肠杆菌败血症E.念珠菌败血症 下列哪一种情况是造成铸件冷隔的原因A.铸型反复多次焙烧B.铸造温度过高C.铸金量过多D.包埋材料透气性不良E.铸金量不足 如图,为一支气管的外观图,下列关于右主支气管的叙述,错误的是()A.右主支气管较粗短,长约2.5cmB.与气管纵轴成20~25°角C.可分为上、下两肺叶支气管D.不压迫食管前壁形成食管的生理性狭窄E.异物易进入右侧支气管 从口腔临床交叉感染的病原学考虑,最危险而又最典型的感染是A.细菌感染B.病毒感染C.真菌感染D.原虫感染E.衣原体感染 角膜内皮营养不良的代表是A.地图-点状-指纹状营养不良B.颗粒状营养不良C.Fuch角膜营养不良D.Terrien边缘变性E.角膜内皮失代偿 高层主体建筑内设置装有可燃性油的电气设备的变配电所。A.不宜B.不应C.必须D.不可 霍乱的病理变化为A.肠黏膜有炎症改变、浅表溃疡B.胆囊内无胆汁C.肾脏有炎症改变及变性D.心、肝、脾无出血E.严重脱水,肌肉及组织干瘪 组织文化是以_____为中心的. 按国际标准阻塞性呼吸暂停是指在7小时睡眠中。A.呼吸暂停在40次以上B.呼吸暂停在30次以上C.呼吸暂停在50次以上D.呼吸暂停在10次以上E.呼吸暂停在20次以上 尸体处理时,头下垫枕的目的是A.防止面部变色B.使尸体包裹外观良好C.防止下颏下垂D.保持尸体位置良好E.便于家属认领 《〈鲁迅杂感选集〉序言》的作者是。A.冯雪峰B.瞿秋白C.胡风 风湿性心脏病最常侵犯的瓣膜是A.三尖瓣B.主动脉瓣C.二尖瓣D.肺动脉瓣E.三尖瓣与主动脉瓣 气管异物产生的临床表现不准确的是()A.咳嗽、憋气、窒息B.双肺呼吸音不一致C.暂时缓解D.呼吸音粗糙E.颈部声门下拍击声 异物时入呼吸道内,立即发生_________,顿时面红耳赤,并有_________,呼吸不畅等症状。 当地基开挖需要处理时,承包商应该按照设计院出具的设计变更单进行地基处理。承包商按照设计变更单。A.只能进行费用索赔B.只能进行工期索赔C.可以进行费用和工期索赔D.不能进行任何索赔 老年男性泌尿系统梗阻最常见的原因是A.尿道狭窄B.膀胱颈硬化C.前列腺增生D.膀胱结石E.神经性膀胱尿道功能障碍 高速公路通信系统因其需要以通信为主。A、有线B、无线C、移动D、可视电话 按照建筑节能的有关规定,合同约定由建设单位采购墙体材料、保温材料、门窗、采暖制冷系统和照明设备的,建设单位应当保证其符合要求。A.施工图设计文件B.建筑节能强制性标准C.企业或地方标准D.民用建筑节能条例 正常腋温A.37.5℃B.36.5~37.5℃C.36~37.5℃D.36~37℃E.35~36℃ 我们党在新世纪取得的重大理论创新成果是的科学发展观。A.以人为本B.全面协调可持续发展C.以增长经济为主D.保护生态环境E.经济增长 下列不属于正式沟通的优点的是A.效果较好B.比较灵活C.有较强的约束性D.易于保密E.可以使信息沟通保持权威性 感热通量 下列关于瘫痪的叙述,错误的是A.交叉瘫是一侧上肢与对侧下肢的瘫痪B.单瘫是一侧单个肢体的瘫痪C.偏瘫是一侧上、下肢的瘫痪D.瘫痪是指自主运动减弱或消失E.截瘫是对称性双下肢瘫痪 女性,25岁,农民。反复发作性咳嗽伴哮鸣音2年,多出现在清理谷仓后。下列哪项有助于区别肺嗜酸性粒细胞增多症和支气管哮喘。A.有发热、咳嗽B.肺部闻及哮鸣音C.血嗜酸性粒细胞增多D.痰涂片见较多嗜酸性粒细胞E.胸片有多发性、游走性片状阴影 与井筒相毗连的各种硐室(马头门、装载硐室等)在一般情况下应与井筒施工,装载硐室的安装应在井筒永久装备施工之前进行。A.顺序进行B.交替进行C.同时进行D.分别进行 下列各项,不属温热性能所对应作用的是。A.温里B.开窍C.补火D.温经E.回阳 目前地高辛用于治疗心力衰竭时最常用的给药方法是A.维持量法B.大剂量冲击疗法C.隔日疗法D.顿服法E.小剂量疗法 什么是人文关怀? 使用二氧化碳灭火器时,可直接用手握喷筒或金属管,进行灭火.A.正确B.错误 治疗肝性脑病的措施中,下列不属防治氨中毒的一项是A.低蛋白饮食B.使用左旋多巴C.口服抗生素D.服用乳果糖E.滴注乙酰谷酰胺 中期妊娠利凡诺引产一次安全剂量是A.50~100mgB.100~150mgC.150~200mgD.250~300mgE.300mg 右心衰竭时呼吸困难的机制,主要为A.迷走神经兴奋性增高B.心肌供血减少C.右心房及上腔静脉压力升高D.下肢静脉回流增多E.肺淤血 κ/λ比率正常范围是A.0.4~1.2B.1.2~2.4C.2.4~5.0D.5.0~6.8E.6.8~11.2 根据《安全生产管理条例》,施工单位在其施工组织设计中对某项目的脚手架搭建编制了专项施工方案,在编制和实施该专项施工方案时应当()。A、附具安全验算结果B、经项目技术负责人签字C、经总监理工程师签字D、由专职安全员现场监督E、织专家论证 以下有关婴儿期的预防接种,正确的是A.2~3个月接种卡介苗B.2个月开始口服脊髓灰质炎疫苗C.4~5个月注射麻疹疫苗D.8~10个月注射流脑疫苗E.1岁注射百白破三联疫苗
书法培训班加盟
ห้องสมุดไป่ตู้
相关文档
最新文档