FM(调频)无线话筒电路图
几款无线话筒电路电路图及原理

几款无线话筒电路来源:滕州科苑电子作者:未知字号:[大中小]编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。
若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。
图2为2km调频发射机电路。
调频发射接收设计

一、频率稳定的调频信号传输电路。
图1所示电路可以将音频信号以调频(FM)的方式传送到异地。
图中,VT1、R2、R3、C2、C3、L1、Cx组成谐振频率在88MHz~110MHz之间的电容三点式调频振荡电路。
话筒B将声音信号转换成电信号后经过耦合电容C1送入三极管VT1的基极。
此时,VT1的基极电压将随着音频信号的变化而变化,于是VT1的集电结电容也相应变化,引起振荡器的振荡频率随之变化,达到调频的目的。
VT1集电极负载L1、Cx、C3等调谐回路决定了高频振荡器的振荡频率(即发射频率),由于C3、L1的参数为固定值,所以电容Cx为振荡频率调整电容,调整电容Cx可以改变该发射器的发射频率,当Cx的电容量为12.5pF时,发射频率约为108MHz。
包含有声音信号的调频信号由VT1的集电极输出,并由发射天线向空中发射。
天线接在VT1的集电极,长度约为690mm时发射效果最佳。
L1的电感量为0.17μH,如果买不到成品电感,也可以自己绕制。
绕制电感的电感量与线圈骨架的直径、长度以及匝数有关,如图2所示。
图中,r表示骨架的半径(单位为mm),x表示线圈成型后的长度(单位为mm),n表示线圈的匝数,电感量为n2×r2/(228.6r+254x)(μH)。
据以上方法,电感L1用φ0.1mm的漆包线在直径为6.7mm的圆形木棒上绕5~6匝,然后脱胎并将线圈长度拉至6.4mm即可二、高保真调频音频信号传输电路在深夜看电视时通常都要降低音量以免影响他人休息,这就有可能听不清电视伴音。
如果有一个电路能够将电视伴音信号发射到周围空间,然后再用调频收音机接收就能很好地解决这个问题。
该电路如图1所示。
图1电路中,VT1及其外围电路组成振荡电路,振荡频率约为98MHz,R1、Cx为音频预加重电路,用来改善音频信号的频率响应,提高音质。
L1、L2均采用1mm的漆包线在5mm的骨架上绕10匝脱胎而成,将其长度拉长为11mm左右即可,如图2所示。
简易无线卡拉OK演唱话筒电路图

简易无线卡拉OK演唱话筒电路图话筒是卡拉OK不可缺少的,如果将有线话筒改为无线话筒,演唱时更加潇洒自如,本文介绍的话筒不管是用手拿着,还是放下,它都不会发生频偏现象,而且造价低廉,简单易制。
工作原理:本话筒的工作原理与常见的无线话筒电路基本相同,但连线及音质效果大有改进。
电路见附图,V1与L1、C2、C3等构成FM高频振荡电路,调整L1、C2值可改变工作频率。
C3是维持振荡的反馈电容。
话筒信号不像以往那样从三极管基极输入,而是将话筒接在发射极上,当话筒自感电流随声音大小变化时,V1的工作电流也会随之变化,V1节电容Cbe同时变值, Cbe与C1串联后再与LC回路并联,因此,实现了调频。
MIC的这种接法完全避免了音频信号经过耦合电容的失真,因此,本话筒的频响范围宽,音质纯正,工作稳定,即使手触天线也不会影响LC振荡频率。
元件选择制作:振荡管V1选择fT>1000MHz、Icm≥100Ma、β值较大的高频管,如C3355、C3358、BFR96等。
9018的Icm只有50mA,但是可根据实际选用;MIC选用600Ω的动圈式话筒,目前中高档有线话筒多为此类;L1内径为5mm,用Φ0.5mm漆包线空芯绕5T而成;发射天线可直接使用成品天线,也可自制:线圈部分内径为1cm,空芯绕15T并拉长至3cm,直伸部分为7cm,用热缩胶套装上加热而成,也可用一根约10cm的软导线代替。
安装与调试:元件安装完毕,检查无误后,接通电源,用一台袖珍调频收音机作接收机。
值得注意的是带射频输出的VCD严重干扰接收效果,因此,必须给射频调制器加装电源开关,使用AV端子播放节目。
调节FM接收机及L1匝距,使收发频率相应,必要时将C2换值。
收音机输出的音频信号由大插头输送到VCD或扩音机进行功率放大。
发射距离与收音机的灵敏度有很大关系,但一般都≥10米。
如图所示简易无线卡拉OK演唱话筒电路图.用驻极体话筒制作有线麦克风许多废旧电器上都有驻极体话筒,如录音机、电话机等。
无线话筒电路图大全

