历年各地中考相似三角形试题汇编含答案

合集下载

相似三角形(中考分类汇编)

相似三角形(中考分类汇编)

相似1.(2008江苏盐城15)如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件(写出一个即可)时,ADE ACB △∽△.2.(08盐城22)如图,在1212⨯的正方形网格中,TAB △的顶点分别为(11)T ,,(23)A ,,(42)B ,.(1)以点(11)T ,为位似中心,按比例尺(:)3:1TA TA '的位似中心的同侧将TAB 放大为TA B ''△,放大后点A B ,的对应点分别为A B '',,画出TA B ''△,并写出点A B '',的坐标;(2)在(1)中,若()C a b ,为线段AB 上任一点,写出变化后点C 的对应点C '的坐标.3.(2008江苏扬州26)已知:矩形ABCD 中,AB=1,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E 。

(1)如果直线l 与边BC 相交于点H (如图1),AM=31AC 且AD=A ,求AE 的长;(用含a 的代数式表示)(2)在(1)中,又直线l 把矩形分成的两部分面积比为2:5,求a 的值;(3)若AM=41AC ,且直线l 经过点B (如图2),求AD 的长; (4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM=41AC 。

设AD 长为x ,△AEF 的面积为y ,求y 与x 的函数关系式,并指出x 的取值范围。

(求x 的取值范围可不写过程)第15题图4.(08泰州12)在平面上,四边形ABCD 的对角线AC 与BD 相交于O ,且满足AB CD =.有下列四个条件:(1)OB OC =;(2)AD BC ∥;(3)AO DO CO BO =;(4)OAD OBC ∠=∠.若只增加其中的一个条件,就一定能使BAC CDB ∠=∠成立,这样的条件可以是( )A .(2)、(4)B .(2)C .(3)、(4)D .(4)5.(08南京7)小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m6.(08连云港14)如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD = cm .7.(2008苏州26)如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动.(1)梯形ABCD 的面积等于 ;(2)当PQ AB ∥时,P 点离开D 点的时间等于 秒;(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?(第14题图) A C D PB(第26题)8.(2008年江苏省无锡市,20T )如图,已知E 是矩形ABCD 的边CD 上一点,BF AE 于F ,试说明:ABF EAD △∽△.9.(2008年江苏省南通市,17T ,4分)已知△ABC 和△A ′B ′C ′是位似图形. △A ′B ′C ′的面积6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上的高等于( )A .3cmB .6cmC .9cmD .12cm 答案17.B10.(2008年江苏省南通市,26T ,12分)如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E. (1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP 的面积为ycm 2.①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.D PE FC B。

天津市中考一轮《相似三角形》复习试卷及答案

天津市中考一轮《相似三角形》复习试卷及答案

中考数学一轮复习专题相似三角形综合复习一选择题:1.下列说法正确的是()(A)两个矩形一定相似.(B) 两个菱形一定相似.(C)两个等腰三角形一定相似.(D) 两个等边三角形一定相似.2.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.53.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。

