机车信号系统地面设备共38页

合集下载

列车运行控制系统-44列控地面设备CBTC地面设备

列车运行控制系统-44列控地面设备CBTC地面设备

VOBC子系统 在VOBC子系统中,列车的位置和运行方向信息在保证列车安全运行中作用重大,列车定位方式采用测速传感器和地面应答器相结合的方式实现。DCS数据通信系统 数据通信系统采用无线局域网WLAN技术,通过沿线设无线接入点(Access Point,AP)的方式实现列车与地面之间不间断的数据通信。一个AP点可以传输几十千米的距离。
一、系统组成
所谓“障碍物”包括前行列车、关闭区域、失去位置表示的道岔,以及任何外部产生的因素如-紧急停车按钮、站台屏蔽门、防淹门和隔离保护门等。同时,地面ATP系统还负责对相邻地面ATP系统的行车许可请求作出响应,完成列车从一个区域到另一个区域的交接。
地面ATP系统与其它设备的信息交互图
ZC接收VOBC发送过来的列车位置、速度和运行方向信息,同时从联锁设备获得列车进路、道岔状态信息,从ATS接收临时限速信息,在考虑其他一些障碍物的条件计算MA,并向列车发送,告诉列车可以走多远、多快,从而保证列车间的安全行车间隔。 由于CBTC系统能够精确的知道列车的位置,“速度一距离模式曲线(Distance to go )”是其对列车的控制原则。事实上,不管是CBTC系统还是传统意义上的由轨道电路完成列车控制的系统控车原则都很相似,只不过CBTC系统对列车位置的把握准确度更高,对列车控制的准确度也会更高,基于轨道电路的系统,移动授权是轨道区段长若干倍,而CBTC系统,移动授权更精确。正是CBTC系统能够更精确的控车,才有的缩短了列车追踪间隔,使运行效率大大提高。
一、系统原理与组成
基本原理 系统根据车载测速定位设备获知列车本身在线路上的位置,并由车载设备将列车位置、区段占用情况实时向ZC报告,同时联锁系统将线路信息包括信号显示、道岔位置、屏蔽门状态发送给ZC和车载,然后ZC向列车提供移动授权,对列车的运行提供保护。

机车信号系统地面设备全解

机车信号系统地面设备全解

UM71引进 ZPW-2000A性能提高
WG-21A型国产化
???
ZPW2000A型无绝缘轨道电路
ZPW-2000A轨道电路技术特点: 1.接收器载频选择可通过列控中心进行集中配置,发送器采用 无接点的计算机编码方式; 2.发送器由既有的N+1提高为1+1的备用模式; 3.将既有ZPW-2000A轨道电路的调谐单元和匹配单元整合为一个 调谐匹配单元; 4.优化了补偿电容的配置,采用25微法一种,不同的信号载频 采用不同的补偿间距;补偿电容采用了全密封工艺; 5.加大了空心线圈的导线线径,从而提高了关键设备的安全容 量要求。 客专ZPW-2000A轨道电路系统带有监测和故障诊断功能,系统的 状态修提供了技术支持; 6.站内采用与区间同制式的客专ZPW-2000A轨道电路; 7.站内道岔区段的弯股采用与直股并联的一送一受轨道电路结 构,轨道电路在大秦线站内ZPW-2000A轨道电路的基础上,使道 岔分支长度由小于等于30m延长到的160m,提高了机车信号车载 设备在站内使用的安全性、灵活性,方便了设计。
接收设备:接收有轨道传送的信号并根据信号的信息特 征控制相应的防护设备 轨道绝缘:主要分为机械绝缘和电气绝缘两种,其目的 是对钢轨上不同的轨道电路进行分隔,避免信号的互相 串扰
二、轨道电路的工作状态(调整、分路、断轨)
1、轨道电路调整状态
2、轨道电路分路状态
分路电阻:列车分路轨道电路所形成的电路电阻称为列车分 路电阻 其阻值主要取决与轮缘与钢轨头部表面的接触电阻。其与轨 道电路上的车轴数、车辆载重情况、列车行驶速度、轮缘装 配质量与磨损程度、钢轨表面的清洁程度等因素有关 轨道电路的分路灵敏度:当轨道电路被列车或其他导体分路, 恰好使轨道电路接收设备能反映轨道占用状态的列车分路电 阻 规定最小分路电阻称为标准分路灵敏度,我国铁路标准分路 灵敏度为0.06欧