无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3 866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。
若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。
图2为2km调频发射机电路。
本电路分为振荡、倍频、功率放大三级。
简易调频无线话筒电路图

简易调频无线话筒电路图
1.无线话筒原理
电子话筒是先将各种声音信号变成音频电信号,这个电信号再去调制电子振荡器产生的高频信号。
最后,高频信号通过天线发射到空中。
若将发射频率设计在FM收音机波段,再配合任何FM收音机接收到该高频信号,并从该高频信号还原出声音信号,从而完成各种用途。
2.电路图
附图是调频无线话筒的电路图,高频三极管Vl和电容C3、C5、C6组成一个电容三点式的高频振荡器。
三极管集电极的负载C4、L组成一个谐振器,谐振频率就是调频话筒的发射频率。
根据图中元件的参数其发射频率可以在88~108MHz之间,正好覆盖调频收音机的接收频率,通过调整L的数值(线圈L)可以方便地改变发射频率,以避开调频电台。
发射信号通过C4合到天线上再发射出去。
R4是V1的基极偏置电阻,给三极管提供一定的基极电流,使Vl工。
高频电子技术任务8 调频无线话筒的制作

图8-3
调频信号的波形图
知识链接一
角度调制原理
二、调相信号分析
根据调相波定义,载波信号的瞬时相位随调制信号 线性变化, 即 φp(t) = ωct+kpUΩmcosΩt (8-13)
式中, kp为与调相电路有关的比例常数,单位是rad/v 。令 Δφp(t) = kpUΩmcosΩt则表示瞬时相位中与调制信号成线性变化的部分,称为瞬 时相位的相位偏移量,简称相移。用mp表示最大相移, 则
m f u (t ) max k f Um (8-4)
Δωm表示瞬时角频率偏离中心频率的ωc最大值。习惯上把最大频偏Δωm称为 频偏。
根据瞬时相位与瞬时角频率的关系可知,对式(8-3)积分可得调频波的瞬时相
位
f (t ) (t )dt f u (t ) dt ct f 0 u (t )dt 0 0 c
(8-7)
以上分析表明,在调频时,瞬时角频率的变化与调制信号成线性关 系,瞬时相位的变化与调制信号积分成线性关系。 将式(8-2)分别代入式(8-3)、(8-5)、(8-7)得 瞬时角频率
(t ) c k f Um cos t c m cos t (8-8)
瞬时相位
(t ) ct
k f U m
sin t ct m f sin t
(8-9)
调频信号数学表达式
知识链接一
角度调制原理
uFM Ucm cos(ct m f sin t )
(8-10)
式中,
mf
k f U m
m f m F
(8-11)
为调频波的最大相移,又称调 频指数。mf 值可大于1 。 如图8-3所示,给出了调制信 号、瞬时频偏、瞬时相偏、对应的 波形图 。
无线话筒电路图大全

无线话筒电路图大全发布: | 作者: | 来源: luzhongguo | 查看:3175次 | 用户关注:无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
无线调频话筒

