初中七年级数学第二次月考测试题
初中七年级数学第二次月考

七年级数学第二次月考一.选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A. 2x <yB. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2.如果a 、b 表示两个负数,且a <b ,则( ).A.1 ba B.ba<1 C.ba 11 D. ab <13.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). A. a <0 B. a >-1 C. a <-1 D. a <14.设a, b, c 都是有理数,且满足:用a 去乘不等式的两边,不等号方向不变;用b 去乘不等式的两边,不等号方向改变;用c 去乘不等式的两边,不等号变为等号,则a, b, c 的大小关系是( ) A. a >b >c B. a >c >b C .b >c >a D .c >a >b5.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). A.11 B.8C.7D.56.不等式组 1,159m x x x 的解集是x >2,则m 的取值范围是( ). A. m ≤2B. m ≥2C. m ≤1D. m ≥17.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm8.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个 9.已知a, b, c 是△ABC 的三条边,化简c b a -c a b 的结果是( )A. 2aB. -2bC. 2a+2bD. 2b -2c10.用三块正多边形地板铺地,拼在一起相交于同一点的各边相互吻 合,其中两块木板的边数是8,则第3块木板的边数应是( ) A.4 B.5 C.6 D.8二.填空题(每题2分,共20分)11. 关于x 的不等式组 的非负整数解为 _______12.已知关于x 的不等式(a+1)x >3a+3可化为x <3, 则a 的取值范围是___________13.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是_____________14.若不等式组k x x ,21有解,则k 的取值范围是___________15.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木5x+>3(x+1) 21x ≤51-2x条这样做的道理是___________________.16.已知等腰三角形的一边长为6cm ,另一边长为4cm,则它的周长为__________________17.一次环保知识竞赛共有25道题,规定答对一题得4分,答错或不答一题倒扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上)。
七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。
B.无限小数是无理数。
C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。
北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
七年级数学上册第二次月考测试题(04)

七年级数学上册第二次月考测试题(04)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,2的相反数是()A.2B.﹣2C.D.﹣2.(3分)据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×1010 3.(3分)实数a,b,c在数轴上的位置如图所示,化简|﹣a﹣b|﹣|c|的结果是()A.﹣a﹣b+c B.﹣a﹣b﹣c C.a+b﹣c D.a+b+c4.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为5.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣26.(3分)若|b﹣2|+(a+3)2=0,则(a+b)2019的值为()A.2019B.﹣1C.﹣2019D.17.(3分)已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣18.(3分)笔记本比水性笔的单价多2元,小刚买了5本笔记本和3支水性笔正好用去18元.如果设水性笔的单价为x元,那么下面所列方程正确的是()A.5x+3(x﹣2)=18B.5(x﹣2)+3x=18C.5x+3(x+2)=18D.5(x+2)+3x=189.(3分)已知关于x的方程2(x﹣1)+3k=4x+6的解为x=﹣1,则k的值为()A.1B.2C.3D.410.(3分)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确二.填空题(共5小题,满分15分,每小题3分)11.(3分)阅读理解:①根据幂的意义,a n表示n个a相乘;则a m+n=a m•a n;②a n=m,知道a和n可以求m,我们不妨思考;如果知道a,m,能否求n呢?对于a n=m,规定[a,m]=n,例如:62=36,所以[6,36]=2.记[5,x]=4m,[5,y﹣3]=4m+2;y与x之间的关系式为.12.(3分)方程3x2n﹣3+2=0是关于x的一元一次方程,则n=.13.(3分)若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为.14.(3分)2022年冬奥会将在北京召开,某场馆建设由甲乙两个工程队完成,甲单独做要30个月完成,乙单独做要60个月完成,则甲乙两队合作个月完成这项工程.15.(3分)在如图所示的运算流程中,若输入的数为8,则输出的数为.三.解答题(共8小题,满分75分)16.(16分)若规定这样一种新运算法则:a*b=a2﹣2ab.如3*(﹣2)=32﹣2×3×(﹣2)=21.(1)求2*(﹣3)的值;(2)若(﹣4)*x=﹣2﹣x,求x的值.17.(6分)代数式求值:x2y﹣xy﹣0.5x2y+0.5xy,其中x=3,y=﹣2.18.(6分)计算下列各题:(1)(﹣24)×();(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.(8分)定义:若整数k的值使关于x的方程+1=kx的解为整数,则称k为此方程的“友好系数”.(1)判断k1=0,k2=1是否为方程+1=kx的“友好系数”,写出判断过程;(2)方程+1=k“友好系数”的个数是有限个,还是无穷多?如果是有限个,求出此方程的所有“友好系数“;如果是无穷多,说明理由.20.(9分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)公式①:(a+b+c)d=ad+bd+cd.公式②:(a+b)(c+d)=ac+ad+bc+bd.公式③:(a﹣b)2=a2﹣2ab+b2.公式④:(a+b)2=a2+2ab+b2.