傅里叶级数

合集下载

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。

这种表示方法在信号处理、图像处理等领域具有重要应用。

在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。

一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。

傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。

根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。

傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。

二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。

傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。

1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。

对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。

当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。

这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。

2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。

对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。

同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。

傅里叶级数

傅里叶级数
m=1
− 2
n
T 2
= bn ∫ T sin nωt d t
2
− 2
T 2
2 即 bn = T
T = bn 2

T 2
T − 2
fT ( t )sin nω t d t
最后可得:
a0 fT (t) = + ∑(an cos mωt + bn sin nωt) (1.1) 2 n=1 T 2 2 其 中 a0 = ∫ T fT (t) dt T −2 T 2 2 an = ∫T fT (t) cos nωt dt (n =1,2,L ) T −2 T 2 2 bn = ∫T fT (t) sin nωt dt (n =1,2,L ) T −2
1= 12 dt = T ∫T
− 2 T 2 T 2 T 2
1+ cos 2nωt T cos nωt = ∫T cos nωt dt = ∫T dt = − − 2 2 2 2
2
1− cos 2nωt T sin nωt = ∫T sin nωt dt = ∫T dt = − − 2 2 2 2
T 2
f4 (t) =
n=−∞
∑ f (t + 4n),
+∞
2π 2π π nπ = = , ωn = nω = ω= T 4 2 2
f4(t)
−1
T=4
1
3
t

1 T 2 − jωnt cn = ∫ T fT (t )e dt T −2 1 2 1 1 − jωnt − jωnt = ∫ f4 (t )e dt = ∫ e dt T −2 T −1 1 1 1 − jωnt jωn − jωn = e = e −e −Tjωn Tjωn −1 2 sinωn 1 = ⋅ Sa(ωn ) (n = 0, ±1, ±2,L ) T =4 = T ωn 2

《傅里叶级数》课件

《傅里叶级数》课件
FFT基于分治策略,将大问题分解为小问题,从而显著提高了计算效率。
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。

傅里叶数的定义式

傅里叶数的定义式

傅里叶数的定义式
傅里叶级数是一种非常重要的数学概念,它能准确描述事物的细微特征,一般
用来表达平滑的自变量函数。

傅里叶数,是指任意一个实函数f(x),当它可以展
开成一系列正弦函数和余弦函数的无穷级数形式,即
f(x) = a_0 + \sum_{k=1}^{\infty}\left(a_k \cos kx+b_k\sin kx \right),
称为这个函数的Fourier级数。

a_0为常数项,a_k和b_k称为系数,用来表
示正弦函数和余弦函数的幅度,k称为频率,表示周期的数量。

它不仅能准确的表
示出一个函数及它的特征,而且具有十分优美的美学感受。

傅里叶级数的准确度在各个研究领域都有着广泛的运用,在科学技术上准确性、廉价性、可靠性和多领域性都是值得它被广泛使用的补充。

比如经典力学1中引入了不惯性系统的分析和计算,2亚贝拉计算可以通过傅里叶级数来实现,有着重要
的创新意义;从基本物理装潢到地理、几何图形等,甚至医学诊断都是它的可实现的应用场景。

此外,傅立叶级数的可容纳量大,内容全面,支持大幅度计算,准确率高,可以作为大量、复杂功能的基础性计算工具。

总之,傅里叶级数是一种重要的数学概念,无论从准确性、廉价性、可靠性和
多领域性来讲,它都可以作为一种用于研究各种函数的表征。

它的实用性已经被成功的应用在科学计算领域,推荐给更多的读者快速和有效的理解、掌握傅里叶级数,发展自己的专业特长,让这种数学概念在我们的实践中实现更大的潜力。

傅里叶级数

傅里叶级数

∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π

《傅里叶级数》课件

《傅里叶级数》课件

傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域

傅里叶级数

傅里叶级数

2. 三角级数的一般形式
一般的三角级数为
取 1, 由于
A A i n ( n x ) 0 ns n
n 1

s i n c o s n x c o s s i n n x s i n ( n x ) n n n
a0 设 A0 , 2
A s i n a , A c o s b n n n n n n
最简单的周期运动,可用正弦函数
y A s i n ( x )