每套无线话筒由若干部袖珍发射机(可装在衣袋里,输出功率约0.01W)和一部集中接收机组成,每部袖珍发射机各有一个互不相同的工作频率,集中接收机可以同时接收各部袖珍发射机发出的不同工作频率的话音信号。
它适应于舞台讲台等场合。
调频无线话筒的制作及电路一个调频无线话筒和一台带有调频接收的收录机(或调频收音机)在一定的范围内就可以实现无线传输,这样在家里可以边走边唱卡拉ok.,还可以在大教室里辅助教师授课等。
本无线话筒电路设计合理、造型美观大方、传声距离可达20~30米、使用寿命长、经济实惠、耗电小。
非常适合广大青少年无线电爱好者装配使用。
一、电路的工作原理图1是wxh02型无线话筒的电路原理图。
该电路主要由驻极体话筒和一只高频三极管90l 8组成。
三极管vt外围元件l、c4、c5等外围元件组成高频振荡电路。
驻极体话筒BM 将声音信号变成电信号,通过电解电容C1耦合到vt的基极,对高频等幅振荡电压进行调制,经过调制的高频信号通过c6,由天线向外发射。
R3、R4是VT的直流偏置电阻,r4组成直流负反馈电路,使得vt的工作更加稳定。
l和c5决定振荡频率,f=1/2π,调整l 的匝数及间距可改变振荡频率。
R1为驻极体话筒的供电电阻。
二、元器件的选择三极管vt除可以使用9018外,还可以选用截止频率高的高频三极管,如3dg80等。
c2、c3、c4和c5应使用稳定性好的高频瓷介电容,尤其是c5一定要保证质量。
驻极体话筒采用优质的话筒。
振荡线圈l需自制,制作方法是在直径为φ5毫米的直柄钻花上用φ0.5毫米的漆包线平绕4圈后即成。
其它电阻采用图l所示的参数即可。
三、安装制作wxh02型无线话筒的印刷电路图见图2。
在安装制作前,请用万用表筛选一下各个元件的质量,有条件的话将各瓷片电容用电容表测量一下电容量,这样就万元一失了。
安装的先后顺序是电感线圈、电阻器、电容器、高频三极管、话筒和拨动开关、电池卡子。
将电阻器、电容器等元件分类集中安装的目的是减少差错和防止元件的丢失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FM(调频)无线话筒电路图
该话筒语音清晰度较高,主要采取了几个措施:MIC输出的信号先送到BG1管进行放大,其中R1和C1是附加的高音预加重电路。
C2和C3是BG1管的输入和输出耦合电容,其值用得较小,是为了衰减低音,提升中高音。
BG1管输出端反向并联的二极管D3、D4与C4、R7的电路,是利用二极管正向导通时内阻变小的特性对强信号起限幅作用,而正常强度的信号不受影响,同时对话筒与扬声器之间的正反馈引起的啸叫也有良好的抑制作用。
话筒信号经BG1放大后,通过L5加到IC内部的变容管上,对高频信号进行调频调制,可得到较大的频偏。
C7、C8和C9、L1组成调频信号调谐电路,其工作频率在88MHz~108MHz之间。
IC的第脚输出的高频信号经L2和C10调谐选频后送C11再耦合到BG2管进行射频放大(BG2可用一般的超高频管)后,向空间辐射调频的话筒信号。
整机装在一个袖珍半导体收音机的外壳内。
MIC用一根80cm长的单芯屏蔽软线引出,此话筒引线兼作发射天线。
C13输出的高频信号用电感L4与地隔离,接到屏蔽线的外层。
MIC装在一个合适的乳胶管内,再用一个领带夹与乳胶管固定在一起。
使用时将话筒夹在胸前靠近衣领处,机器挂在裤带上,使话筒线展开,其发射效果最好。
L1、L2、L3用∮0.5mm左右的漆包线在直径为5mm的圆棒上绕5圈,L2上有一抽头。
L4、L5和L6可用普通小型色码电感。
调试时先调L1的松紧度,使收音机在FM段能收到该调频话筒发射的信号,再调C16使信号更强。
最后将收音机天线缩短后调L3,使发射距离最远。
如有简易场强计配合调试,能调到效果最佳。
本机频率稳定,一次调好后使用数月不会漂移。
本人使用4.5V电源时,发射—接收距离25米之内无方向性,用调频收音机收听,感觉就像是一个调频广播电台。
调频无线话筒接收机电路
上传者:dolphin 浏览次数:1869
调频无线话筒接收机电路大致几个大的部分:
1。
调频接收及变频:
由IC1 (BA4424),本振回路(Q1,Q2)及外围元件组成。