图1对应公式,图2对应公式,图3对应公式,图4对应公式.(2)《几何原本》中记载了一种利用几何图形验证平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出验证过程;(已知图中各四边形均为长方形)21.(9分)如图是一个数表,现用一个长方形在数表中任意框出4个数.(1)a,c的关系是:;(2)当a+b+c+d=32时,a=.(3)a,b,c,d的关系是:.22.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米小时,设客车行驶时间为t小时.(1)当t=5时,客车与乙城的距离为千米(用含a的代数式表示);(2)已知a=70,求客车与出租车首次相距100千米时客车的行驶时间(列方程解答).23.(11分)已知:数轴上A、B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣c2﹣3(a﹣c2)的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?。
人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。
2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷

盐城市盐都区第一共同体七年级第二学期5月份数学试题时间:100分钟分值:120分一、选择题(本大题共8小题,每小题3分,共24分)1.化简(a4)3的结果为····························································()A.a7B.a12C.a11D.a82. 下列各式从左到右的变形不属于...因式分解的是·····································()A.a2+2ab+b2=(a+b)2B.xy−4x+y−4=(x+1)(y−4)C.x2+6x−9=(x+3)(x−3)+6xD.x2+3x−10=(x+5)(x−2)3.已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是····()A.6B.7C.8D.94.一块含45°角的直角三角板与一把直尺如图放置,若∠1=60°,则∠2度数是··········()A.85°B.75°C.60°D.45°第4题第5题第8题5.如图,下列结论不正确...的是······················································()A.若AD∥BC,则∠1=∠BB.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CDD.若AE∥CD,则∠1+∠3=180°6.已知二元一次方程x+y=1,下列说法正确..的是····································()A.它有一组正整数解B.它只有有限组解C.它只有一组非负整数解D.它的整数解有无穷多组7.在△ABC中,∠A+∠B=141°,∠C+∠B=165°,则△ABC的形状是·····················()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形8. 如图,∠A0B=70°,点M,N分别在OA,OB上运动(不与点O重合〉,ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M, N的运动过程中,∠F的度数·······························()A.变大B.变小C.等于55°D.等于35°二、填空题(本大题共10小题,每小题2分,共20分)9.新冠病毒“奥密克戎”的直径约为0.00000011m,用科学记数法可表示为m.10.六边形的内角和是°.11.使等式a 0 = 1成立的条件是.12.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上).若∠B=55°,∠C=100°,则∠AB′A′的度数为 .13.已知a =−(0.2)2,b =−2−2,c =(−12)−2,则a ,b ,c 从小到大....的排序是 . 14.关于x 的不等式2ax+3x >2a+3的解集为x <1,则a 的取值范围是 . 15.已知 ax +by =16bx −ay =−12的一组解为 x =2y =4,则a 、b 分别为 .16.已知关于x 的不等式组 x −a >0 3−2x ≥−11 的整数解共有5个,则a 的取值范围是 .17.定义:对于任何数a ,符号[a ]表示不大于a 的最大整数.例:[5.7]=5,[5]=5,[﹣1.5]=﹣2.如果[554-x ]=﹣5,满足条件的所有整数x 是 . 18.如图,AB//CD ,则∠1+∠2+∠3+……+∠n-1+∠n= .三、解答题(本大题共10小题,共76分)19.(本题满分6分)计算: (1)()()11322π--+-- (2)()326323a a a a a -⋅+÷20.(本题满分6分)因式分解:(1)2436x - (2)x 3−2x 2y +xy 221.(本题满分6分)解不等式组()211113x x x x ⎧--≤⎪⎨+>-⎪⎩,并把解集在数轴上表示出来第12题第18题22.(本题满分6分)解方程组:(1)213417x yx y=-⎧⎨+=⎩(2)20325x yx y-=⎧⎨-=⎩23.(本题满分6分)先化简,再求值:(a−1)2−a(a+3)+2(a+2)(a−2),其中a=−2.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫做格点. (1)画出△ABC先向右平移4个单位,再向上平移两个单位后得到的△A1B1C1;(2)画出△A1B1C1的高C1H;(3)连结AA1 、CC1,求四边形ACC1A1 的面积.25.(本题满分8分)如图,△ABC中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA延长线于点E,AD平分∠BAC.求证:∠E=∠BGF.26.(本题满分10分)某电器超巿销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:((1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.(本题满分10分)【项目学习】“我们把多项式a2+2ab+b2及a2―2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解: a2+6a+8=a2+6a+32—32+8=(a+3 )2—1因为(a+3)2≥0,所以a2+6a+8≥—1,因此,当a=―3时,代数式α2+6a+8有最小值,最小值是-1.【问题解决】利用配方法解决下列问题:(1))当x= 时,代数式x2—2x一1有最小值,最小值为.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2—4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2α十5、3α十2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.28.(本题满分12分)已知∠MON=40°,0E平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C 不与点O重合),连接AB,连AC交射线OE于点D,设∠BAC=α.(1)如图1,若AB∥ON,①∠ABO的度数是° ;②当∠BAD=∠ABD时,∠0AC的度数是°;当∠BAD=∠BDA时,∠0AC的度数是°;( 2 )在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB⊥OM,延长AB交射线ON于点F,当四边形DCFB为“完美四边形”时,求α的值.图1 图2 备用图。
