离散数学第一部分测试题-有答案

合集下载

离散数学第1章习题答案

离散数学第1章习题答案

#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。

离散数学第一章命题逻辑习题答案

离散数学第一章命题逻辑习题答案
p?q?r?p?q?r?p?q?r?p?q?r?p?q?r?p?q?r1100011111习题一123解法二等价变换法p?r?q?p?p?r?q?p?p?r?p?r?q?q?p?q?r?p?q?r主合由?p?rp?q?q?r?r?p?p?q?q?r??p?q?r?p?q?r?p?q?r?p?q?r?p?q?r?p?q?r主析习题一124分别用真值表法和等价变换法求公式p?q?r?p?q?r的主合取范式和主析取范式真值表法略
习题一
1.
利用逻辑联结词把下列命题翻译成符号逻辑形式: (7)不识庐山真面目,只缘生在此山中。 令P:身在此山中; Q:识庐山真面目;译为P ~ Q (8)两个三角形相似当且仅当它们对应角相等或者对应边 成比例。 令P:两个三角形相似; Q:对应角相等; R:对应边成比例;译为 P (Q R) (9)如果一个整数能被6整除,那么它就能被2和3整除。 如果一个整数能被3整除,那么它的各位数字之和也能 被3整除。 令P:被6整除; Q:被2整除; R:被3整除; S:各位数字之和被3整 除。译为(P (Q R)) (R S)
习题一 14.
• 从A、B、C、D4人中派2人出差,要求满足下述条件:如 果A去,则必须在C或D中选一人同去;B和C不能同时去; C和D不能同去。用构造范式的方法决定出选派方案。 若X表示“X去出差”, 可得公式 (A (C D)) ~(B C) ~(C D) (~A (C ~D) (~C D) ) (~B ~C ) (~C ~D ) …… (~A ~B ~C ~D) (~A ~B ~C D) (~A ~B C ~D) (~A B ~C ~D) (A ~B ~C D) (A ~B C ~D) (~A B ~C D) (A B ~C D) 可得派法: {B, D} {A, C} {A, D}

离散数学第一学期习题及答案

离散数学第一学期习题及答案

第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学一、二章检测题及答案

离散数学一、二章检测题及答案

四.证明题(共 38 分)
1. (10 分)符号化下列命题并推证其结论. 任何人如果他喜欢音乐,他就不喜欢体育.每个人或者喜欢体育,或者喜欢美术.有的 人不喜欢美术.因而有的人不喜欢音乐. (设 M(x):x 喜欢音乐,S(x):x 喜欢体育,A (x):x喜欢美术. ) 该命题符号化为: ( ( x) (M(x)→ S(x) )∧( x) (S(x)∨A(x) )∧( x) A(x) )→( ( x) M(x) ) 前提: ( x) (M(x)→ S(x) ) , ( x) (S(x)∨A(x) ) , ( x) A(x) 结论: ( x) M(x) 证: (1) ( x) A(x) P (2) A(a) ES(1) (3) ( x) (S(x)∨A(x) ) (4)S(a)∨A(a) (5)S(a) (6) ( x) (M(x)→ S(x) ) (7)M(a)→ S(a) (8)S(a)→ M(a) (9) M(a) (10) ( x) M(x) 2. (12 分) (1).用 CP 规则证明 P (Q R ), Q ( R S ), P Q S ; P US(3) T(2) (4)I P US(6) T(7)E T(5) (8)I EG(9)
(1 分)
由 8 得出了矛盾,根据归谬法说明原推理正确(1 分)
3.(6 分) 指出下面推理证明过程中的错误, 并给出正确的证明.
用谓词演算的推理规则证明:
x(Q ( x) R ( x)) x(Q ( x) Z ( x)) x( R ( x) Z ( x))
证: (1) x(Q ( x) R ( x)) (2) Q (a ) R (a ) (3) x(Q ( x) Z ( x)) (4) (5)