轨道交通通信信号系统

轨道交通通信信号系统
当轨道交通发生故障或灾害时,广播系统自动转为抢 险通信设备,环境调度员具有最高优先权。
第20页,共83页。
(3)广播系统构成:
地铁基础知识
车控室广播台、车站广播设备、扬声器等。
第21页,共83页。
6电源及接地系统
地铁基础知识
➢ (1)功能:电源系统是为满足通信系统 不间断、无瞬变地供电需求。
➢ (2)构成:配电设备、整流设备、蓄电 池
➢ 调度台
➢ 基站收发信机 ➢ 天馈线系统
➢ 机车电台
➢ 漏泄电缆 ➢ 维护终端
地铁基础知识
第19页,共83)功能:对乘客广播(到发站信息、意外情况疏导)
对工作人员广播(通知信息) (2)结构:广播系统采用二级广播控制方式(控制中心、车站)
广播分区为:上行站台、下行站台、售票区、站厅 层、出入口、办公区。
第34页,共83页。
闭塞的概念
地铁基础知识
❖ 最简单的确定位置的方法是划分一定长度 的“区段”,在某一时间段内,在此区间 内只容许一列车占有(运行、停放),这 就是“闭塞”的概念。
❖ 为保证行车安全,将列车正在运行、停放 的线路区段予以”封闭“,不允许其他列 车进入此区段,以防止对向列车、后续列 车的正面冲突或追尾事故的发生。
容量/线路利用率
话音质量/干扰
第6页,共83页。
( 3)分类 按传输媒介分:
光纤数字通信系统 微波数字通信系统 卫星数字通信系统
地铁基础知识
第7页,共83页。
按采用技术分 PDH(异步数字通信系统) SDH(同步数字通信系统) OTN(开放的传输网络) ATM(异步传输模式)
地铁基础知识
第8页,共83页。
第27页,共83页。

无线调车机车信号和监控系统STP

无线调车机车信号和监控系统STP

无线调车机车信号和监控系统STP系统简介无线调车机车信号和监控系统STP是一种保证车站调车作业安全的重要行车安全设备;它将先进的车列控制技术、卫星定位技术、信息处理技术等应用到调车作业中,改善了以往调车作业存在的信息不透明、完全依靠人员保证安全的现状;系统实现了机车和地面间站场信息、调车机车状态、调车作业计划等信息的实时传输和显示,同时能够有效防止调车作业中由于车列越过阻挡信号、冲撞土档、超速等造成的“挤”、“冲”、“脱”等事故,既保证了站内调车作业的安全,又满足了铁路发展安全高效的要求;地面设备、车载设备实物系统结构STP系统包括地面和车载两部分;原则上一个联锁站场配置一套地面设备,一台机车配置一套车载设备;每套地面设备包括地面主机、车务终端、电务维护终端、站调终端、无线通信设备、地面无源应答器和GPS 定位设备可选等;每套车载设备包括车载主机、无线通信设备、应答器查询主机及查询天线、车载打印机等;站场各个出入口处安装无源应答器;系统通过联锁设备获取站场表示信息,实时计算并跟踪车列位置;通过LKJ监控记录装置显示站场信息,并在必要时进行制动控制保证调车作业安全;系统为地面人员配置车务终端、站调终端用于传输调车作业计划,了解调车作业状态;STP系统结构示意图界面展示STP系统将站场信号、区段状态、进路信息、调车作业单等信息通过无线方式传输到调车机车上,实现了站场信号、调车作业单等的实时显示;调车司机能看到车站站场的实际情况,对车站股道空闲及进路开放情况一目了然,使调车作业更加透明;同时,系统实时向地面反馈调车机车位置、速度、作业进度等信息,使地面人员可实时动态掌握调车机车状态;车载显示界面地面终端显示界面功能展示1、防止车列冒进阻挡信号在取送车辆作业时,系统自动识别前方信号状态,控制车列在“蓝灯”、“一度停车点”前停车,防止调车作业因冒进阻挡信号造成“挤”“脱”“撞”等事故;2、尽头线作业时的安全防护在尽头线作业时,系统自动识别车列前方距土档的距离,控制车列在土档前安全距离内停车,防止撞土档事故的发生;3、防止调车作业中超速在车列经过限速区段、限速道岔、进入有车线等需要控制车列运行速度的区段作业时,系统自动计算限速并防护调车作业超速;4、存车线连挂作业时的安全防护连挂作业中,当存车位置已知时,系统实时计算车列前方距存车距离并自动给出“十”、“五”、“三”车限速,防止人为疏忽造成的连挂作业事故;终端显示状态5、压信号调车作业进行安全防护系统自动识别压信号原进路返回作业并进行防护;只有当地面人员确认道岔位置正确并在车务终端确认后,系统才允许司机动车,防止司机或调车组误动作引起挤岔等事故的发生;机车显示状态终端显示状态6、越出站界调车作业的安全防护禁止出站调车作业的车站,系统控制车列在站界前停车,防止冒进站界;允许出站调车作业的车站,按技规要求,当检测第一闭塞分区空闲并且经地面人员在车务终端确认后,才允许越出站界调车作业;7、调车作业计划单的传输功能STP系统可从TMIS、SMIS等系统获取作业计划单;当调车区长下达作业计划或变更作业计划时,STP系统可将更新的作业计划实时发送到车务终端和车载LKJ显示器上,帮助司机了解掌握作业计划;同时STP系统对调车作业进度进行跟踪并自动抹消完成的钩计划,实现了调车作业计划的信息化;SMIS向STP传送计划单STP地面终端显示的作业单STP车载显示的作业单8、记录处理及系统管理功能系统实时记录并保存调车作业过程中的重要数据,可通过列车运行监控记录装置转储监控运行数据进行地面分析,也可通过电务维护终端放回调车作业的历史记录,为故障分析提供可靠地手段;。

