14 关联速度的问题

合集下载

专题+关联速度的问题

专题+关联速度的问题
让当事人逃离现场的救援方案:用一根不变形的轻杆MN支撑在楼面平台AB上,
N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(

A.v0
B.2v0
C.


D



1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2

A.
B.



C.



D.

绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短

绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(

即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入

“关联速度”问题 曲线运动专题二-教师用卷 带解析

“关联速度”问题 曲线运动专题二-教师用卷 带解析

“关联速度”问题曲线运动专题二一、单选题(本大题共9小题,共36.0分)1.如图所示,水平地面上一辆汽车正通过一根跨过定滑轮不可伸长的绳子提升竖井中的重物,不计绳重及滑轮的摩擦,在汽车向右以匀速前进的过程中,以下说法中正确的是( )A. 当绳与水平方向成角时,重物上升的速度为B. 当绳与水平方向成角时,重物上升的速度为C. 汽车的输出功率将保持恒定D. 被提起重物的动能不断增大【答案】D【解析】【分析】对汽车的速度沿绳子的方向和垂直于绳子的方向进行分解,沿绳子方向的速度分量等于重物上升的速度大小,结合三角函数的知识求重物上升的速度。

以重物为研究对象,分析重物的运动情况,分析绳子拉力的变化,判断汽车输出功率的变化情况。

解答该题的关键是确定汽车实际运动的速度是合速度,把该速度按效果进行分解,即为沿绳子摆动的方向垂直于绳子的方向和沿绳子的方向进行正交分解。

同时要会结合三角函数的知识进行相关的分析和计算。

【解答】将汽车的速度沿绳子的方向和垂直于绳子的方向进行正交分解,如图所示,则有:重物上升的速度物,故AB错误;C.汽车向右匀速前进的过程中,角度逐渐减小,增大,所以物增大,重物加速上升,克服重力做功的功率增大,根据能量守恒定律知,汽车的输出功率增大,故C错误;D.重物加速上升,动能不断增大,故D正确。

故选D。

2.如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A物体以速度v向左运动时,系A、B的绳分别与水平方向成、角,此时B物体的速度大小为( )A. B. C. D.【答案】A【解析】【分析】分别对A、B物体速度沿着绳子方向与垂直绳子方向进行分解,根据三角函数关系及沿着绳子方向速度大小相等,可知两物体的速度大小关系。

考查学会对物体进行运动的分解,涉及到平行四边形定则与三角函数知识,同时本题的突破口是沿着绳子的方向速度大小相等。

【解答】对A物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为;对B物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为,由于沿着绳子方向速度大小相等,所以则有,因此,故A正确,BCD错误。

“关联”速度问题模型归类例析

“关联”速度问题模型归类例析

关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。

关联速度”问题特点:沿杆或绳方向的速度分量大小相等。

绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。

②在绳或杆连体中,物体实际运动方向就是合速度的方向。

③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。

关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。

、绳相关联问题1.一绳一物模型1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。

即按图 3 所示进行分解,则水错选 B 选项.平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会2)匀速拉动物体例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。

做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同对称地系住个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。

高考物理计算题复习《关联速度问题》(解析版)

高考物理计算题复习《关联速度问题》(解析版)

《关联速度》一、计算题1.如图所示,竖直平面内放一直角杆,杆的各部分均光滑,水平部分套有质量为m A=3kg的小球A,竖直部分套有质量为m B=2kg的小球B,A、B之间用不可伸长的轻绳相连。

在水平外力F的作用下,系统处于静止状态,且OA=3m,OB=4m,重力加速度g=10m/s2.(1)求水平拉力F的大小和水平杆对小球A弹力F N的大小;(2)若改变水平力F大小,使小球A由静止开始,向右做加速度大小为4.5m/s2的匀拉力F所做的功。

加速直线运动,求经过23s2.如图所示,某人用绳通过定滑轮拉小船,绳某时刻与水平方向夹角为α.求:(1)若人匀速拉绳的速度为v o,则此时刻小船的水平速度v x为多少?(2)若使小船匀速靠岸,则通过运算分析拉绳的速度变化情况?3.如图,足够长光滑斜面的倾角为θ=30°,竖直的光滑细杆到定滑轮的距离为a=3m,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,已知M=5.5kg,m=3.6kg,g=10m/s2.(1)求m下降b=4m时两物体的速度大小各是多大?(2)若m下降b=4m时恰绳子断了,从此时算起M最多还可以上升的高度是多大?4.如图所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接小物块A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,滑轮到杆的距离OC=ℎ.开始时小物块A受到水平向左的拉力静止于P 点,PO与水平方向的夹角为30°.(1)求小物块A受到的水平拉力大小;(2)撤去水平拉力,求:①当PO与水平方向的夹角为45°时,物块A的速率是物块B的速率的几倍?②物块A在运动过程中的最大速度.5.如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。