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。

A。

p∧┐p∧qB。

┐p∨qC。

┐p∧qD。

┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。

A。

p→┐qB。

p∨┐qC。

p∧qD。

p∧┐q3.只有语句“1+1=10”是命题(A)。

A。

1+1=10B。

x+y=10___<0D。

x mod 3=24.下列等值式不正确的是(C)。

A。

┐(x)A(x)┐AB。

(x)(B→A(x))B→(x)A(x)C。

(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。

(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。

A。

(x)Q(x,z)→(x)(y)R(x,y,z))B。

Q(x,z)→(y)R(x,y,z)C。

Q(x,z)→(x)(y)R(x,y,z)D。

Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。

}∪IA则对应于R的A的划分是(D)。

A。

{{a},{b,c},{d}}B。

{{a,b},{c},{d}}C。

{{a},{b},{c},{d}}D。

{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。

A。

{Ø,{Ø}}∈BB。

{{Ø,Ø}}∈BC。

{{Ø},{{Ø}}}∈BD。

{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。

A。

(X-Y)-Z=X-(Y∩Z)B。

(X-Y)-Z=(X-Z)-YC。

(X-Y)-Z=(X-Z)-(Y-Z)D。

(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。

A。

a*b=min(a,b)B。

a*b=a+bC。

a*b=GCD(a,b) (a,b的最大公约数)D。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。

若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。

若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。

答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学第一部分测试题 一、 填空题
1.当p,q,r 分别取1,0,1时,(p→q) (p→r)的真值为 假,或0
2.设P :他富有,Q :他幸福,“他既不富有也不幸福” 的符号化为 ┐ P ∧┐ Q
3.“所有的人都长着黑头发”用谓词表达式符号化为 M(x):x 为人,F(x): x 长着黑头发, x(M(x)→F(x))
4.如果6大于4,则4大于5用谓词表达式符号化为 G(x,y): x ﹥y ,G(6,4) →G(4,5)
二、 选择题
1.2x+3<4( C )
A.是命题也是复合命题
B.是命题但不是复合命题
C.不是命题
D.以上都不对
2. 下列语句是命题的有( D )
A. 什么时候开会呀?
B. 请快开门!
C. x+y>10。

D. 苹果树和梨树都是落叶乔木。

3.设p 表示命题“天下大雨”,q 表示命题“他乘公共汽车上班”,r 表示命题“他骑自行车上班”。

则命题“如果天不下大雨,他乘公共汽车上班或者骑自行车上班。

”符号化为( B )
A .(⌝p ∧q) →r
B .⌝p →(q ∨r )
C .⌝p ∧(q →r )
D .p →(q ∧r )
三、 计算题
1.求(p ∨q) →r 的主析取范式
解 本公式含有三个命题变项,所以极小项均含有三个文字。

7
5310)
()()()()()()()()()()()
)()(()()()()()(m m m m m r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q q p p r r q p r
q p r
q p r
q p ∨∨∨∨⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∨⌝∧∨⌝∨∨⌝∧⌝∧⌝⇔∨⌝∧⌝⇔∨∨⌝⇔→∨
2.求公式的主合取范式:()()R Q Q P ∧→∨
证明:()()()()P Q Q R P Q Q R ∨→∧⇔⌝∨∨∧
()()P Q Q R ⇔⌝∧⌝∨∧
()()()()()P Q Q P P Q R ⇔⌝∧⌝∨∧⌝∨∧∧
()()()()()()R Q P P R R Q P ∧∧∨⌝∨∨⌝∧⌝∧⌝⇔
()()()()R Q P R Q P R Q P R Q P ∧∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔
四、 证明题
1.用等演算法证明下面等值式。

(1)(┐p ∨q)∧(p→r)(p→(q ∧r))
(┐p∨q)∧(p→r)
(┐p∨q)∧(┐p∨r) (蕴涵等值式)
┐p∨(q∧r) (分配律) p→(q∧r) (蕴涵等值式)
2.前提:p→(q→r),s→p ,q ; 结论:s→r
证明:用附加前提证明法
①s 附加前提引入
②s→p 前提引入
③p ①②假言推理
④p→(q→r ) 前提引入
⑤q→r ③④假言推理
⑥q 前提引入
⑦r ⑤⑥假言推理
3.前提:p ∨q, p→r, q→s
结论:r ∨s
证明:
①┐(r∨s) 结论否定引入
②p∨q 前提引入
③p→r 前提引入
④q→s 前提引入
⑤r∨s ②③④构造性二难
⑥┐(r∨s)∧(r∨s)①⑤合取
⑥为矛盾式,所以推理正确。

五、应用题
明天是晴天,或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书。

所以,如果我看书,则明天是雨天。

令p:明天是晴天,q:明天是雨天,r:我看电影,s:我看书。

前提:p∨q, p→r, r→┐s
结论:s→q
证明:
①s 附加前提引入
②r→┐s 前提引入
③┐r ①②拒取式
④p→r 前提引入
⑤┐p ③④拒取式
⑥p∨q前提引入
⑦q ⑤⑥析取三段论。

相关文档
最新文档