( 1 )
来描写。 由(1)所表达的周期运动称为简谐振动
初 相 角 , 其 中 A 振 幅 , 角 频 率 ,
简谐振动(1)的周期为
2 T
对于较为复杂的周期运动,常可以用几个 简谐振动
f ( x )cos nxdx ,

1

n0,1,2,
f ( x )sin nxdx

1

, n 1 , 2 ,
2. Fourier系数和Fourier级数 Euler―Fourier公式:
如 f 是以2 为周期 的函数 , 则



可换为
c 2
c
设函数 f ( x ) 在区间[ , ] 上可积,称公式


1 , s i n k x sinkxdx 0 ,


k 1 , 2 , ;
k , h 1 , 2 ,
s i n k x c o s h x d x s i n, k x c o s h x 1 s i n ( kh ) x s i n ( kh ) x d x 0, 2

傅里叶级数的定理

傅里叶级数的定理

傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。

它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。

傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。

傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。

a0是直流分量,对应于频率为0的分量。

傅里叶级数的定理是基于正交函数的思想而来。

正交函数是指在某个区间上两两内积为0的函数。

在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。

傅里叶级数的定理在实际应用中具有重要意义。

首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。

其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。

此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。

傅里叶级数的定理具有一些重要的性质。

首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。

其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。

此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。

傅里叶级数的定理虽然强大,但也有一些限制。

首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。

其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。

傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

an

1

f ( x) cos nxdx
x cos nx d x
1
0
1 x sin nx cos nx 0 1 cos n 2 n n n 2
机动 目录 上页 下页 返回 结束
, n 2k 1 1 cos n an ( k 1 , 2 , ) 2 n 0, n 2k 1 1 0 (1) n 1 bn f ( x) sin nx d x x sin nxdx n ( n 1, 2, ) 1 2 cos x sin x sin 2 x 2 4 2 1 1 2 cos 3x sin 3x sin 4 x 3 4 3 2 1 2 cos 5 x sin 5 x 5 5 ( x , x (2k 1) , k 0 , 1 , 2 , ) 0 ( ) 说明: 当 x (2k 1) 时, 级数收敛于


bn
f ( x ) sin nx d x

1


(n 1, 2 , )
机动
目录
上页
下页
返回
结束
定理 1. 组成三角级数的函数系 正交 , 即其中任意两个不同的函数之积在
上的积分等于 0 .
证:
cos k x cos n x d x


1 cos nx d x 1 sin nx d x 0
2

o

x
x cos nx sin nx x sin nx d x n n2 0 2 2 cos n ( 1) n 1 ( n 1 , 2 , 3 , ) n n
机动 目录 上页 下页
2

0
返回
结束
根据收敛定理可得 f (x) 的正弦级数:

1

1





2 x sin nx cos nx n n2
机动 目录 上页 下页



0
结束
返回
( 2 k 41)2 , n 2k 1 2 2 ( cos n 1 ) n 0 , n 2k ( k 1 , 2 , ) 1 f ( x ) sin nx d x 1 1 cos x 2 cos 3 x 2 cos 5 x 5 2 3

1


(n 1, 2 , )
由公式 ② 确定的
称为函数 的傅里
的傅里叶系数 ; 以
的傅里叶级数 .
叶系数为系数的三角级数 ① 称为
傅里叶 目录
上页
下页
返回
结束
定理3 (收敛定理, 展开定理) 设 f (x) 是周期为2的 周期函数, 并满足狄利克雷( Dirichlet )条件:
1) 在一个周期内连续或只有有限个第一类间断点;

( 1) n1 sin nx f ( x ) 2 o n n 1 1 1 2(sin x sin 2 x sin 3 x ) 2 3
级数的部分和
y
x
n=5 n=4 n=2 n=1 n=3
逼近 f (x) 的情况见右图.
a k cos 2 k x d x


(利用正交性)
ak
f ( x ) cos k x d x

1

( k 1 , 2 , )
类似地, 用 sin k x 乘 ① 式两边, 再逐项积分可得
bk
f ( x ) sin k x d x

1

( k 1 , 2 , )
2) 在一个周期内只有有限个极值点,
则 f (x) 的傅里叶级数收敛 , 且有
注意: 函数展成 傅里叶级数的条 件比展成幂级数 的条件低得多.
f ( x ) f ( x ) x 为间断点 , 2 其中 an , bn 为 f (x) 的傅里叶系数 . ( 证明略 )
简介 目录 上页 下页 返回 结束
1 1d x 2 cos n x d x
2