第04章(2) 列控地面设备-C2地面设备-0328

第04章(2) 列控地面设备-C2地面设备-0328
既有线CTCS-2级列控系统

动车
输 出

点 式 信 息
应答器
控制中心
应答器编码 轨道电路
VCC1 I/O
VCC1 DT
VCC1 I/O
VCC1 DT
VCC1 DT
VCC1 I/O
VCC1 DT
2016/3/31
车站列控中心 继电编码 联锁系统 9
轨道交通控制与安全
国家重点实验室(北京交通大学)
STATE KEY LAB OF RAIL TRAFFIC CONTROL & SAFETY
Transparentdata balise
Fix data balise
To Interlocking
To interlocking
LEU
Transparent
Direction of travel
data balise
Fix data
balise
18
轨道交通控制与安全
国家重点实验室(北京交通大学)
CTCS-2级列控系统—系统工作原理
CTC/TDCS
车并调车计站进度载算联行中机设锁处心联备采理下锁接集。达将收轨运进到道行路轨电图信道路至息的电车发列站路送车C给码T占列序C用分控和信机中应息心、道岔位置
车站分机
计,C向答 式列生T算控车器曲控成C机制站分轨中报线联道联机道心文 ,锁岔锁实电根信 监按、联时路据息 控照信锁:编进后列号C下码路T,车机发和信C计安,进下临息排算全路达时和列命进生运限临进令路速时成 行路的报限控 。。命文速制令信模息:
有源应答器:又称可变应答器 应答器内存储的信息可变,通过LEU可实时修改应答器内信 息 需要供电,需要有电缆和LEU连接

第二章 机车信号设备简介

第二章  机车信号设备简介

第二章机车信号设备简介机车信号是指设在司机室内反映列车前方运行条件的信号显示,通常实现机车信号功能的车载设备也被简称为机车信号。

机车信号发展初期,其功能是为了改善司机瞭望条件而向司机复示地面信号。

随后在机车信号设备的基础上增加了自动报警、自动停车设备,机车信号设备不仅向司机提供信号显示,同时向后级设备提供信号来源,机车信号成为提高运输安全,实现车上自动报警、自动停车功能所必备的重要车载设备,被作为机车“三大件”之一。

我国铁路目前采用的机车信号分为接近连续式和连续式两种。

接近连续式多用于非自动闭塞区段。

在进站信号机外方制动距离附近的固定地点设置发送设备,并从固定地点到进站信号机之间加装一段轨道电路。

从列车最前面的车轮轧在轨道电路上时起,发送装置就连续不断地向机车上传送地面信号的信息,使机车信号机连续复示进站信号机的显示。

连续式机车信号没有距离限制,只要列车在轨道上行驶,被机车第一轮对短路的轨道信号电流就会在钢轨周围产生磁场。

装在机车上的感应器接收到信号,经过解码使机车信号机不断地显示与前方地面信号机相同的信号。

随着运输要求的提高和技术的发展,要求机信号的译码输出提供给已广泛配备的列车运行监控装置,对机车信号设备的性能要求随之提高,机车信号除了向司机提供显示外,向后级列车运行监控设备提供信息成为一项重要功能。

