2019-2020学年河北省秦皇岛市海港区九年级上学期期末考试数学试卷及答案解析
河北省秦皇岛市九年级上学期期末数学试卷

河北省秦皇岛市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分)(2011·无锡) 下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A . y=(x﹣2)2+1B . y=(x+2)2+1C . y=(x﹣2)2﹣3D . y=(x+2)2﹣32. (2分)(2017·浙江模拟) 如图所示,一般书本的纸张是在原纸张多次对开得到.矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推.若各种开本的矩形都相似,那么等于().A . 0.618B .C .D . 23. (2分)(2018·衢州模拟) 如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①弧AB=弧CD;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A . 1B . 2C . 3D . 44. (2分) (2017九上·莒南期末) 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A . ①②③B . ②③④C . ①②④D . ①③④5. (2分)如图,如果AB∥CD∥EF,那么下列结论正确的是()A . =B . =C . =D . =6. (2分)下列各图中,可围成一个正方体的是()A .B .C .D .7. (2分)如图,四边形ABCD内接于圆O,E为CD延长线上一点,若∠B=110°,则∠ADE的度数为()A . 115°B . 110°C . 90°D . 80°8. (2分) (2015九上·宁波月考) 已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y 轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P 为顶点的四边形为菱形,则m为()A .B .C .D .9. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A . a>0B . b>0C . c>0D . b2-4ac>010. (2分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各边的距离都相等;④半径相等的两个半圆是等弧.其中正确的()A . 4个B . 3个C . 2 个D . 1个二、认真填一填 (共6题;共15分)11. (1分)某人在斜坡上走了26米,上升的高度为10米,那么这个斜坡的坡度________ .12. (1分) (2020九上·建湖期末) 如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为________.13. (1分) (2020九下·西安月考) 如图,P是⊙O外一点,PA与PB分别⊙O切于A、B两点,DE也是⊙O 的切线,切点为C,PA=PB=5cm,△PDE的周长为________ .14. (1分)如果3x=5y,那么 =________.15. (1分) (2019九上·新兴期中) 王老师假期中去参加高中同学聚会,聚会时,所有到会的同学都互相握了一次手,王老师发现共握手435次,则参加聚会的同学共有多少人?设参加聚会的同学共有x人,则根据题意,可列方程________。
河北省2019-2020学年九年级上学期期末数学试题(II)卷

河北省2019-2020学年九年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若反比例函数的图象在第一、三象限,则的值可以是()A.4B.3C.0D.2 . 两个相似三角形的周长之比为4:9,则面积之比为()A.4:9B.8:18C.16:81D.2:33 . 在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA=B.cosA=C.tanA=D.cosA=4 . 对于反比例函数,下列说法错误的是()A.它的图象与坐标轴永远不相交B.它的图象绕原点旋转180°能和本身重合C.它的图象关于直线对称D.它的图象与直线有两个交点5 . 如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=()A.2B.3C.4D.56 . 已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.C.-1D.27 . 已知关于x的方程x2-(m-2)x+m2=0有两个相等的实数根,则方程的根为()A.x1=x2="1"B.x1=x2="-2"C.x1=x2="-1"D.x1=x2=28 . 如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P 位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A.(,)B.(-,)C.(0,﹣1)D.(,-)9 . 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有3条鱼是有记号的,则鱼塘中鱼的可估计为()A.3000条B.2200条C.2000条D.600条10 . 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A.B.C.D.二、填空题11 . 如图,已知在中,边上的高与边上的高交于点,且,,,则的面积为______.12 . 已知线段a=2,b=8,则a,b的比例中项线段长等于________.13 . 如图,是一条河的直线河岸,点是河岸的对岸上的一点,于,站在河岸的处测得,,则桥长_______________(结果精确到米).14 . 甲、乙、丙、丁四位选手各射击10次所得成绩的平均数都是8环,众数和方差如下表所示,则这四人中水平发挥最稳定的是______.15 . 某校九年级共390名学生参加模拟考试,随机抽取60名学生的数学成绩进行统计,其中有20名学生的数学成绩在135分以上,据此估计该校九年级学生在这次模拟考试中数学成绩在135分以上的大约有__名学生.16 . 如图,在平面直角坐标系中,正方形ABCD的边BC在x轴上,点E是对角线AC、BD的交点,函数的图象经过A、E两点,则△OAE的面积为_________.17 . 