(推荐)关联速度的问题

(推荐)关联速度的问题

(推荐)关联速度的问题
关联速度是指在数据分析中,计算两个或多个变量之间关系的速度。

以下是几种提高关联速度的方法:
1. 数据压缩:对于大型数据集,可以使用数据压缩技术来减少数
据的体积,从而提高关联分析的速度。

2. 并行计算:使用并行计算技术可以将计算任务分配给多个处理
器或计算机进行并行处理,从而加快关联分析的速度。

3. 使用索引:在进行关联分析时,可以使用索引来加快数据的检
索速度,从而提高关联分析的效率。

4. 数据预处理:在进行关联分析之前,对数据进行预处理,如去
除重复项、缺失值处理等,可以减少数据的量,从而提高关联分
析的速度。

5. 采样方法:对于大型数据集,可以使用采样方法来获取一个较
小的数据子集,然后对子集进行关联分析,从而提高关联速度。

6. 使用高效的算法:选择适合的关联算法是提高关联速度的关键。

一些高效的关联算法如Apriori算法、FP-Growth算法等。

7. 数据分区:将数据划分为多个分区,然后对每个分区进行独立
的关联分析任务,最后将结果合并,可以提高关联速度。

8. 内存优化:合理利用内存可以减少磁盘读写的次数,从而提高
关联分析的速度。

高中物理竞赛_话题18:关联速度问题

高中物理竞赛_话题18:关联速度问题

话题18:关联速度问题一、刚体的力学性质:讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图所示,三角板从位置ABC 移动到位置A B C ''',可以认为整个板一方面做平动,使板上点B 移到点B ',另一方面又以点B '为轴转动,使点A 到达点A '、点C 到达点C '.由于前述刚体的力学性质所致,点A 、C 及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B '为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v r ω=,r 是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度). 结论一、杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论. 结论二、接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a 、b ,如图所示,设直线a 不动,当直线b 沿自身方向移动时,交点P 并不移动,而当直线b 沿直线a 的方向移BC A 'B 'C '动时,交点P 便沿直线a 移动,因交点P 亦是直线b 上一点,故与直线b 具有相同的沿直线a 方向的平移速度.同理,若直线b 固定,直线a 移动,交点P 的移动速度与直线a 沿直线b 方向平动的速度相同.根据运动合成原理,当两直线a 、b 各自运动,交点P 的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.结论三、线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.二、相关的速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.(一)、当绳(杆)端在做既不沿绳(杆)方向,又不垂直于绳(杆)方向的运动时,一般要将绳(杆)端的运动分解为沿绳(杆)方向和垂直于绳(杆)方向二个分运动。

关联速度的问题

关联速度的问题

关联速度的问题【专题概述】1、什么就是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2、解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则3、解题方法:把物体的实际速度分解为垂直于绳(杆)与平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示【典例精讲】1、绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时( )A.小车运动的速度为v0B.小车运动的速度为2v0C.小车在水平面上做加速运动D.小车在水平面上做减速运动2、杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向与大小分别为( )A. 水平向左,大小为vB. 竖直向上,大小为vtanθC. 沿A杆向上,大小为v/cosθD. 沿A杆向上,大小为vcosθ3、关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为 的光滑斜面上,绳的另一端与套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的就是( )A. 物体A做加速运动B. 物体A做匀速运动C. F T可能小于mgsinθD. F T一定大于mgsinθ【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个就是合速度,那个就是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向与垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来瞧:A的运动就是沿绳子方向的,所以不需要分解A的速度,但就是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

关联速度的分解资料讲解

关联速度的分解资料讲解

关联速度的分解收集于网络,如有侵权请联系管理员删除“关联”速度的分解在高中运动的合成与分解教学中,学生常对该如何分解速度搞不清楚、或很难理解,其主要原因是无法弄清楚哪一个是合速度、哪一个是分速度.这里有一个简单的方法:物体的实际运动方向就是合速度的方向,然后分析这个合速度所产生的实际效果,以确定两个分速度的方向.一、绳、杆连接的物体绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.关联速度的关系——物体沿杆(或绳)方向的速度分量大小相等.因此,求这类问题时,首先要明确绳连物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.例1.如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解析:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图1-2所示进行分解.其中:v =v 物cos θ,使绳子收缩,v ⊥=v 物sin θ使绳子绕定滑轮上的A 点转动,所以v 物=cos v . 例2.一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图2-1所示,物块以速度v 向右运动,试求当杆与水平方向夹角为θ时,小球A 的线速度v A 图1-图1-2收集于网络,如有侵权请联系管理员删除图4解析:选取物与棒接触点B 为连结点,B 点的实际速度(合速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2,因此,将这个合速度沿棒及垂直于棒的两个方向分解.由速度矢量分解图得v 2=v sin θ,设此时OB 长度为a ,则a =h /sin θ,令棒绕O 点转动角速度为ω,则ω=v 2/a =v sin 2θ/h ,故A 的线速度v A =ωL =vL sin 2θ/h .例3.如图3-1所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置,SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知,当平面镜绕O 逆时针转过30°时,则∠SOS ′=60°,此时OS ′=L /cos60°,选取光点S ′为连结点,该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动速度v 1和绕O 点转动线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图3—2可得:v 1=v sin60°,v 2=v cos60°,又由圆周运动知识可得,光线OS ′绕O 转动角速度为2ω,则:v 2=2ωL /cos60°,vc os60°=2ωL /cos60°,解得v =8ωL .二、相互接触的物体求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出.例4.一个半径为R 的半圆柱沿水平方向向右以速度v 0匀速运动.在半圆柱上放置一根竖直杆,此杆只图2—1 图2—2图3-1 图3—2收集于网络,如有侵权请联系管理员删除 能沿竖直方向运动,如图4所示.当杆与半圆柱体接触点P 与柱心的连线与竖直方向的夹角为θ时,求竖直杆运动的速度.解析:设竖直杆运动的速度为v 1,方向竖直向上,由于弹力沿OP 方向,所以有v v 01、在OP 方向的投影相等,即有v v 01sin cos θθ=,解得v v 10=tan θ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档