九年级数学同步练习答案

合集下载

九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)

九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)

九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。

(完整版)人教九年级数学下册同步练习题及答案

(完整版)人教九年级数学下册同步练习题及答案

2

3,如果
y 随 x 的增大而减小,那么
x 的取值范围是 ______.
2.抛物线 y= (x-1) 2+2 的对称轴是直线 ____顶点坐标为 ____。
3 .抛物线 y 3(x 1)2 2 可由抛物线 y 3 x 2 先向 ____ 平移 ______ 单位,再向 _____ 平移
_______ 单位得到。
1
1.形如 _______ ________ 的函数叫做二次函数 .
2.扇形周长为 10,半径为 x,面积为 y,则 y 与 x 的函数关系式为 _______________ 。
3.下列函数中 , 不是二次函数的是 ( )
A.y=1- 2 x 2
B.y=2(x-1) 2+4 C.y= 1 (x-1)(x+4) D.y=(x-2)
式 :a____0,b____0,c_____0;a+b+c_____0,a-b+c_____0.
2.函数 y=(x+1)(x-2) 的图像的对称轴是 _____, 顶点为 ____.
2
3.若二次函数 y=x - 2x+c 图象的顶点在 x 轴上,则 c 等于 ( )
A. - 1 B.1 4.已知一次函数
3 . 如 果 二 次 函 数 y x2 2 x c 的 图 象 过 点 ( 1 , 2 ), 则 这 个 二 次 函 数 的 解 析 式 为
_____________ 。
4.抛物线 y=x2+1 的图象大致是(

y
y
y
y
O
-1
x
O
-1
x
1
O
x
1

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)