如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,AE=BD,∠B=∠CED,AE=3,DE=,则线段CE的长为_____.18 . 已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1+1)(x2+1)的值是_____.19 . 若关于x的一元二次方程x2-3x+m=0有一个解为x=-1,则m的值为__________.20 . 矩形两条对角线的夹角是60°,一条边长为4cm,则此矩形的对角线最长_____.三、解答题21 . 已知反比例函数y=与一次函数y=ax+b的图象相交于点A(2,6),和点B(4,m).(1)求反比例函数与一次函数的解析式;(2)直接写出不等式≤ax+b的解集和△AOB的面积.22 . 如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).(1)若△PCQ的面积是△ABC面积的,求t的值?(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.23 . 已知在平面直角坐标系xOy(如图)中,已知抛物线y=+bx+c点经过A(1,0)、B(0,2).(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x轴的交点为C,第四象限内的点D在该抛物线的对称轴上,如果以点A、C、D 所组成的三角形与△AOB相似,求点D的坐标;(3)设点E在该抛物线的对称轴上,它的纵坐标是1,联结AE、BE,求sin∠ABE.24 . 甲、乙两名射击选手在10次射击训练中的成绩统计图(部分)如图所示:教练根据甲、乙两名射击选手的成绩绘制了如下数据分析表:选手平均数中位数众数方差甲88c乙7. 56和9 2. 65根据以上信息,请解答下面的问题:(1)补全甲选手10次成绩频数分布图;(2)求的值;(3)教练根据两名选手的10次成绩,决定选择甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).25 . 按要求解方程(1)x2-4x+1=0(配方法)(2)4x2-6x-3=0(运用公式法)(3)(2x-3)2=5(2x-3)(分解因式法)(4)(x+8)(x+1)=-1226 . 如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点A.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m 为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.。
九年级上册秦皇岛数学期末试卷测试卷(含答案解析)

九年级上册秦皇岛数学期末试卷测试卷(含答案解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3 B .6 C .5D .72.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-33.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④4.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .355.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .46.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>7.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°8.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm9.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323 D .310.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2B .a >2C .a <﹣2D .a >﹣211.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950 D .950(1﹣x )2=600 12.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .6二、填空题13.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.14.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.15.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 16.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.17.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.18.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________19.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.20.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .21.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.22.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.23.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.下表是某地连续5天的天气情况(单位:C ︒):日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.27.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标. 29.解方程: (1)x 2+4x ﹣21=0(2)x2﹣7x﹣2=030.如图,已知抛物线y1=﹣12x2+32x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.31.