那么下面四个结论:①∠AOB=∠;②△AOB∽△;③;④扇形AOB与扇形的面积之比为.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2 B.4cm2 C.8cm2 D.16cm25.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.6.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=()A. 2B. 2.4C. 2.5D. 37.如图是测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是( )A.8 c m B.10 cm C.20 cm D.60 cm8.如图,在平行四边形ABCD 中,点E在CD上,若DE:CE =1:2,则△CEF与△ABF的周长比为()A.1:2 B.1:3 C.2:3 D.4︰99.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC11.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP的有( )A.4个 B.3个 C.2个 D.1个12.如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B. C.6 D.213.已知( )A. B. C. D.14.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米 B.6米 C.7.2米 D.8米15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.416.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C. D.17.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16 B.20 C.25 D.3018.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE交AC于点E.下列结论:①AD2=AE•AB;②3.6≤AE<10;③当AD=2时,△ABD≌△DCE;④△DCE为直角三角形时,BD 为8或12.5.其中正确的结论个数是().A.1个B. 2个C. 3个D. 4个19.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:1020.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B. C. D.二填空题:21.若,则= .22.若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c= .23.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为.24.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是_ 米.25.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=_________时,△AED与以M,N,C为顶点的三角形相似.26.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.27.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.28.如图,在四边形中,,如果边AB上的点P,使得以为顶点的三角形与为顶点的三角形相似,这样的点P有个.29.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是_________.30.如图,△ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm.若将斜边上的高CD 分成n等分,然后裁出(n ﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是cm2.三简答题:31.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.(1)求证:AF=BE,并求∠APB的度数;(2)若AE=2,试求AP·AF的值.32.已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.33.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.34.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与底面保持平行并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.35.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图23-12,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).36.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?37.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y=______.(含x的代数式),当x=______时,y最大,最大面积是______.38.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC= cm,BC= cm;(2)当t=5 (s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值.(3)设点P的运动时间为t (s),△PBQ的面积为y (cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.39.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)40.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;参考答案1、D2、B.3、D4、C5、B6、A7、A8、C9、C 10、D 11、C 12、D.13、B 14、B 15、C 16、B 17、A 18、D;19、D 20、A.21、.22、8.23、.24、6 25、或 26、4 m. 27、14+2 28、329、(2﹣3)a≤DE≤a..30、cm2.31、解:(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°,∴∠APB=180°-∠APE=120°(2)∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴=,即=,∴AP·AF=12 32、【解答】(1)证明:∵AB=2,BC=4,BD=1,∴,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.33、【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.34、根据题意,得∠DEF=∠DCA=90°,∠EDF=∠ADC,∴△DEF∽△DCA.∴=.已知DE=0.5米,EF=0.25米,DC=20米.∴=.解得AC=10米.∵四边形BCDG是矩形,∴BC=DG,而DG=1.5米,则BC=1.5米.35、答案:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN ∴EC=CD=x∴△ABN∽△ACD,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米36、【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.37、【解答】解:(1)∵四边形EFGH是正方形,∴HG∥EF,GH=HE=ID,∴△AHG∽△ABC,∴AI:AD=HG:BC,∵BC=120cm,AD=80cm,∴,解得:HG=48cm,∴正方形EFGH的面积=HG2=482=2304(cm2);(2)∵四边形EFGH是长方形,∴HG∥EF,∴△AEF∽△ABC,∴AI:AD=HG:BC,即,解得:HE=﹣x+80,∴长方形EFGH的面积y=x(﹣x+80)=﹣2+80x=﹣(x﹣60)2+240,∵﹣<0,∴当x=60,即EF=60cm时,长方形EFGH有最大面积,最大面积是240cm2;故答案为:﹣x2+80x,60cm,240cm2.38、解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC 2 +BC 2 =AB 2,即:(4x)2 +(3x)2 =10 2,解得:x=2,∴AC=8cm,BC=6cm;(2)存在,理由:∵AQ=14-2x=14-10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16,∴△BCM的周长最小值为16.(3)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10-x,BQ=2x,∵△QHB∽△ACB,②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10-x,AQ=14-2x,∵△AQH′∽△ABC,39、【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.40.解:(1)由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式.(2)连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM =,,AO=3.当时,=2.∴OC=2.===.8分∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出.。

初三数学相似三角形经典题(含答案)