2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y=﹣112x 2+23x+53.则他将铅球推出的距离是( )m . A .8B .9C .10D .112.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( ) A .4元或6元B .4元C .6元D .8元3.为了响应“足球进校园”的目标,兴义市某学校开展了多场足球比赛.在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式 ℎ=−5t 2+v 0t 表示,其中t(s)表示足球被踢出后经过的时间,v 0(m /s)是足球被踢出时的速度,如果要求足球的最大度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s4.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月5.小杰把班级勤工俭学挣得的班费500元按一年期存入银行,已知年利率为x ,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( ) A .y=500(x+1)2B .y=x 2+500C .y=x 2+500xD .y=x 2+5x6.一个球从地面竖直向上弹起时的速度为8米/秒,经过t 秒时球的高度为h 米,h 和t 满足公式:表示球弹起时的速度,g 表示重力系数,取 g =10 米/秒2) ,则球不低于3米的持续时间是( ) A .0.4 秒B .0.6 秒C .0.8 秒D .1秒7.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 y =−125x 2 ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A.2m B.4m C.10m D.16m8.如图,已知二次函数y=mx2-4mx+3m(m>0)的图像与x轴交于A,B两点,与y轴交于点C,连接AC、BC,若CA平分∠OCB,则m的值为()A.√3B.√2C.√22D.√33二、填空题9.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是m .10.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是m.三、解答题13.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2√6米,此时水位上升了多少米?14.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.15.某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:种 品价 目出厂价(元/吨) 成本价(元/吨)排污处理费甲种生活用纸48002200200(元/吨)每月还需支付设备管理、维护费20000元乙种生活用纸7000﹣10x1600400(元/吨) (1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y 1元和y 2元,分别求出y 1和y 2与x 的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?16.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S .(1)求S 与x 的函数关系式;(2)并求出当AB 的长为多少时,花圃的面积最大,最大值是多少?17.某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当x=40时,y=300;当x=55时,y=150. (1)求y 与x 之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.18.如图,抛物线L :y=ax 2+bx+c 与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案1.C2.C3.C4.D5.A6.A7.B8.D9.310.8√511.√512.15413.解:以点E为原点、EF所在直线为y轴,垂直EF的直线为x轴建立平面直角坐标系根据题意知E(0,0)、A(﹣3,﹣3)、B(3,﹣3)设y=kx2(k<0)将点(3,﹣3)代入,得:k=﹣13x2∴y=﹣13将x=√6代入,得:y=﹣2∴上升了1米.14.(1)解:设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82 答:每套课桌椅的成本为82元(2)解:60×(100﹣82)=1080(元)答:商店获得的利润为1080元15.解:(1)依题意得:y 1=(4800﹣2200﹣200)x ﹣20000=2400x ﹣20000 y 2=(7000﹣10x ﹣1600﹣400)x=﹣10x 2+5000x ;(2)设该月生产乙种生活用纸m 吨,则生产甲种生活用纸(300﹣m )吨,总利润为W 元 依题意得:W=2400(300﹣m )﹣20000﹣10m 2+5000m =720000﹣2400 m ﹣20000﹣10 m 2+5000m =﹣10 m 2+2600 m+700000 ∵W=﹣10(m ﹣130)2+869000. ∵﹣10<0∴当m=130时,W 最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元. 16.(1)解:∵围成中间隔有一道篱笆的长方形花圃 AB=EF=CD=x 米,BC=(24-3x )米 S=(24-3x )x =-3x 2+24x (平方米) ∵x > 0,且 15≥24-3x > 0 ∴3≤x <8S=-3x 2+24x ( 3≤x <8 )(2)解:S=(24-3x )x =-3x 2+24x =-3(x-4)2+48 ∵a=-3<0,二次函数图形开口向下,函数有最大值 当x=4时,S 最大=48平方米∴当AB 长为4m ,宽BC 为12m 时,有最大面积,最大面积为48平方米. 17.(1)解:设y 与x 之间的函数关系式: y =kx +b 由题意得: {40k +b =30055k +b =150 ,解得: {k =−10b =700∴y 与x 之间的函数关系式为: y =−10x +700 (2)解:设利润为 w 元由题意,得 −10x +700≥240 ,解得 x ≤46 则 w =(x −30)(−10x +700) =−10x 2+1000x −21000=−10(x −50)2+4000 ∵−10<0∴x <50 时, w 随 x 的增大而增大 ∴x =46 时答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元 (3)解: w −150=−10x 2+1000x −21000−150=3600 −10(x −50)2=−250 解得: x 1=55 结合二次函数图象可得:当 45≤x ≤55 时,捐款后每天剩余利润不低于3600元 18.(1)解:∵抛物线的对称轴x=1,B (3,0) ∴A (﹣1,0)∵抛物线y=ax 2+bx+c 过点C (0,3) ∴当x=0时,c=3.又∵抛物线y=ax 2+bx+c 过点A (﹣1,0),B (3,0) ∴{a −b +3=09a +3b +3=0 ∴{a =−1b =2∴抛物线的解析式为:y=﹣x 2+2x+3 (2)解:∵C (0,3),B (3,0) ∴直线BC 解析式为y=﹣x+3 ∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4 ∴顶点坐标为(1,4)∵对于直线BC :y=﹣x+1,当x=1时,y=2;将抛物线L 向下平移h 个单位长度 ∴当h=2时,抛物线顶点落在BC 上; 当h=4时,抛物线顶点落在OB 上∴将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界)则2≤h≤4(3)解:设P(m,﹣m2+2m+3),Q(﹣3,n)①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N 点,如图所示:∵B(3,0)∵△PBQ是以点P为直角顶点的等腰直角三角形∴∠BPQ=90°,BP=PQ则∠PMQ=∠BNP=90°,∠MPQ=∠NBP在△PQM和△BPN中∴△PQM≌△BPN(AAS)∴PM=BN∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6∴﹣m2+2m+3+3﹣m=6解得:m=1或m=0∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线于N点同理可得△PQM≌△BPN∴PM=BN∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3则3+m=m2﹣2m﹣3解得m= 3+√332或3−√332.∴P(3+√332,−√33−92)或(3−√332,√33−92).综上可得,符合条件的点P的坐标是(1,4),(0,3),(3+√332,−√33−92)和(3−√332,√33−92).。

