一些天线基本知识

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

天线的基础知识

天线的基础知识

第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。

1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线基础知识大全

天线基础知识大全

天线基础知识大全1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2a 。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

天线基本知识

天线基本知识

不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而
广播系统通常采用水平极化,椭圆极化通常用于卫星通信。 国标 垂直极化、+/-45度交叉极化
影响因素
振元的摆放,目前天线单元主要由振子(偶极子)和微带缝隙天线两种类型组成,偶极子的
极化方向与振子轴线相同,缝隙天线的极化方向与缝隙长度方向轴线相同,因此极化方向比 较容易判断。
提纲
〔1〕基站天线的分类 〔2〕基站天线的内部结构
〔3〕基站天线的关键指标
〔4〕美化环境天线举例

Page 1
〔1〕基站天线的分类-
全向天线
按照极化 特性划分
指标特性
单极化天线 水平极化
基站天线
按照水平方向 图的特性划分
单极化天线
按照极化 方向划分
垂直极化
定向天线
按照极化特 性划分
垂直/水平 极化
Page 6
〔3〕基站天线关键指标
项目名称 频率范围(MHz) 极化方式(°) 天线增益(dBi) 水平波瓣宽(°) 垂直波瓣宽(°) 前后比(dB) 隔离度(dB) 输入阻抗(Ω) 电压驻波比 接口 最大功率(w) 闪电保护 尺寸(mm) 支撑杆(mm) 16.5 65±6 7.5 ≥25 ≥30 50 ≤1.5 N-型阴头×2 200 直流接地 875×176×63 2300~2500 ±45° 17dBi 60±6 7 指标 2500~2700
影响因素
基站天线的垂直面波瓣宽度与天线的长度尺寸有关,垂直面波瓣宽度越宽,天线 的长度越小,比如WCDMA天线若垂直面波瓣宽度为6.5度,天线的高度约为1.4m, 而垂直面波瓣宽度为13度的天线其高度约为0.66m。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

天线的基本知识

天线的基本知识

天线的基本知识(二)无线电发射机输出的射频信号功率,通过馈线 (电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

6.1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子 , 见图 1.2 a 。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子 , 见图 1.2 b 。

6.1.3 天线方向性的讨论1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图 1.3. 1 a) 。

立体方向图虽然立体感强,但绘制困难,图 1.3.1 b 与图 1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。

从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图 1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一些天线基本知识一、电磁波产生的基本原理?按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。

这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。

?周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。

?电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。

?当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。

在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。

然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。

?根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。

有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。

于是就有了传输线和天线。

无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。

?对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。

不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。

?高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。

?二、天线?在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。

发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。

到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。

?综上所述,天线应有以下功能:?1.天线应能将导波能量尽可能多地转变为电磁波能量。

这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。

?2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有方向性。

?3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。

?4.天线应有足够的工作频带。

?这四点是天线最基本的功能,据此可定义若干参数作为设计和评价天线的依据。

?把天线和发射机或接收机连接起来的系统称为馈线系统。

馈线的形式随频率的不同而分为又导线传输线、同轴线传输线、波导或微带线等。

所以,所谓馈线,实际上就是传输线。

?天线的电参数?天线的基本功能就是能量转换和定向辐射,所谓天线的电参数,就是能定量表征其能量转换和定向辐射能力的量。

?1. 天线的方向性?衡量天线将能量向所需方向辐射的能力。

主瓣宽度:?主瓣宽度是衡量天线的最大辐射区域的程度的物理量。

越宽越好。

?旁瓣电平:?旁瓣电平是指离主瓣最近且电平最高的第一旁瓣的电平。

实际上,旁瓣区是不需要辐射的区域,所以其电平越低越好。

(天线辐射的主瓣旁瓣类似方波信号的频谱图)?前后比:?前后比指最大辐射方向(前向)电平与其相反方向(后向)电平之比。

前后比越大,天线的后向辐射(或接收)越小。

前后比F / B 的计算十分简单--- F / B = 10 Lg {(前向功率密度) /(后向功率密度)}?方向系数:?在离天线某一距离处,天线在最大辐射方向上的辐射功率流密度与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度之比。

这是方向性中最重要的指标,能精确比较不同天线的方向性,表示了天线集束能量的电参数。

?2. 天线效率?天线效率定义为天线辐射功率与输入功率之比。

?常用天线的辐射电阻R来试题天线辐射功率的能力。

天线的辐射电阻是一个虚拟的量,定义如下:设有一电阻R,当通过它的电流等于天线上的最大电流时,其损耗的功率就等于其辐射功率。

显然,辐射电阻的高低是衡量天线辐射能力的一个重要指标,即辐射电阻越大,说明天线的辐射能力越强。

?3. 增益系数?增益系数是综合衡量天线能量转换和方向特性的参数,它的定义为:方向系数与天线效率的乘积,记为: D为方向系数,为天线效率。

可见,天线方向系数和越高,则增益系数也就越高。

?物理意义:天线的增益系数描述了天线与理想的无方向性天线相比在最大辐射方向上将输出功率放大的倍数。

也可以这样通俗地理解,为定向天线与理想全向天线(其辐射在各方向均等)在一定的距离上的某点处产生一定大小的信号之比。

?例:如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

?4. 极化方向?极化特性是指天线在最大辐射方向上电场矢量的方向随时间变化的规律。

?极化方向,就是天线电场的方向。

天线的极化方式有线极化方式有线极化(水平极化和垂直极化)和圆极化(左旋极化和右旋极化)等方式。

?如何理解线极化首先想象那幅经典的电磁波传播图,电场在一个平面以正弦波传播,磁场在电场的正交平面也以正弦波传播,我们从起点沿着传播方向去看电场,看到的就是一段短线,这种极化就是线极化。