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y 轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n 的值.32.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4.D解析:D 【解析】 【分析】根据题意即从5个球中摸出一个球,概率为35. 【详解】 摸到红球的概率=33235=+, 故选:D. 【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.5.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.6.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.7.C解析:C 【解析】 【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题. 【详解】 连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°. ∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.8.A解析:A 【解析】 【分析】根据黄金分割的比值约为0.618列式进行计算即可得解. 【详解】解:∵书的宽与长之比为黄金比,书的长为20cm , ∴书的宽约为20×0.618=12.36cm . 故选:A . 【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.9.D解析:D 【解析】 【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值. 【详解】解:连接OP ,OM ,OA ,OB ,ON ∵AB ,AM ,BN 分别和⊙O 相切, ∴∠AMO=90°,∠APO=90°, ∵MN ∥AB ,∠A =60°, ∴∠AMN=120°,∠OAB=30°, ∴∠OMN=∠ONM=30°, ∵∠BNO=90°, ∴∠ABN=60°, ∴∠ABO=30°, 在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩, △APO ≌△BPO (AAS ), ∴AP=12AB=3, ∴tan ∠OAP=tan30°=OP AP∴. 故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P 是AB 中点,难度不大.10.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 11.C解析:C【解析】【分析】设快递量平均每年增长率为x ,根据我国2018年及2020年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x ,依题意,得:600(1+x )2=950.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题13.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC ∠的值即为等腰△CDE 底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D 点作DM ⊥BC ,垂足为M ,过C 作CN ⊥DE ,垂足为N ,在Rt △ACB 中,AC=8,BC=6,由勾股定理得,AB=10,∵D 为AB 的中点,∴CD=152AB = , 由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=255 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.14.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.15.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 16.115°【解析】【分析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.17.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.18.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.19.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的 410 【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.21.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.22.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.23.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.24.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE=∠CQE=90°, PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得,过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T,所以KD QRSK AR==0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x++++==高最高气温的方差为:()()()()()222222567666864625S-+-+-+-+-==高同理得出,最低气温的平均数:0x =低最低气温的方差为:23.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.27.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】 (1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b=+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32,∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.28.