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。

2.三点圆:不在直线上的三个点一个圆。

3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。

考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。

(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。

(3)直线和圆没有公共点时我们说这条直线和圆。

(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。

2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。

(2)切线的性质定理:圆的切线于过切点的半径。

3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。

(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。

4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。

限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。

(完整版)人教九年级数学下册同步练习题及答案

(完整版)人教九年级数学下册同步练习题及答案

第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。

3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。

【九年级数学《圆》同步练习题含答案

【九年级数学《圆》同步练习题含答案

九年级数学上册《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D.202 4.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C ,若AB=2,∠P=30°,求AP 的长(结果保留根号).已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A.18.求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. O EDA20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE 切⊙O于点D,且DE⊥MN于点E.(1)求证:AD平分∠CAM.(2)若DE=6,AE=3,求⊙O的半径.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E 在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1..14.3615.3π.16.43.17.23.18.证明:(1)∵AB为⊙O的直径∴D=90°, A+ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,D=90°,BD=6∴OC⊥BDBD=3∴BE=12∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB∽△BEO,∴2=•BE CE OE∵CE=4,∴9OE=4∴AD=9220.直线AB与⊙O的位置关系是相离.理由见解析.21.(1)证明见解析;(2)⊙O的半径为7.5.22.(1)证明见试题解析;(2)2π.《圆》的练习一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm 为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA 的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD 于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】圆的认识.【分析】根据确定圆的条件对A、B进行判断;根据切线的判定定理对C进行判断;根据三角形内心的性质对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°【考点】圆的认识;等腰三角形的性质.【专题】计算题.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.12【考点】垂径定理;勾股定理.【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥CD于点E,则OE平分CD,在直角△ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE?CD即可求得.【解答】解:过圆心O作OE⊥CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.则S四边形DMNC=OE?CD=4×6=24.故选A.【点评】本题考查了梯形的中位线以及垂径定理,正确作出辅助线是关键.5.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.【点评】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.6.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO==3(cm),∴水的最大深度CD为:2cm.故选:C.【点评】本题考查的是垂径定理的应用及勾股定理,根据构造出直角三角形是解答此题的关键.7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定【考点】圆的认识.【专题】应用题.【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题考查了圆的认识,主要掌握弧长的计算公式.8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD 是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD 是等边三角形.10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.【点评】本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm 为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA 的位置关系是相离.【考点】直线与圆的位置关系.【专题】常规题型.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH大于⊙M的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故答案为相离.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;直线l和⊙O相离?d>r.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为 2 .【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT △OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为4πcm.【考点】弧长的计算.【分析】在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为: =4πcm;故答案为:4π.【点评】本题考查了弧长的计算.解答该题需熟记弧长的公式l=.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S 扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=?π?=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.【考点】圆柱的计算.【专题】计算题.【分析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π?()2?x=π?()2?18,解得x=12.5,然后把12.5与10进行大小比较即可判断能否完全装下.【解答】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π?()2?x=π?()2?18,解得x=12.5,∵12.5>10,∴不能完全装下.【点评】本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD 于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.【考点】垂径定理的应用;矩形的性质.【分析】先根据垂径定理求出DF的长,再由勾股定理即可得出结论.【解答】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.【点评】本题考查的是垂径定理的应用,此类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.【考点】直线与圆的位置关系.【分析】作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF是梯形ADEC的中位线即可解决问题.【解答】解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.【点评】本题考查直线与圆的位置关系、图形中位线的性质等知识,解题的关键是添加辅助线,要证明切线的方法有两种,一是连半径,证垂直,二是作垂直,正半径,此题则是运用第二种方法.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.【考点】直线与圆的位置关系;坐标与图形性质.【分析】(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.【解答】解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).【点评】本题考查了直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O 到直线l的距离是,当d=r时,直线l和⊙O相切.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC 中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.【考点】点与圆的位置关系;等边三角形的性质;平行四边形的判定;菱形的判定.【专题】探究型.【分析】(1)由平行易得△BFE是等边三角形,那么各边是相等的;(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC是平行四边形,再有EF=EC 可证为菱形;(3)根据各点到圆心的距离作答即可.【解答】解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.【点评】本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.。