那么线极化的方向如何确定呢当高频电流通过天线时,会在天线上产生高频电压,形成高频电场,这个电场方向一般与天线的走向一致,即线极化的极化方向是与天线的走向一致的。

如果天线是水平方向架设的导线,产生的电场也是水平方向的,叫它“水平极化”天线;如果天线是垂直于地面架设的导线,产生的电场也是垂直方向的,叫它“垂直极化”天线。

(通常直线导线结构的天线为线极化)?如何理解圆极化呢同样是那幅经典的电磁波传播图,不过此时的电场大小始终不变,但是方向围绕着x轴不变旋转变化,但在任何一个平面上的投影都是一个正弦波,有点类似我们对信号的处理中辐度不变,但相位在不断变化。

此时,从原点向传播方向去看电场,看到的就是一个圆,这种极化就是圆极化。

当然,向左旋转就是左旋极化,向右旋转就是右旋极化。

(通常螺旋结构的天线为圆极化)?只有收信天线的极化方向与所接收电磁波的极化方向一致才能感应出最大的信号来。

根据这一原理,我们可以推断出以下结论。

?对于线极化,当收信天线的极化方向与线极化方向一致(电场方向)时,感应出的信号最大(电磁波在极化方向上投影最大);随着收信天线的极化方向与线极化方向偏离越来越多时,感应出的信号越小(投影不断减小);当收信天线的极化方向与线极化方向正交(磁场方向)时,感应出的信号为零(投影为零)。

线极化方式对天线的方向要求较高。

当然在实际条件下,电磁波传播途中遇到反射折射,会引起极化方向偏转,有时一个信号既可以被水平天线接收,也可以被垂直天线接收,但无论如何,天线的极化方向常常是需要考虑的重要问题。

?对于圆极化,无论收信天线的极化方向如何,感应出的信号都是相同的,不会有什么差别(电磁波在任何方向上的投影都是一样的)。

所以,采用圆极化方式,使得系统对天线的方位(这里的方位是天线的方位,和前面所提到的方向系统的方位是不同的)敏感性降低。

因而,大多数场合都采用了圆极化方式。

?打个形象的比喻,线极化类似弯曲在地面上爬行的蛇,圆极化类似蛇绕在木棍上绕行。

再打个比喻,你拿一根绳子,上下摆,绳子传递的波就是线极化形式的;不断地画圆,传递的波就是圆极化的。

?5. 频带宽度?天线的电参数都与频率有关,也就是说,上述电参数都是针对某一工作频率设计的,当工作频率偏离设计频率时,往往要引起天线参数的变化。

当工作频率变化时,天线的有关电参数不应超出规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。

?6. 输入阻抗?对于发信机来说,天线是一个负载,如何使天线能最多地摄取能量,就要解决一个匹配总是。

只有当天线本身的阻抗与发信机的阻抗相等是,才能得到最大的发射功率!?对于高频信号讲,天线是很长的导线。

高频信号从馈点流向天线端点以及从端点反射回来所用的时间,足以引起天线各部分电压、电流的幅度和相位产生很大的差别,致使天线的长度、结构以及馈电点的位置不同,呈现的阻抗也不同。

如中心馈电的偶极振子,当每臂长度为四分一波长时,呈现约50至75欧的纯电阻,容易做到与馈电电缆及发信机直接匹配。

?当条件限制,无法将天线的长度修整到适当数值时,一般应在天线电路中附加电感电容等电抗元件抵消天线本身呈现的电抗,有时还需要加阻抗变压器将天线阻抗变换到发信电路的要求值,这些附加元件构成的设备叫“天线调谐器”或“天线匹配器”。

?7. 有效长度?有效长度是衡量天线辐射能力的又一个重要指标。

?天线的有效长度定义如下:在保持实际天线最大辐射方向上的场强值不变的条件下,假设天线上电流分布为均匀分布时天线的等效长度。

有效长度越长,表明天线的辐射能力越强。

?书上有一个例子加强感性认识:长度为2h、电流不均匀分布的短振子在最大辐射方向上的场强与长度为h、电流为均匀分布的振子在最大辐射方向上的场强相等。

也就是说,该短振子的有效长度为h。

?接收天线理论?高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。

接收电磁波所用的导线,一般叫做“接收天线”。

?1.有效接收面积?有效接收面积是衡量一个天线接收无线电波能力的重要指标。

它的定义为:当天线以最大接收方向对准来波方向进行接收时,接收天线传送到匹配负载的平均功率为PLmax,并假定此功率是由一块与来波方向相垂直的面积所截获,则这个面积就称为接收天线的有效接收面积。

?有效接收面积越大,天线接收无线电波的能力也就越强。

?2.等效噪声温度?接收天线的等效噪声温度是反映天线接收微弱信号性能的重要电参数。

?接收天线把从周围空间接收到的噪声功率送到接收机的过程类似于噪声电阻把噪声功率输送给与其相连的电阻网络。

因此接收天线等效为一个温度为Ta的电阻。

Ta越高,天线送至接收机的噪声越大,反之越小。

?三、传输线?传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输,因此又称为导波系统。

其所引导的电磁波被称为导行波。

?传输线也是一种导体,但是与天线不同,不希望电磁波在这里传播时有辐射。

所以,用金属做成的传输线的结构,是尽量不辐射能量。

相关文档
最新文档