初一数学第二次月考试卷

七 年 级 数 学 第 二 次 月 考 测 试 题 一、选择题(每题3分共30分) 1、 下列各数中,负数是 ( ) A —(—3) B —3- C (—3)2 D —(—3)3 2、单项式342h r π 的 ( ) A 系数是4, 次数是2 B 系数是3,次数是3 C 系数是34π,次数是3 D 系数是34,次数是4 3、在(—1)2,(—1)3,(—1)2007,(—1)2008中,值为1的有( ) A 1 个 B 2个 C 3个 D 4个 4、冬季某天我国三个城市的最高气温分别是—10 0C ,1 0C ,—7 0C 它们从高到低排列,正确的是( ) A —10 0C ,—7 0C ,1 0C B —7 0C , —10 0C ,1 0C C 1 0C ,—10 0C ,—7 0C D 1 0C , —7 0C , —10 0C 5、已知51=-a , 则a 的值为( ) A 6 B —4 C 6或—4 D —6或4 6、如图,数轴上A 、B 两点所表示的两数的( ) A 和为正数 B 积为正数 C 和为负数 D 积为负数 7、若-4a 2b 与3a m b n 是同类项,则( ) A m=2 n=0 B m=0 n=2 C m=2 n=1 D m=1 n=2 8、若a 2=(—2)2 则a 等于( ) A 2 B —2 C 4 D 2或—2 9某种细菌在培养过程中,每半小时分裂一次(由1个分裂为2个),那么这种细菌由1个分裂为32个要经过( ) A 2小时 B 3小时 C 2.5小时 D 5小时 10、有下列各组数:(1)—52与(—5)2 (2)—33与(—3)3 (3)—(—2)5与25 (4)0100与0200 (5)(—1)2008与(—1)2009其中相等的共有 ( ) A 1对 B 2对 C 3对 D 4对 二、填空题(每题3分共30分) 1、112-的相反数是________,112-的倒数是________ 112-的绝对值是________ 2、某天早晨气温为a 摄氏度,中午上升了b 摄氏度,晚上又下降了c 摄氏度,则晚上的气温是_____________摄氏度(上升记为+)。
人教版七年级数学第二学期第二次月考测试卷含答案

人教版七年级数学第二学期第二次月考测试卷含答案一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2 B .()10080,2- C .()10090,2- D .()10090,23.若24a =,29b =,且0ab <,则-a b 的值为( )A .5±B .2-C .5D .5- 4.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 5.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个6.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上 B .线段BC 上C .线段CD 上 D .线段DE 上 7.下列实数中,..31-4π0-8647,3,,,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个8.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( )A .2B .0C .-2D .以上都不对9.下列说法:①±3都是27的立方根;②116的算术平方根是±14;③﹣38-=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个 10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( )A .5B .6C .7D .8二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.若x +1是125的立方根,则x 的平方根是_________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.x-1+(y+2)2=0,则(x+y)2019等于_____.15.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.17.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.1846________.19.若x 、y 分别是811-2x -y 的值为________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 22.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫ ⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) . (2)若 5,2a ⎛⎫- ⎪⎝⎭ 是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).23.探究:()()()211132432222122222222-=⨯-⨯=-==-== …… (1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.24.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 25.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.26.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F (2)=12,故①正确; ∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小 ∴F (24)=42=63,故②是错误的; ∵27=1×27=3×9,且3和9的绝对值差最小∴F (27)=31=93,故③错误;∵n 是一个完全平方数,∴n 能分解成两个相等的数的积,则F (n )=1,故④是正确的.正确的共有2个.故答案为B .