初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。

相似三角形中考题大全

相似三角形中考题大全

中考数学专题练习:相似三角形一、选择题1.如图,将图形用放大镜放大,应该属于()A .平移变换B .相似变换C .旋转变换D .对称变换2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .若BD =2AD ,则()A.AD AB =12B.AE EC =12C.AD EC =12D.DE BC =123.(2019•雅安)若34a b =∶∶,且14a b +=,则2a b -的值是A .4B .2C .20D .144.(2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为()A.(32,2) B.(2,2) C.(114,2) D.(4,2)5.(2019•重庆)下列命题是真命题的是A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶96.(2019•巴中)如图 ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶97.(2020·威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为()A .B .C .D .8.(2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有()个 D.7个B二、填空题9.(2020·盐城)如图,//,BC DE 且,4,10BCDE AD BC AB DE <==+=,则AEAC的值为.10.(2020·吉林)如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE的面积为12.则四边形DBCE 的面积为_______.11.(2019•大庆)如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE相交于点G ,若DG=1,则AD=__________.12.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.13.(2020·绥化)在平面直角坐标系中,△ABC和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是______.14.如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15.(2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.16.(2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE △是直角三角形时,则CD 的长为__________.三、解答题17.如图,过☉O 外一点P 作☉O 的切线PA ,切☉O 于点A ,连接PO 并延长,与☉O 交于C ,D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC ,CM.(1)求证:CM 2=MN ·MA ;(2)若∠P=30°,PC=2,求CM 的长.18.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG ,如果α=45°,AB =42,AF =3,求FG 的长.19.(2020·杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设()0CEEBλλ=>.(1)若2AB =,λ=1,求线段CF 的长.(2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点.②求λ的值.20.(2020·攀枝花)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC ∆的重心.求证:3AD GD =.21.(2020·江苏徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC ABAB AC=,那么称点B为线段AC的黄金分割点..(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B的对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E (AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.图①图②图③22.(2020•丽水)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB 交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.24.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?答案一、选择题1.【答案】B2.【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∵BD =2AD ,∴AD AB =AEAC=13,∴AE EC =12,故选B .3.【答案】A【解析】由a ∶b =3∶4知34b a =,所以43a b =.所以由14a b +=得到:4143aa +=,解得6a =.所以8b =.所以22684a b -=⨯-=.故选A .4.【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2,∴EF BF AC BC =,即269BF=,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴D 点的横坐标为2,∴点D 的坐标为(2,2).5.【答案】B【解析】A 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是假命题;B 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是真命题;C 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题;D 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题,故选B .6.【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =,∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==,∵点F 是BC 的中点,∴1322CF BC x ==,∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .7.【答案】:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE∥BF ,CE =EF ,∴△CEG ∽△CFB ,∴,∵,∴,∵BC =3,∴GB,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB =4,∴∠ABG =90°,∴tan ∠BAG ,∴tan α的值为,故选:A.8.【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:B因此本题选A .二、填空题9.【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8,x 2=2(舍去),824AE AC ==,此本题答案为2.10.【答案】32【解析】 点D ,E 分别是边AB ,AC 的中点,1//,2DE BC DE BC ∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S =,1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= .故答案为:32.11.【答案】3【解析】∵D 、E 分别是BC ,AC 的中点,∴点G 为△ABC 的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为:3.12.【答案】1【解析】∵D 、E 为边AB 的三等分点,∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.13.【答案】(-4,-8)或(4,8)【解析】∵△ABC 和△A1B1C1的相似比等于12,∴△A1B1C1和△ABC 的相似比等于2.因此将点A(2,4)的横、纵坐标乘以±2即得点A1的坐标,∴点A1的坐标是(-4,-8)或(4,8).14.【答案】78【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15.【答案】326()55-,或(43)-,【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE △∽CBO △,∴PE BE CO BO =,即468PE =,解得:3PE =,∴点(43)P -,.②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,,∴8AC BO ==,8CP =,6AB OC ==,∴22228610BC BO OC =+=+=,∴2BP =,∵PBE △∽CBO △,∴PE BE BP CO BO BC ==,即:26810PE BE ==,解得:65PE =,85BE =,∴832855OE =-=,∴点326(55P -,,综上所述:点P 的坐标为:326(55-,或(43)-,,故答案为:326()55-,或(43)-,.16.【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠,∴AEF EBD △∽△,∴AF EFED BD=,设CD x =,则EF DF x ==,6AF x =-,8BD x =-,∴68x x x x -=-,解得247x =,∴247CD =,综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17.【答案】解:(1)证明:∵在☉O 中,点M 是半圆CD 的中点,∴∠CAM=∠DCM ,又∵∠CMA 是△CMN 和△AMC 的公共角,∴△CMN ∽△AMC ,∴=,∴CM 2=MN ·M A .(2)连接OA ,DM ,∵PA 是☉O 的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=(PC +CO ).设☉O 的半径为r ,∵PC=2,∴r=(2+r ),解得r=2.又∵CD 是直径,∴∠CMD=90°,∵点M 是半圆CD 的中点,∴CM=DM ,∴△CMD 是等腰直角三角形,∴在Rt △CMD 中,由勾股定理得CM 2+DM 2=CD 2,∴2CM 2=(2r )2=16,∴CM 2=8,∴CM=2.18.【答案】解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可)以下证明△AMF ∽△BGM.由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM.(2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点,∴AM =BM =2 2.由△AMF ∽△BGM 得,AF·BG =AM·BM ,∴BG =83.又AC =BC =42cos 45°=4,∴CG =4-83=43,CF =4-3=1,∴FG =(43)2+12=53.19.【答案】解:(1)∵四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =2,∴∠DAF =∠F .∵AG 平分∠DAE ,∴∠DAF =∠EAF ,∴∠EAF =∠F ,∴EA =EF .∵λ=1,∴BE =EC =1.在Rt △ABE 中,由勾股定理得EA ,∴CF =EF -EC -1.(2)①∵EA =EF ,EG ⊥AF ,∴AG =GF .又∵∠AGD =∠FGC ,∠DAG =∠F ,所以△DAG ≌△CFG ,∴DG =CG ,∴点G 为CD 边的中点.②不妨设CD =2,则CG =1.由①知CF =AD =2.∵EG ⊥AF ,∴∠EGF =90°.∵四边形ABCD 是正方形,∴∠BCD =90°,∴∠BCD =∠FCG ,∠EGC +∠CGF=90°,∠EGC +∠GEC =90°,∴∠CGF =∠GEC ,∴△EGC ∽△GFC ,∴ECCG =CG CF =12,∴EC =12,∴BE =32,∴λ=13.20.【答案】证明:连接DE ,∵点G 是△ABC 的重心,∴点E 和点D 分别是AB 和BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC 且DE=12AC ,∴△DEG ∽△ACG ,∴2AG AC DG ED ==,∴2AG GD =∴AD=3DG ,即AD=3GD .21.【答案】解:(1)10-.解:∵ABAC=,AC=20,∴AB=10-.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:==,∴EJ=AJ=JE-AE=-10,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ===,∴G 是AB 的黄金分割点.(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴AE=12 a.∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BCA FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴a.∴12AF BF BF AB ==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB==,∵AE=BF,∴PB=AB ,∴PB=BC.22.【答案】解:(1)如图1中,过点A 作AD ⊥BC 于D.在Rt △ABD 中,AD =AB•sin45°=44.(2)①如图2中,∵△AEF ≌△PEF ,∴AE =EP ,∵AE =EB ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠PEB =90°,∴∠AEP =180°﹣90°=90°.②如图3中,由(1)可知:AC,∵PF ⊥AC ,∴∠PFA =90°,∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,即,∴AF=2,在Rt△AFP,AF=FP,∴AP AF=2.23.【答案】(1)证明:∵PF切⊙O于点C,CD是⊙O的直径,∴CD⊥PF,又∵AF⊥PC,∴AF∥CD,∴∠OCA=∠CAF,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE∽△CPB,∴BCPC=CECB,∴BC2=CE·CP;(3)解:∵AC平分∠FAB,CF⊥AF,CE⊥AB,∴CF=CE,∵CFCP=34,∴CECP=34,设CE=3k,则CP=4k,∴BC2=3k·4k=12k2,∴BC=23k,在Rt△BEC中,∵sin∠EBC=CEBC=3k23k=32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.24.【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A 的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为x 2+b a x +ca=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图①图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m =m2,∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a,c a )或(0,1a ),(-ba ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分)∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;ca=m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。