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++,得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.29.(1)x 1=3,x 2=﹣7;(2)x 1=72+x 2=72- 【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x 2+4x ﹣21=0(x ﹣3)(x+7)=0解得x 1=3,x 2=﹣7;(2)x 2﹣7x ﹣2=0∵△=49+8=57∴x解得x 1=72+x 2=72-. 【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.30.(1)直角;(2)P (32,54);(3)0<x <4. 【解析】【分析】(1)求出点A 、B 、C 的坐标分别为:(-1,0)、(4,0)、(0,2),则AB 2=25,AC 2=5,BC 2=20,即可求解;。
河北省秦皇岛市2020版九年级上学期数学期末考试试卷B卷

河北省秦皇岛市2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)计算:()3×()4×()5=()A .B .C .D .2. (2分)一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A . 外离B . 外切C . 相交D . 内切3. (2分)(2017·宁德模拟) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A . 平均数不变,方差变大B . 平均数不变,方差变小C . 平均数不变,方差不变D . 平均数变小,方差不变4. (2分)有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)关于函数y=x2+x,下列说法不正确的是()A . 图形是轴对称图形B . 图形经过点(-1,-1)C . 图形有一个最低点D . x<0时,y随x的增大而减小6. (2分) (2017九上·慈溪期中) 如图,在半径为5cm的⊙O中,AB为一条弦,OC⊥AB于点C,且OC=3cm,则AB的值为()A . 3cmB . 4cmC . 6cmD . 8cm7. (2分) (2020九上·沈河期末) 如图,在△ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下列结论中正确的是()A . =B . =C . =D . =8. (2分)如图是二次函数y=ax2+bx+c图像的一部分,其对称轴是x=-1,且过点(-3,0),下列说法:①abc <0②2a-b③4a-2b+c<0 ④若(-5,y1),(1,y2)是抛物线上两点,则,y1>y2其中说法正确的是()A . ①②B . ②③C . ①②④D . ①②③④二、填空题 (共10题;共10分)9. (1分)利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m,他在阳光下的影长是1.2m,在同一时刻测得某棵树的影长为3.6m,则这棵树的高度约为________ m.10. (1分) (2017八下·吴中期中) 一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是________.11. (1分)(2011·苏州) 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于________(结果保留根号).12. (1分) (2017九上·潮阳月考) 如图,△ABC中,∠B=90°,∠C=30°,BC= ,将△ABC 绕顶点A 旋转180°,点C落在C′处,则CC′的长为________.13. (1分) (2017八下·邵东期中) 在Rt△ABC中,∠C=90°,∠A=45°,AB=10,BC=________.14. (1分) (2018九上·东台期中) 为了比较甲、乙两种水稻秧苗哪种出苗更整齐,各随机抽取50株,量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则出苗更整齐的是________(填“甲”或“乙”).15. (1分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是________.16. (1分)如图,圆锥的底面半径OB长为5cm,母线AB长为15cm,则这个圆锥侧面展开图的圆心角α为________度.17. (1分)如图,矩形,且,,则的长为________.18. (1分) (2017九上·大庆期中) 小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s= v2 ,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车________(填“会”或“不会”)有危险.三、解答题 (共10题;共107分)19. (5分)(2017·昆山模拟) 计算:20160﹣|﹣ |+ +2sin45°.20. (13分)(2017·河南模拟) 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1) m=________,n=________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21. (12分)(2017·黄石港模拟) 为倡导绿色出行,平阳县在昆阳镇设立了公共自行车服务站点,小明对某站点公共自行车的租用情况进行了调查,将该站点一天中市民每次租用公共自行车的时间t(单位:分)(t≤120)分成A,B,C,D四个组进行各组人次统计,并绘制了如下的统计图,请根据图中信息解答下列问题:(1)该站点一天中租用公共自行车的总人次为________,表示A的扇形圆心角的度数是________.(2)补全条形统计图.(3)考虑到公共自行车项目是公益服务,公共自行车服务公司规定:市民每次使用公共自行收费2元,已知昆阳镇每天租用公共自行车(时间在2小时以内)的市民平均有5000人次,据此估计公共自行车服务公司每天可收入多少元?22. (10分)已知抛物线y=ax2+bx经过(2,0),(-1,6).