【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义. 2.D解析:D【详解】因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D. 3.A解析:A【分析】首先根据平方根的定义求出a 、b 的值,再由ab <0,可知a 、b 异号,由此即可求出a-b 的值.【详解】解:∵a 2=4,b 2=9,∴a=±2,b=±3,而ab <0,∴①当a >0时,b <0,即当a=2时,b=-3,a-b=5;②a <0时,b >0,即a=-2时,b=3,a-b=-5.故选:A .【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.A解析:A【分析】直接利用负整数指数幂的性质结合x 的取值范围得出答案.【详解】∵-1<x <0,∴x -1<x <x 2,故选A.【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x 的取值范围分析是解题的关键.5.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.6.B解析:B【分析】+1的取值范围进而得出答案.【详解】解:∵实数m,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.【点睛】7.B解析:B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可.【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.8.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.9.A解析:A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误; ②116的算术平方根是14,原来的说法错误;2是正确的;4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A .【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.10.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m =,得出m =m 的整数可得:m=6.【详解】解:因为m 取最小值,0m ∴=,0m ∴=,解得:m =240m =,67m ∴<<,且m 更接近6,∴当6m =时,m 有最小值.故选:B .本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x 的平方根是±2故答案为:±2本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 14.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键.15.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{ 2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.16.403【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达 解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.17.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.18.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x,y的值.20.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】≈≈≈≈,7.071不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大10倍得到第五个数的估值,即50022.36≈.故答案为22.36. 【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.三、解答题21.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a-;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确; C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28;故答案为,,28.(2)aⓝ=a÷a÷a…÷a=1÷a n﹣2=.(3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.22.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52,∴3-12=3×12+1,∴(3,12)是“共生有理数对”;故答案为:不是;是;(2)由题意得:a-5()2- =512a-+,解得a=37 -.(3)是.理由:-n-(-m )=-n+m ,-n•(-m )+1=mn+1∵(m ,n )是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n ,-m )是“共生有理数对”,(4)3344155-=⨯+; 5566177-=⨯+ ∴(4,35)或(6,57)等. 故答案为:是,(4,35)或(6,57) 【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.24.(1)99101100100⨯,2004200620052005⨯;(2)10032005. 【分析】(1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211...3⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭=1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.25.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是“共生有理数对”;理由见详解.(2) (−n ,−m )是“共生有理数对”, 理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”, ∵15153,312222-=⨯+=, ∴1133122-=⨯+, ∴(13,2)是“共生有理数对”;(2)是. 理由:− n −(−m )=−n +m ,−n ⋅(−m )+1=mn +1∵(m ,n )是“共生有理数对”∴m −n =mn +1∴−n +m =mn +1∴(−n ,−m )是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.26.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学第二次月考测试题
一、选择题(每小题3分,共30分)
1.下列四个式子中,是方程的是( ).