2014-2023北京中考真题数学汇编:相似三角形

2014-2023北京中考真题数学汇编:相似三角形

2014-2023北京中考真题数学汇编相似三角形②若点C 是弦2AB 的“关联点”,直接写出OC 的长;(2)已知点()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭.对于线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.(1)比较BAE ∠与CAD ∠的大小;用等式表示线段(2)过点M 作AB 的垂线,交DE 于点7.(2021北京中考真题)如图,O (1)求证:BAD CAD ∠=∠;(2)连接BO 并延长,交AC 于点F ,a 、若12C B 与O 相切,AC 经过点O ,则12C B 、1AC 所在直线为:20y x y ⎧=-⎪⎨=⎪⎩,解得:()12C ,0,∴12OC =,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,∵PJ OM ⊥,∴MPO POJ ∽ ,∴OP OM OJ OP =,即13OJ=,解得13OJ =,∴根据勾股定理得,22223PJ PO OJ =-=,123Q J =根据勾股定理,22111233PQ Q P Q J =+=,同理,2PQ ∴当S 位于点()0,3M 时,1PQ 的临界值为233和263.②当S 位于经过点O 的MN 的垂直平分线上即点K 时,∵点()0,3M ,65,05N ⎛⎫ ⎪ ⎪⎝⎭,∴22955MN OM ON =+=,∴2OK OM ON MN =⨯÷=,又∵O 的半径为1,∴30OKZ ∠=︒,∴三角形OPQ 为等边三角形,∴在此情况下,1PQ =,3PQ =,∴90EQB HQB ∠=∠=︒,由(1)可得ABE ACD ≌,∴ABE ACD ∠=∠,BE CD =,∵AB AC =,∴ABC C ABE ∠=∠=∠,∵BQ BQ =,。