(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标.23. (15分)(2016·开江模拟) 如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC.(1)求证:四边形ABCD是菱形;(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2﹣7x+12=0的两根,求AB的长以及菱形ABCD 的面积;(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为?24. (10分)(2017·合肥模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O 上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为3,sin∠ADE= ,求AE的值.25. (15分)(2018·郴州) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.26. (10分) (2016九上·本溪期末) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).27. (10分)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A 在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?28. (7分) (2017九上·盂县期末) 如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=________;(2)判断△ABC与△DEF是否相似?并证明你的结论.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共107分)19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、。
秦皇岛市2020年九年级上学期数学期末考试试卷(I)卷

秦皇岛市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分) (2017七下·永城期末) 若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”,列成方程是()A . 3x y=2B . =2C . 3x =2D . +2=3x2. (2分) (2019九上·句容期末) 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A . 平均数B . 方差C . 中位数D . 极差3. (2分) (2019九上·句容期末) 下列关于二次函数y=-x2-2x+3说法正确的是()A . 当时,函数最大值4B . 当时,函数最大值2C . 将其图象向上平移3个单位后,图象经过原点D . 将其图象向左平移3个单位后,图象经过原点4. (2分) (2019九上·句容期末) 如图,P为▱ABCD边AD的中点,E、F分别是PB、PC上的点,且,则的值为()A .B .C .D .5. (2分) (2019九上·句容期末) 如图,AB是⊙O的弦,AB=a,C是圆O上的一个动点,且∠ACB=45°,若点D、E分别是AB、BC上的点,,则DE的最大值是()A .B .C .D .二、填空题 (共12题;共13分)6. (1分) (2016九上·海南期末) 下列图形中对称轴最多的是________7. (1分)(2020·永州模拟) 从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.8. (2分) (2019九上·西城期中) 如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是________.9. (1分) (2019九上·句容期末) 已知x=-1是关于x的一元二次方程x2+ax+b=0的一个实数根,则代数式2019-a+b的值为________.10. (1分) (2019九上·句容期末) 如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,,DE=6,则BC=________.11. (1分) (2019九上·句容期末) 当实数m满足________条件时,一元二次方程x2-2x-m=0有两个不相等的实数根.12. (1分) (2019九上·句容期末) 如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为________m.13. (1分) (2019九上·句容期末) 已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a________0(用“>”或“<”连接).14. (1分) (2016九上·玄武期末) 已知圆锥的底面半径为6cm,母线长为8cm,它的侧面积为________cm2 .15. (1分) (2019九上·句容期末) 已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:x……357……y……3.53.5-2……则a+b+c=________.16. (1分) (2019九上·句容期末) 二次函数y=ax2+bx的图象如图所示,若关于x的一元二次方程ax2+bx+k-1=0没有实数根,则k的取值范围为________.17. (1分) (2019九上·句容期末) 如图,在Rt△ABC中,已知∠BAC=90°,AB=6,AC=8,点D是AC上的一点,将△ABC沿着过点D的一条直线翻折,使点C落在BC边上的点E处,连接AE、DE,当∠CDE=∠AEB时,AE 的长是________.三、解答题 (共10题;共107分)18. (10分)(2019·太仓模拟) 如图,己知中,,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从方向运动,它们到点后都停止运动,设点运动的时间为秒.(1)当时, ________;(2)经过秒的运动,求被直线扫过的面积与时间的函数关系式;(3)两点在运动过程中,是否存在时间,使得为等腰三角形?