(A )3+2 = 5 (B )1x = (C )23x - (D )222a ab b ++
2.代数式1
3x x --的值等于1时,x 的值是( ).
(A )3 (B )1 (C )-3 (D )-1
3.已知代数式87x -与62x -的值互为相反数,那么x 的值等于(
). (A )-1310 (B )-16 (C )1310 (D )1
6
4.根据下列条件,能列出方程的是( ).
(A )一个数的2倍比1小3 (B )a 与1的差的1
4
(C )甲数的3倍与乙数的12的和 (D )a 与b 的和的3
5
5.若a b ,互为相反数(0a ≠),则0ax b +=的根是( ).
(A )1 (B )-1 (C )1或-1 (D )任意数
6.当3x =时,代数式23510x ax -+的值为7,则a 等于( ).
(A )2 (B )-2 (C )1 (D )-1
7.若 3x=6,2y=4则5x+4y 的值为( )
A.18
B.15
C.9
D. 6
8、下列说法中正确的是 ( )
A .a -一定是负数
B .a 一定是负数
C .a -一定不是负数
D .2
a -一定是负数 9、下列代数式中,全是单项式的一组是( ) A a x xy ,31,2- B 3,2,2
b a x -π C m y x x -,,12 D 22,,a xyz y x +
10、.计算()2009200822-+的结果是( )
A.-2
B.2
C. 20082-
D. 20082
二、填空题(每小题3分,共30分)
11.已知54123m x -+=是关于x 的一元一次方程,那么m =________.
12.方程
312123x x +-=的标准形式为_______________. 13.已知|36|(3)0x y -++=,则32x y +的值是__________.
14.当x =______时,28x +的值等于-1
4的倒数.
15.方程423x m x +=-与方程662x -=-的解一样,则m =________.
16.已知a =3,b =2,且ab <0,则a b -= 。
17.甲‚乙‚丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低
19、若a,b 互为相反数,c,d 互为倒数,且0≠a ,则
=-++200920082007)()()(b a cd b a .
20、已知单项式32b a m 与-32
14-n b a 的和是单项式,那么m = ,n = .
三、简答题(40分)
21、计算题
(1)]2)33()4[()10(222⨯+--+-
(2) )5(]24)43
61
83
(241
1[-÷⨯-+-
22、解方程(1))131
(72)421
(6--=+-x x x
(2)4.06.0-x = 3.01
1.0+x
23、已知1,422-=+=+b ab ab a ,求2223b ab a ++的值。
24、如果多项式()()211254-+--+x x b x a 是关于X 的二次多项式,求b a +。
25、若A=4-3x,B=5+4x,且2A=20+3B,求x的值。
26、已知()0
2
22=
-
+
+
+y
x
x,求}
)]
4
(
2
[
2
{
32
2
2
2xy
x
y
x
xy
y
x
y
x-
-
+
-
-
-
+的值。
四、列方程解应用题(共20分)
1、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发几小时后两车相遇?(沿途各车站的停留时间不计).(10分)
2、非典时期学校整治校园环境,清理一个多年的垃圾堆,初三年级一个班需15小时完工,初二年级一个班需20小时完工,初一年级一个班30小时完工。
现初三一个班,初二一个班合作6小时,再由初一一个班单独继续去做,还需几小时完工?(10分)。