2

sin 2 n x d x
1 cos 2n x 1 cos 2n x 2 cos n x , sin n x 2 2
机动 目录 上页 下页 返回 结束
二、函数展开成傅里叶级数
机动 目ቤተ መጻሕፍቲ ባይዱ 上页 下页 返回 结束
例1. 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
1 , x 0 f ( x) 1, 0 x
将 f (x) 展成傅里叶级数. 解: 先求傅里叶系数
1
y
o


x
1

(1) cos nx d x
说明: 利用此展式可求出几个特殊的级数的和.
当 x = 0 时, f (0) = 0 , 得
机动
目录
上页
下页
返回
结束
三、正弦级数和余弦级数
1. 周期为2 的奇、偶函数的傅里叶级数 定理4 . 对周期为 2 的奇函数 f (x) , 其傅里叶级数为 正弦级数,它的傅里叶系数为
周期为2的偶函数 f (x) , 其傅里叶级数为余弦级数 ,
2 2
机动 目录 上页 下页 返回 结束
2 ( 2k 1) 2
定义在[– ,]上的函数 f (x)的傅氏级数展开法
周期延拓
F ( x)
f ( x) , f ( x 2k ) ,
傅里叶展开
x [ , )
其它
上的傅里叶级数
机动
目录
上页
下页
返回
结束
例3. 将函数
机动
1
目录
上页
下页
返回
结束
例2. 设 f (x) 是周期为 2 的周期函数 , 它在 y 上的表达式为 3 2 2 3 o
x
将 f (x) 展成傅里叶级数. 1 1 0 1 x2 0 解: a0 f ( x) d x x d x 2 2


cos(k n) x cos(k n) x d x 0 同理可证 : sin k x sin n x d x 0 ( k n ) cos k x sin n x d x 0

1 2
机动 目录 上页 下页 返回 结束

但是在三角函数系中两个相同的函数的乘积在 上的积分不等于 0 . 且有
(谐波函数)
A : 为振幅 : 为角频率
Φ : 为初相
机动 目录 上页 下页 返回 结束
想法: 复杂的周期运动 :
An sin n cos n t An cos n sin n t

(谐波迭加)
an An sin n , bn An cos n ,
a0 (a n cos n x bn sin n x ). 得函数项级数: 2 n 1
定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且
a0 f ( x ) (a n cos nx bn sin nx ) 2 n 1

右端级数可逐项积分, 则有
b 1 f ( x ) sin nx d x ( n 1 , 2 , ) n
机动
目录
上页
下页
返回
结束
a0

1

a0 f ( x ) d x f ( x ) (an cos nx bn sin nx ) 2 n 1



a0 f ( x ) cos k x d x cos kx d x 2 an cos kx cos nx d x bn cos kx sin nx d x n 1
级数 . 解: 将 f (x)延拓成以 2为周期的函数 F(x) , 则

展成傅里叶
y
o

x
a0
2 x 2 0 1 1 a n F ( x ) cos nx d x f ( x ) cos nx dx
2
F ( x)d x f ( x)d x
0
1
1

0
1 cos nx d x
0
( n 0 , 1 , 2 , )
机动 目录 上页 下页 返回 结束

(1) sin nx d x
0
0
1
1

0
1 sin nxdx

2 1 cos nx 1 cos nx n 1 cos n n 0 n 4 2 n , 当 n 1 , 3 , 5 , 1 ( 1)n n 0 , 当n 2 , 4 , 6 , 4 1 1 f ( x ) sin x sin 3 x sin( 2k 1) x 3 2k 1 ( x , x 0 , , 2 , )
机动 目录 上页 下页 返回 结束
sin 3 x sin 5 x sin 7 x sin 9 x f ( x ) sin x ] 3 5 7 9
说明: 1) 根据收敛定理可知,
4
1
y
o


x
11 时,级数收敛于 0 2
相关文档
最新文档