九年级上册数学同步练习册答案

九年级上册数学同步练习册答案

九年级上册数学同步练习册答案【练习一:实数的运算】1. 计算下列各数的平方根:- √9 = ±3- √64 = 8- √0.25 = 0.52. 计算下列各数的立方根:- ∛8 = 2- ∛-27 = -3- ∛0 = 03. 判断下列各数是无理数还是有理数:- π 是无理数- 0.3 是有理数- √2 是无理数【练习二:代数式】1. 化简下列代数式:- 3x + 2y - 5x = -2x + 2y- 4a² - 3a + 5b² = 4a² + 5b² - 3a2. 求下列代数式的值,当x=2,y=-3:- 2x - 3y = 2*2 - 3*(-3) = 4 + 9 = 133. 判断下列代数式是否可以合并同类项:- 5x² + 3x²可以合并为 8x²- 2y + 3z 不能合并【练习三:一元一次方程】1. 解下列一元一次方程:- 3x - 5 = 10,解得 x = 5- 2y + 4 = 0,解得 y = -22. 根据题目条件列出方程并求解:- 如果一个数的3倍加上4等于26,设这个数为x,可列出方程3x + 4 = 26,解得 x = 63. 判断下列方程是否有解:- 5x - 7 = 0 有解- 2x + 3 = x - 1 有解,解得 x = -4【练习四:几何图形】1. 计算下列图形的面积:- 一个边长为4的正方形的面积为 4*4 = 16- 一个半径为3的圆的面积为π*3² = 9π2. 计算下列图形的周长:- 一个边长为5的正六边形的周长为 6*5 = 30- 一个直径为10的圆的周长为π*10 = 10π3. 判断下列几何图形的性质:- 等边三角形的三个内角都是60度- 矩形的对边相等且互相垂直【结束语】以上是九年级上册数学同步练习册的部分答案,希望能够帮助同学们更好地理解和掌握数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学同步练习题及答案
【模拟试题】(答题时间:30分钟)
一. 选择题:
1. 如果(a -1)x 2+ax +a 2
-1=0是关于x 的一元二次方程,那么必有( )
A. a≠0
B. a≠1
C. a≠-1
D. a =±-1
2. 某种产品原来每件的成本是100元,由于连续两次降低成本 ,现在的成本是81元,设平均每次降低成本的百分率为x ,则所得方程为( )
A. 100(1+x)2=81
B. 100(1-x)2=81
C. 81 (1-x)2=100
D. 81(1+x)2=100
3. 若a -b +c =0,则一元二次方程ax 2+bx +c =0有一根是( )
A. 2
B. 1
C. 0
D. -1
4. 若ax 2-5x +3=0,是一元二次方程,则不等式3a +6>0的解集是( ) A. a>-2 B. a<-2 C. a>-2且a≠0 D. a<21
5. 一元二次方程3x 2
-2x =1的二次项系数、一次项系数、常数项分别是( )
A. 3,2,1
B. 3,-2,1
C. 3,-2, -1
D. -3,2,1
二. 填空题:
6. 关于x 的一元二次方程(ax -1)(ax -2) =x 2-2x +6中,a 的取值范围是
7. 已知关于x 的方程mx |m -2|+2(m +1)x -3=0是一元二次方程,则m =
8. k 为何值时,(k 2-9)x 2+(k -5)x -3=0不是关于x 的一元二次方程?
9. 已知09|25|2=+++-b a a ,关于x 的方程ax 2+bx =5x 2-4是一元二次方程,则
5x 2+2x -1=
三. 解答题:
10. k 为何值时,(k 2-1)x 2
+(k +1)x -2=0;(1)是一元一次方程?(2)是一元二次方程?
11. 已知一元二次方程ax 2+bx +c =0的一个根是1,且a 、b 满足等式的根求方程0c y 41,3a 22a b 2=---+-=。

12. 根据题意列出方程。

(1)长5m 的梯子斜靠在墙上,梯子的底端与墙的距离是3m ,如果梯子底端向右滑动的距离与梯子顶端向下滑动的距离相等,设为xm ,求梯子滑动的距离。

(2)已知,矩形花园一面靠墙,另外三面所围的栅栏的总长度是19m ,如果花园的面
积是24m 2,求花园的长和宽。

(3)有n 支球队参加排球联赛,每队都与其余各队比赛2场,联赛的总场次为132次,问共有多少支球队参加联赛?
(4)某工厂经过两年时间将某种产品的产量从每年14400台提高到16900台,求每年的增长率x 是多少?
【试题答案】
1. B
2. B
3. D
4. C
5. C
6. a≠±1
7. 4 8. k =±3 9. 1。

相关文档
最新文档