若存在,求出此时的值;若不存在,请说明理由.19. (10分) (2019九上·句容期末) 解下列方程:(1) 2(x-3)2=x2-9;(2) 2y2+4y=y+2.20. (10分) (2019九上·钦州港期末) 甲口袋有2个相同的小球,它们分别写有数字1和2,乙口袋中装有3个相同的小球,它们分别写有数字3、4、5,从这两个口袋中各随机地取出1个球.(1)用“树状图法”或“列表法”表示所有可能出现的结果;(2)取出的两个小球上所写数字之和是偶数的概率是多少?21. (10分) (2019九上·句容期末) 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为、、 )22. (10分) (2019九上·句容期末) 关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.23. (6分) (2019九上·句容期末) 如图,正方形ABCD内接于⊙O,P为上一点,连接PD、PC.(1)∠CPD=________°.(2)若DC=4,CP=2 ,求DP的长.24. (16分) (2019九上·句容期末) 已知二次函数y= -3x+ .(1)该二次函数图象与x轴的交点坐标是________;(2)将y= 化成y=a(x-h)2+k的形式,并写出顶点坐标;(3)在坐标轴中画出此抛物线的大致图象;(4)写出不等式>0的解集.25. (10分) (2019九上·句容期末) 为积极绘就我市“一福地、四名城”建设的宏伟蓝图,某镇大力发展旅游业,一店铺专门售卖地方特产“曲山老鹅”,以往销售数据表明,该“曲山老鹅”每天销售数量y(只)与销售单价x(元)满足一次函数y=- x+110,每只“曲山老鹅”各项成本合计为20元/只.(1)该店铺“曲山老鹅”销售单价x定为多少时,每天获利最大?最大利润是多少?(2)该店店主关心教育,决定今后的一段时间从每天的销售利润中捐出200元给当地学校作为本学期优秀学生的奖励资金,为了保证该店捐款后每天剩余利润不低于4000元,试确定该“曲山老鹅”销售单价的范围.26. (10分) (2019九上·句容期末) 如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E 在AC上,且∠ADE=∠B.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为5,CE=2,求△ABC的面积.27. (15分) (2019九上·句容期末) 已知抛物线y=ax2+bx-3的图象与x轴交于点A(-1,0)和点B(3,0),顶点为D,点C是直线l:y=x+5与x轴的交点.(1)求该二次函数的表达式;(2)点E是直线l在第三象限上的点,连接EA、EB,当△ECA∽△BCE时,求E点的坐标;(3)在(2)的条件下,连接AD、BD,在直线DE上是否存在点P,使得∠APD=∠ADB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共12题;共13分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共107分)18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
2019-2020学年河北省秦皇岛市九年级上册期末数学试卷

2019-2020学年河北省秦皇岛市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共16小题,共42.0分)1.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.2.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为()A. 8.298×107B. 82.98×105C. 8.298×106D. 0.8298×1073.下列事件中,是不可能事件的是()A. 打开数学课本使刚好翻到第60页B. 哥哥的年龄一定比弟弟的大C. 在一小时内,你步行可以走50千米D. 经过一个有交通信号灯的路口,遇到绿灯4.如图所示的几何体是由五个完全相同的小正方体组成的,则不是它的三视图的是()A. B.C. D.5.将一副直角三角板(两块)的直角顶点重合,按如图所示的方式方置在桌面上,若,则的度数是()A. 57°B. 47°C. 43°D. 33°6.使式子√3−x有意义的实数x的取值范围是()xA. x≤3B. x≤3且x≠0C. x<3D. x<3且x≠07.如果实数a=√29−3,那么a的值在()A. 5和6之间B. 4和5之间C. 3和4之间D. 2和3之间8.一次函数y=x+m(m≠0)与反比例函数y=m的图象在同一平面直角坐标系中是x()A. B.C. D.9.下列算式中,你认为正确的是()A. (−2x2y)3⋅(−54y)=10x6y4 B. 1a+b÷(a+b)=1C. a2−1a2−a =a+1 D. 2a÷10a2b5a=b10.若关于x、y的多项式2x2+mx+5y−2nx2−y+5x+7的值与x的取值无关,则m+n=()A. −4B. −5C. −6D. 611.下列图形不能折成一个正方体的是()A. B. C. D.12.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A. 80x−5=70xB. 80x=70x+5C. 80x+5=70xD. 80x=70x−513.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN⏜是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆14.下列运算正确的是()A. √2+√3=√5B. √8−√2=√6C. √2⋅√3=√5D. √2÷√12=215.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A. 16B. 12C. 24D. 1816.如图,在△ABC中,AB=5,AC=12,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A. 10B. 12C. 13D. 17第II卷(非选择题)二、填空题(本大题共3小题,共10.0分)17.因式分解:3a2−27=______.18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比(k>0,x>0)的图象经过点A,B两点,若点A例函数y=kx的坐标为(1,n),则k的值为____.19.