晶体Y2稳定振荡频率。
Q3起自动增益控制作用,
IC1(BA4424) 6脚输出中频信号(10.7MHz)经两级三端陶瓷滤波器(10.7 MHz)滤波后,
送入下级;
2。
中频鉴频放大与超音频导频信号的二次鉴频:
由IC2 (LA1140)及其外围元件组成。
鉴频产生的音频信号( AF )由LA1140 第8脚输出,其
中一路经过由IC3(4558),IC4(?)及其外围元件组成的二次鉴频电路,产生的导频信号通过D6(4148) 送到后级电子开关电路,控制音频放大电路的开启或关闭;
音频信号(AF)的另一路直接送到后级音频放大电路;
3。
自动增益控制及射频工作指示电路:
由IC2(LA1140)第15脚输出的控制信号分为二路:
第一路经二极管D,驱动三极管Q(1906)改变本地振荡管Q的振荡负载,从而改变其振荡幅度,控
制变频级IC1(BA4424)的输出强度,达到控制增益的目的;
第二路经Q5(1740)放大后分二路:一路推动Q5,Q6及发光二极管组成的射频工作指示电路工作;
另一路经二极管Q送到后级电子开关电路;
电位器W的作用是控制三极管Q的集电极电位,即设定导频信号起控的基准电位;
4。
音频放大部分(见原理图2):
我们所分析使用的这台接收机是一台双通道接收机,即一台接收机配用两只不同频率的无线话筒,
可供两人同时使用(如唱卡拉OK),因此,接收机内有两个完全相同的音频放大通道:通道A和通
道B,从电路分析角度来看,我们只看位于图纸上方的通道A。
音频信号CA1,W1,CA2引入后,在经IC1-1(1/2 4558)放大,送入IC2(NE571)解压缩(扩展)后由IC1-2(1/2 4558)进一步放大推动末级三极管前,Q4,Q5工作输出音频信号;其中Q5集电极输出(OUT A)是A通道音频信号独立输出;而Q4发射极输出(OUT A B)是A,B两个通道音频信号混合
输出;(OFF 12V )是电源开关机时的静噪控制端点。
本机采用七位发光二极管显示音频输出电平的高低(图中未画出),七位发光二极管由集成电路
AN 6884 驱动,第8脚为其信号输入端。
5。
导频信号及无信号时静音控制:
在图2的音频信号输入端,设有两级电子开关电路Q1,Q2(1740)它们的基极电位由导频信号和导频基准
电位控制。
由图1可知:Q5在无射频信号时(即IC2 15 脚无电压时)是不导通的,它的集电极电位为高电位,因此,
图2中的Q1,Q2导通,将音频放大IC(4558)的输入端短接到地,达到静音的目的;有信号时,图1中的Q5导通,其集电极电位降为低电位,电子开关管Q1,Q2关断,音频信号可顺利进入4558放大;
同理,可分析导频信号对电子开关管Q1,Q2的控制原理。
为便于大家看图,现将新近完成的图2与已贴过的图1同时贴出,供大家参考。
1000米小型立体声调频发射机
上传者:jackwang 浏览次数:1154
今天向调频发烧友们介绍一款用BA1404制作调频立体声发射电路,BA1404为调频立体声发射专用集成电路,由于工作性能优良,也常用于无线电遥控.BA1404所需工作电源电压低1.5V~3V,功耗小,电路结构完善,所需外接元件少,工作稳定可靠. 不过想用好BA1404应注意以下事项:(1)为了使发射机的频率特性与FM广播接收机的频率特性一致,需在左、右声道输人端串接一个时间常数为50μs的预加重电路,如图所示。
当用于无线电遥控发射电路时,可将左、右输入端合并,用0.1~1μF电容与信号输入端连接。
(2)12~14脚外接R、C元件,是保证立体声调制器的输出信号与导频信号组合成复合信号时,两者相位特性一致,不使声道分离度恶化,一般情况下不得变更。
如需变更应进行实际试验后确定。
(3)立体声调制时,调制信号的声频上限为19kHz,若输入信号中伴有脉冲性信号,为了防止出现蜂音和声道分离度恶化,应在输入端串接低通滤波器。
(4)16~17脚是用于调节平衡的引脚,这两脚即使什么也不接,也可以获得满意的分离度。
在通常的使用中总是接一个50kΩ的电位器,通过调节直流平衡,使分离度进一步提高。
(5)11脚的直流输出电压由内部电路固定为VDD~0.7V。