中考试题分类汇编_相似三角形含答案

中考试题分类汇编_相似三角形含答案

ECB图5中考试题分类汇编 相似三角形二、填空题1、(2008江苏盐城)如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件(写出一个即可)时,ADE ACB △∽△.2、(2008上海市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 .3、 (2008上海市)如图5,平行四边形ABCD 中,E 是边BC F ,如果23BE BC =, 那么BF FD= .4、(2008泰州市)在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .5、(2008年杭州市)在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点BC=3,AB=5,写出其中的一对相似三角形是 和 ;并写出它的面积比 .6、(2008年江苏省南通市)已知∠A =40°,则∠A 的余角等于=________度.7、(08浙江温州)如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和 为 .8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________.DB(第7题图)O A 1 A 2 A 3A 4 AB图3AEDBC图8(第12题)AB CED9、(2008年庆阳市)两个相似三角形的面积比S1:S2与它们对应高之比h1:h2之间的关系为.10、(2008年庆阳市)如图8,D、E分别是ABC△的边AB、AC上的点,则使AED△∽ABC△的条件是.11、(2008年•南宁市)如图4,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=12、(2008年福建省福州市)12.如图,在ABC△中,D E,分别是AB AC,的中点,若5DE ,则BC的长是.13、(2008年广东梅州市) 如图3,要测量A、B两点间距离,在O点打桩,取OA的中点C,OB的中点D,测得CD=30米,则AB=______米.14、(2008新疆建设兵团)如图,一束光线从y轴上点A(0,1)发出,经过x轴上点C反射后,经过点B(6,2),则光线从A点到B点经过的路线的长度为.(精确到)第18题图ABDEF FEDB C 60°图2BC(第2题图)16、(2008大连)如图5,若△ABC ∽△DEF ,则∠D 的度数为_____________..17、(2008上海市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 .18、 (2008上海市)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= . 一、选择题 1、(VC 相交于点:AC 1.2米1.8米DEF △ABC △O D E F ,,OA OB OC ,,DEF △ABC △1:61:51:41:212B. 2C. 2D. 39、 (2008湖北荆州)如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EFECBB A CDE第4题BCD EAB第18题图交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) :3 :5 C.4:3 :410、(2008贵州贵阳)如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2B .1:4C .1:D .2:111、(2008湖南株洲)4.如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于A .5B .4C .3D .212、 (2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( )A .1:6B .1:5C .1:4D .1:213、(2008青海西宁)给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( ) A .①真②真B .①假②真C .①真②假D .①假②假14、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( ) A .2B .3C .6D .5415、(2008山东潍坊)如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )A.35x + B.45x -C.72D.21212525x x -16、 (2008山东烟台)如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )A 、b a c =+B 、b ac =C 、222b ac =+ D 、22b a c ==17、(2008年广东茂名市)如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.91 B.92 C.31 D.9418、(2008 江苏 常州)如图,在△ABC 中,若DE ∥BC,AD DB =12,DE=4cm,则BC 的长为( ) A.8cmB.12cmC.11cmD.10cm19、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( )A CDEABCDEPEHF GCBA ((第10题图)20、(2008 重庆)若△ABC∽△DEF,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()A 、2∶3 B、4∶9 C、2∶3 D 、3∶221、(2008 湖南 长沙)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米B 、6.4米C 、9.6米D 、10米22、(2008江苏南京)小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。

各地数学中考试题分类汇编相似形

各地数学中考试题分类汇编相似形

2010中考数学分类汇编一、选择题1.(2010山东烟台)手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是【答案】D2.(2010山东烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是A、AB2=BC·BDB、AB2=AC·BDC、AB·AD=BD·BCD、AB·AD=AD·CD【答案】A3.(2010台湾)图(一)表示D、E、F、G四点在△ABC三边上的位置,其中DG与EF交于H 点。