随着列车运行速度的进一步提高,司机已难以仅通过地面信号来驾驶列车,这样就对机车信号的可靠性与安全性有了更加严格的要求,机车信号系统的概念也进一步明确:机车信号系统由车载信号和地面信号设备共同构成,必须符合故障导向安全原则。

车载信号设备应具有运行数据记录的功能;地面信号设备应具有闭环检查功能,提供正确信息。

机车信号是否安全、可靠,取决于地面信号设备和车载信号设备构成的系统是否安全、可靠。

第一节机车信号的发展史一、JT1型通用式机车信号设备JT1-A/B型通用式机车信号,是采用数字信号处理技术及高速超大规模集成电路设计而成的新一代通用式机车信号装置。

机车信号系统地面设备全解

机车信号系统地面设备全解

ZPW2000A无绝缘轨道电路
技术特点 信号特征 工作参数 主要功能· 系统组成 站内电码化
UM71引进
ZPW-2000A性能提高
WG-21A型国产化
???
ZPW2000A型无绝缘轨道电路
ZPW-2000A轨道电路技术特点: 1.接收器载频选择可通过列控中心进行集中配置,发送器采用 无接点的计算机编码方式; 2.发送器由既有的N+1提高为1+1的备用模式; 3.将既有ZPW-2000A轨道电路的调谐单元和匹配单元整合为一个 调谐匹配单元; 4.优化了补偿电容的配置,采用25微法一种,不同的信号载频 采用不同的补偿间距;补偿电容采用了全密封工艺; 5.加大了空心线圈的导线线径,从而提高了关键设备的安全容 量要求。 客专ZPW-2000A轨道电路系统带有监测和故障诊断功能,系统的 状态修提供了技术支持; 6.站内采用与区间同制式的客专ZPW-2000A轨道电路; 7.站内道岔区段的弯股采用与直股并联的一送一受轨道电路结 构,轨道电路在大秦线站内ZPW-2000A轨道电路的基础上,使道 岔分支长度由小于等于30m延长到的160m,提高了机车信号车载 设备在站内使用的安全性、灵活性,方便了设计。
环电码化 在一般车站(一进一出),每股道仅设一套发码盒,当列车从不同
方向接入该股道时,发码及检测系统根据接车方向进行切换。每一
股道配置一套发送设备,每一股道的检测,可根据正线或侧线检测
的使用情况,选用检测盘的其中一路,每8个股道配置一套检测设

发码
闭环检测
38
轨道电路基本原理
一、轨道电路基本原理
轨道电路是以铁路线路的两根钢轨为导体,两端加以电气绝缘 节或电气分割并接上发送设备和接收设备构成的电路

机车信号车载设备原理及故障处理

机车信号车载设备原理及故障处理

0
0
0
UU 双黄
0
0
1
HUS红黄闪
1
0
1
HU 红黄
1
1
0
HU 红黄
1
0
1
HU 红黄
0
1
0
HU 红黄
0
0
1
H红
1
0
0
H红
0
0
1
机车信号原理
三、载频切换功能
设备具有载频自动切换和锁定功能,即根据地面传递的载频切换信息,实现接收载频的自动切换和锁定。
1.地面设备的要求(主要是对电码化有关地面设备发送载频切换信息的要求) 2.车载设备满足的要求: (1)车载设备在地面提供载频切换信息码时,应按要求自动实现载频锁定或切换,如表所示。
输入信息
TB/T3060-2002 "1.9"移 交流计数/极
移频(含单轨条) 频

Hz
Hz
ZPW2000 Hz/代码
无码
9.5 8.5
无码
无码
9.5 8.5
无码 21.3/L5 23.5/L4 10.3 / L3 12.5 / L2
11
11
绿码
11.4 / L
9
12.5
13.5
13.5
13.6 / LU
机车信号主机的功能
机车信号原理
主机板是主机的核心部件, 负责实现对通过接收线圈接收 到的地面轨道电路信息进行处 理,并完成向后级设备的并口、 串口输出和主机的输入输出控 制。一个主机中有2块主机板, 构成双机热备冗余结构。主机 板为二取二结构,具有高安全 性。
主机的电路板-主机板
机车信号原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档