如图,在Rt△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD,把△ABC绕点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,则m=______.三、解答题(本大题共7小题,共68.0分)20.如图,边长为1个单位长度的正方形纸板ABCD放在数轴上,点A,B对应数1和2,把正方形纸板沿着数轴翻转(无滑动),翻转一周(正方形纸板边AB再次落在数轴上时称为一周),我们规定,纸板沿着数轴向右翻转的周数记为正,向左翻转的周数记为负,下列是该正方形纸板5次翻转的周数记录情况:+2,−3,+1,−4,+3,通过计算说明(1)翻转后A点离原点最近是多少个单位长度;翻转后A点离原点最远是多少个单位长度?(2)当纸板结束翻转后,求此时数轴上点A表示的数.21.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.22.2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校九年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:被测同学的总人数为,a=;(2)把频数分布直方图补充完整;(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.23.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:√3,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,√3≈1.73)24.“莓好莒南幸福家园”---2018年莒南县第三届草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠,优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1,y2与x的函数表达式;(2)若选择甲采摘园所需总费用较少,请求出草莓采摘量x的范围.25.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点P为BC的中点,连接EP,AD.(1)求证:PE是⊙O的切线;(2)若⊙O的半径为3,∠B=30°,求P点到直线AD的距离.26.(本题14分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)判断点D是否是AB的中点,并说明理由;(3)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.求S关于m的函数表达式;当m=5时,在抛物线的对称轴上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握定义是解决问题的关键.2.【答案】C【解析】解:数据“829.8万”用科学记数法表示为8.298×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】【分析】不可能事件就是一定不发生的事件,依据定义即可作出判断.本题考查了必然事件、随机事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:A.是随机事件,故选项不符合题意;B.必然事件,故选项不符合题意;C.是不可能事件,故选项符合题意;D.是随机事件,故选项不符合题意.故选C.4.【答案】B【解析】【分析】本题考查几何体的三视图,根据几何体的三视图即可解答.【解答】解:由题意可知,题中几何体的三视图如图所示,故选B.5.【答案】D【解析】【分析】本题题主要考查了互余的定义及角的计算等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.根据同角的余角相等解答即可.【解答】解:∵∠ACE+∠ACD=∠ECD=90°,∠BCD+∠ACD=∠ACB=90°,∴∠ACE=∠BCD=∠ECB−90°=57°,∴∠ACD=∠ECB−∠ACE−∠BCD=147°−57°−57°=33°.故选D.6.【答案】B【解析】【分析】本题主要考查了二次根式有意义的条件和分式有意义的条件,属于基础题.直接利用二次根式和分式有意义的条件即可得出答案.【解答】解:根据题意得3−x≥0,且x≠0,解得:x≤3且x≠0.故选B.7.【答案】D【解析】【分析】此题考查了估算无理数的大小,熟练掌握估算无理数的法则是解本题的关键.估算即可得到结果.【解答】解:∵5<√29<6,∴2<√29−3<3,故选:D.8.【答案】C【解析】【分析】本题考查了一次函数的图象及性质、反比例函数的图象及性质.对于反比例函数y=k(k≠0),当k>0,反比例函数图象分布在第一、三象限;当k<0,反比例函数图象x分布在第二、四象限.综合考虑一次函数的图象性质及反比例函数的图象性质即可得到正确答案.【解答】解:A.对于反比例函数图象得到m<0,则对于y=x+m与y轴的交点在x轴下方,所以A选项不正确;B.因为y=x+m中,k=1>0,所以其图象必过第一、三象限,所以B选项不正确;C.对于反比例函数图象得到m<0,则对于y=x+m与y轴的交点在x轴下方,并且y= x+m的图象必过第一、三象限,所以C选项正确;D.对于y=x+m,其图象必过第一、三象限,所以D选项不正确.故选C.9.【答案】A【解析】【分析】本题考查的是整式混合运算,分式的混合运算有关知识,利用整式混合运算,分式的混合运算对选项进行判断即可.【解答】解:A.正确,B.错误,结果为1,(a+b)2C.错误,结果为a+1,aD.错误,结果为1.b故选A.10.【答案】A【解析】解:2x2+mx+5y−2nx2−y+5x+7=(2−2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y−2nx2−y+5x+7的值与x的取值无关,∴2−2n=0,解得n=1,m+5=0,解得m=−5,则m+n=−5+1=−4.故选:A.首先利用关于x、y的多项式2x2+mx+5y−2nx2−y+5x+7的值与x的取值无关,得出x的二次项、一次项的系数和为0,进而得出答案.此题主要考查了多项式,正确得出m,n的值是解题关键.11.【答案】B【解析】【分析】此题主要考查了正方体的展开图,解决此题的关键是记住正方体展开图的类型1−4−1型,2−3−1型,2−2−2型,3−3型,不能出“田”字.根据正方体展开图的特点即可选出答案.【解答】解:A.属于其中1−4−1型的类型,能折成正方体;B.不能折成正方体;C.属于正方体展开图的类型3−3型,能折成正方体;D.