若?ABC =?EFC =70?,?ACB =60?,?DGB =40?,则下列哪一组三角形相似(A) △BDG ,△CEF (B) △ABC ,△CEF(C) △ABC ,△BDG (D) △FGH ,△ABC 。

【答案】B4.(2010浙江嘉兴)如图,已知AD 为△ABC 的角平分线,AB DE //交AC 于E ,如果32=EC AE ,那么=ACAB ( ▲ ) (A )31(B )32 (C )52 (D )53【答案】B5.(2010 福建德化)下列各组线段(单位:㎝)中,成比例线段的是( )A 、1、2、3、4B 、1、2、2、4C 、3、5、9、13D 、1、2、2、3【答案】B6.(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )种 B. 1种 C. 2种 D. 3种【答案】B7.(2010年上海)下列命题中,是真命题的为( )A .锐角三角形都相似B .直角三角形都相似C .等腰三角形都相似D .等边三角形都相似【答案】D8.(2010山东潍坊)如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD 沿EF 对AB C DE(第7题) AB CDEH 图(一)开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,那么AB AD等于().A.0.618 B.22C.2D.2【答案】B9.(2010北京)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC等于( )A.3 B.4 C.6 D. 8【答案】D10.(2010年上海)下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似【答案】D11.(2010云南楚雄)下列说法不正确的是()A.在选举中,人们通常最关心的数据是众数.B.掷一枚骰子,3点朝上是不确定事件.C.数据3,5,4,1,-2的中位数是3.D.有两边对应成比例且有一个角对应相等的两个三角形相似.【答案】D12.(2010河南)如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③AD ABAE AC.其中正确的有AD E(A)3个 (B)2个(C)1个(D)0个【答案】A13.(2010 四川绵阳)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD = 3,BC = 9,则GO: BG =().A.1 : 2 B.1 : 3C.2 : 3 D.11 : 20【答案】A14.(2010广西桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE 与△ABC的面积比为().A.1:2 B.1:4C.2:1 D.4:1AD EB C【答案】B15.(2010辽宁沈阳)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为GABDCOA.9 B.12 C.15 D.18【答案】A16.(2010福建省南平)下列说法中,错误的是( )A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似【答案】C17.(2010吉林)如图,在△ABC中,∠C=900,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3 B.4 C.5 D.6【答案】C18.(2010内蒙赤峰)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在ADFC的值是边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则CD()【答案】C19.(2010广西百色)下列命题中,是假命题的是()A.全等三角形的对应边相等B.两角和一边分别对应相等的两个三角形全等C.对应角相等的两个三角形全等D.相似三角形的面积比等于相似比的平方【答案】C20.(2010广西百色)如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为()A.332 B. 316 C. 310 D. 38【答案】B二、填空题1.(2010江苏南通)若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ .【答案】1∶22.(2010 嵊州市)如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F,C ,过点C 作AM 的垂线CD ,垂足为D ,若CD =CF ,则=ADAE 。

初三数学中考复习三角形相似的条件专项复习训练题含答案

初三数学中考复习三角形相似的条件专项复习训练题含答案

2019 初三数学中考复习三角形相像的条件专项复习训练题1.如图,在 ? ABCD 中,点 E 在 BA 的延伸线上, EC 交 AD 于点 F,则图中相似三角形有 ()A.1 对B.2 对C.3 对D.4 对2.如图,在△ ABC 中,∠ ACB =90°,CD⊥AB 于点 D,则图中相像三角形共有()A.4 对B.3 对C.2 对D.1 对3. 以下各组图形中有可能不相像的是()A.有一个锐角相等的两直角三角形B.各有一个角是60°的两个等腰三角形C.有一个角相等的两等腰三角形D.两个等腰直角三角形4.如图,点 F 在平行四边形 ABCD 的边 AB 上,射线 CF 交 DA 的延伸线等于点E,在不增添协助线的状况下,与△AEF 相像的三角形有 ()A.0 个B.1 个C.2 个D.3 个5. 如图,△ ABC 中, DE∥BC, DE=1,AD=2,DB=3,则 BC 的长是 ()13A. 2B.257C.2D.26. 在△ ABC 和△ DEF 中,∠A=40°,∠B=80°,∠D=40°,∠E=80°,则△ ABC∽△ DEF,这两个三角形相像的依据是_______________________________.7.如图,在△ ABC 中,∠ C=90°,D 是 AC 上一点, DE⊥AB 于点 E.若 AC =8,BC=6,DE=3,则 AD 的长为 ___.8.如图,△ ABC 中, D 为 BC 上一点,∠ BAD =∠ C,AB =6,BD=4,则 CD 的长为 ____.9.如图,在 ? ABCD 中, F E, BP∥ DF,且与 AD 是 BC 上的一点,直线 DF 与 AB 的延伸线订交于点订交于点 P,请从图中找出一组相像的三角形______________.10. 如图,在 Rt△ABC 中,∠ ACB = 90°,CD⊥AB 于点 D, CD=2,BD=1,则AD的长是.11.如图, Rt△ABC 中,∠ ABC =90°,DE 垂直均分 AC,垂足为 O,AD∥B C,且 AB =3,BC= 4,则 AD 的长为 _____.12.如图,已知在△ ABC 与△ DEF 中,∠ C=54°,∠ A=47°,∠ F=54°,∠ E=79°.求证:△ ABC ∽△ DEF.13. 如图,在△ ABC 中, AB = AC,BD=CD,CE⊥AB 于 E.求证:△ ABD ∽△CBE.14.如图,已知 E 是矩形 ABCD 的边 CD 上一点,BF⊥AE 于 F,试说明:△ABF ∽△ EAD.15. 如图,在四边形 ABCD 中,AB =AD ,AC 与 BD 交于点 E,∠ADB =∠ ACB.AB AC(1)求证:AE=AD;(2)若 AB ⊥AC ,AE∶EC=1∶2,F 是 BC 的中点,求证:四边形 ABFD 是菱形.参照答案:1. C2. B3. C4. C5. C6.两角对应相等的两个三角形相像7. 58. 59.答案不独一,如:△ DCF∽△ EBF10. 42511.812.证明:在△ ABC 中,∠ B=180°-∠ A-∠ C=79°,在△ ABC 和△ DEF 中,∠B=∠ E,∴△ ABC ∽△ DEF.∠C=∠ F13.证明:在△ ABC 中, AB =AC,BD=CD,∴ AD ⊥BC,∵ CE⊥AB ,∴∠ADB =∠ CEB=90°,又∵∠ B=∠ B,∴△ ABD ∽△ CBE.14.证明:∵矩形 ABCD 中, AB ∥CD,∴∠ BAF =∠ AED ,∵ BF⊥AE,∴∠AFB =90°,∴∠ AFB =∠ D=90°,∴△ ABF ∽△ EAD.15.证明: (1) ∵AB =AD ,∴∠ ADB =∠ ABE ,∵∠ ADB =∠ ACB ,∴∠ ABEAB AC=∠ ACB ,又∵∠ BAE =∠ CAB ,∴△ ABE ∽△ ACB ,∴AE=AB,又∵ AB =AB ACAD ,∴AE=AD;(2)设 AE=x,∵AE∶EC=1∶2,∴ EC= 2x,由(1)得 AB 2=AE·AC,∴ AB = 3 x,又∵ BA ⊥AC,∴ BC=2 3x,∴∠ ACB =30°,又∵ F 是 BC 的中点,∴ BF = 3x,∴ BF=AB =AD ,又∵∠ ADB =∠ ACB =∠ ABD ,∴∠ ADB =∠ CBD= 30°,∴ AD ∥BF,∴四边形A BFD 是平行四边形,又∵AB =AD ,∴四边形ABFD 是菱形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E 图5图8相似三角形填空题1、(2008江苏盐城)如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件(写出一个即可)时,ADE ACB △∽△.2、(2008上海市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 .3、 (2008上海市)如图5,平行四边形ABCD 中,E 是边BC F ,如果23BE BC =, 那么BF FD= .4、(2008泰州市)在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .5、(2008年杭州市)在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点BC=3,AB=5,写出其中的一对相似三角形是 和 ;并写出它的面积比 .6、(2008年江苏省南通市)已知∠A =40°,则∠A 的余角等于=________度.7、(08浙江温州)如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和 为 .8、(2008年荆州)两个相似三角形周长的比为2:3,则其对应的面积比为___________. 9、(2008年庆阳市) 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .10、(2008年庆阳市) 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是 .11、(2008年•南宁市)如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=D B(第16题图)1 2 34图3 (第12题)A BCE D12、(2008年福建省福州市)12.如图,在ABC △中,D E ,分别是AB AC ,的中点,若5DE =,则BC 的长是 .13、(2008年广东梅州市) 如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.14、(2008新疆建设兵团)如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为 .(精确到0.01)15、如图,ABC △中,AB AC >,D E ,两点分别在边AC AB ,上,且DE 与BC 不平行.请填上一个..你认为合适的条件: ,使ADE ABC △∽△. (不再添加其他的字母和线段;只填一个条件,多填不给分!)16、(2008大连)如图5,若△ABC ∽△DEF ,则∠D 的度数为_____________..17、(2008上海市)如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 . 18、 (2008上海市)如图,平行四边形ABCD 中,E 是边BCE AFB第18题图ABC DEF 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= . 一、选择题1、(2008湖北襄樊)如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、(2008湘潭市) 如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 23、(2008 台湾)如图G 是❒ABC 的重心,直线L 过A 点与BC 平行。

若直线CG 分别与AB 、L 交于D 、E 两点,直线BG 与AC 交于F 点,则❒AED 的面积:四边形ADGF 的面积=?( )(A) 1:2 (B) 2:1 (C) 2:3 (D) 3:24、(2008 台湾) 图为❒ABC 与❒DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点, 且AB // DE 。

若❒ABC 与❒DEC 的面积相等,且EF =9,AB =12,则DF =?( ) (A) 3 (B) 7 (C) 12 (D) 15 。

5、(2008浙江金华)如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,墙的高度是( ) A 、6米 B 、8米 C 、18米 D 、米A B C D O 图1 B A C D E第4题BC D E A F ED B C 60°图2(第2题图)6、(2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5 C .1:4 D .1:27、(2008 青海 西宁)给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( )A .①真②真B .①假②真C .①真②假D .①假②假8、(2008海南省)如图2所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( ) A.1229、 (2008湖北荆州)如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:4 10、(2008贵州贵阳)如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2B .1:4C.1:D .2:111、(2008湖南株洲)4.如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于 A .5 B .4 C .3 D .2C A BD OEF 第18题图12、 (2008 青海)如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( ) A .1:6 B .1:5 C .1:4 D .1:213、(2008青海西宁)给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似.( )A .①真②真B .①假②真C .①真②假D .①假②假14、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )A .2B .3C .6D .54 15、(2008山东潍坊)如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( ) A.35x + B.45x -C.72D.21212525x x -16、 (2008山东烟台)如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )A 、b a c =+B 、b ac =C 、222b ac =+ D 、22b a c ==17、(2008年广东茂名市)如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A.91 B.92 C.31 D.94A CDEABCDEPEHF GCBA ((第10题图)18、(2008 江苏 常州)如图,在△ABC 中,若D E ∥BC,AD DB =12,DE=4cm,则BC 的长为( ) A.8cmB.12cmC.11cmD.10cm19、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( )20、(2008 重庆)若△ABC∽△DEF,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()A 、2∶3 B、4∶9 C、2∶3 D 、3∶221、(2008 湖南 长沙)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米B 、6.4米C 、9.6米D 、10米22、(2008江苏南京)小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。

紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶 A.0.5m B.0.55m C.0.6m D.2.2m 33、(2008湖北黄石)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )解答题1、(2008广东)如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC. (2)若四边形BDFE 的面积为6,求△ABD 的面积.A .B .C .D .ABC(第7题) A . B . C . D .2、(2008山西太原)如图,在ABC 中,2BAC C ∠=∠。

(1)在图中作出ABC 的内角平分线AD 。

(要求:尺规作图,保留作图痕迹,不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由。

提示:(1)如图,AD 即为所求。

3、(2008湖北武汉)(本题6分)如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC 。

求证:△ABC ∽△FDE .4、 (2008年杭州市)(本小题满分10分)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC和△ABG 的面积分别为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。

相关文档
最新文档