属于正方体展开图的类型2−3−1型,能折成正方体;故选B.12.【答案】D【解析】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:80x,乙班植70棵树所用的天数应该表示为:70x−5.所列方程为:80x =70x−5.故选:D.关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.13.【答案】D【解析】解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画EF⏜,交射线BO于点E;⏜,交EF⏜于点F,③以点E为圆心,以CD为半径画MN④连接BF即可得出∠OBF,则∠OBF=∠AOB.故选:D.根据作一个角等于已知角的作法进行解答即可.本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.14.【答案】D【解析】解:A、√2与√3不能合并,所以A选项错误;B、原式=2√2−√2=√2,所以B选项错误;C、原式=√2×3=√6,所以C选项错误;D、原式=√2×2=2,所以D选项正确.故选:D.根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】A【解析】【分析】本题考查的是菱形与正方形的性质,等边三角形的判定及性质,据已知可求得△ABC是等边三角形,从而得到AC=AB,从而求出正方形ACEF的边长,进而可求出其周长.【解答】解:∵菱形ABCD,∴AB=BC,∵∠B=60°∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的边长为4,∴正方形ACEF的周长为16,故选A.16.【答案】D【解析】【分析】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【解答】解:∵点D,E,F分别是AB,BC,AC的中点,∴BD=AD,BE=EC,∴DE=1AC=6,DE//AC,2∵CF=FA,CE=BE,∴EF=1AB=2.5,EF//AB,2∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=17.故选D.17.【答案】3(a+3)(a−3)【解析】解:3a2−27=3(a2−9)=3(a+3)(a−3).故答案为:3(a+3)(a−3).直接提取公因式3,进而利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.18.【答案】1+√52【解析】【分析】本题考查反比例函数图象上点的坐标特征,全等三角形的判定,关键是用方程的思想解决问题.过A作AC⊥x轴,垂足为C,作BD⊥AC,垂足为D,通过证△AOC≌△ABD可得:OC= AD=n,AC=BD=1,可得B点坐标,根据反比例函数上点的坐标特征可求n的值,即求出k.【解答】解:如图,过A作AC⊥x轴,垂足为C,作BD⊥AC,垂足为D,∵∠BAO=90°,∴∠OAC+∠BAD=90°且∠BAD+∠ABD=90°,∴∠ABD=∠CAO且∠D=∠ACO=90°,AO=AB,∴△ACO≌△DAB(AAS),∴AD=CO,BD=AC,∵A(1,n)(n>0),∴OC=AD=n,AC=BD=1.∴B(1+n,n−1),(k>0,x>0)的图象经过点A,B两点,∵反比例函数y=kx∴1×n=(1+n)(n−1),∴n=1+√5,2∴k=1×n=1+√5.2.故答案为1+√5219.【答案】100°或120°【解析】【分析】本题考查旋转的性质、等腰三角形的定义、直角三角形30度角的判定等知识,解题的关键是正确画出图形,学会分类讨论的思想,属于中考常考题型.①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在Rt△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【解答】解:①当点B落在AB边上时,∵DB=DB1,∴∠B=∠DB1B=40°,∴m=∠BDB1=180°−2×40°=100°,②当点B落在AC上时,在Rt△DCB2中,∵∠C=90°,DB2=DB=2CD,∴∠CB2D=30°,∴m=∠C+∠CB2D=120°,综上所述,m的值为100°或120°.故答案为:100°或120°.20.【答案】解:(1)1+2×4=9;9+(−3)×4=−3;−3+1×4=1;1+(−4)×4=−15;−15+3×4=−3则最近是1个单位长度,最远是15个单位长度;(2)由题可知:2+(−3)+1+(−4)+3=−1即最后结果是该纸板向左翻转了一圈,此时点A为1+(−1)×4=−3,故此时数轴上点A表示的数为−3.【解析】本题考查了数轴,有理数混合运算的知识.(1)根据题意列出式子,求出每次翻转后A点所在的位置,即可解答;(2)根据该正方形纸板5次翻转的周数记录情况可知A向左翻转了一圈,求得A点的位置,即可解答.21.【答案】证明:在Rt△ACB和Rt△BDA中,∠C=∠D=90°{AD=BCAB=BA∴Rt△ACB≌Rt△BDA(HL)∴∠CBA=∠DAB∴OA=OB又AD=BC,∴CO=DO.【解析】由“HL”可得Rt△ACB≌Rt△BDA,可得∠CBA=∠DAB,可得OA=OB,即可进而证得结论.本题考查了全等三角形的判定和性质,等腰三角形的性质,证明OA=OB是本题的关键.22.【答案】解:(1)100;30;(2)补全频数分布直方图为:(3)样本中身高低于165cm的人数为15+30+35=80,样本中身高低于165cm的频率为80100=45,所以估计从该组随机抽取1名学生,估计这名学生身高低于165cm的概率为45.【解析】【分析】本题考查了利用频数估计概率、用样本估计总体、频数分布直方图、扇形统计图,解决本题的关键是综合运用以上知识.(1)根据A组频数和在扇形图中的圆心角的度数即可求解;利用B组人数除以样本容量即可得出a的值;(2)根据样本容量求出B组频数即可补充直方图;(3)根据频率估计概率的方法即可求解.【解答】解:(1)15÷54360=100,所以被测学生的人数为100;B组的人数为100−15−35−15−5=30,所以a%=30100×100%=30%,则a=30.故答案为100,30;(2)见答案;(3)见答案.23.【答案】解:如图,过点P作PE⊥OB于点E,PF⊥CO于点F,∵山坡AP的坡度为i=1:√3,AP=10,∴可设PE=x,则AE=√3x.在Rt△AEP中,x2+(√3x)2=102,解得x=5或x=−5(舍去),∴PE=5,则AE=5√3.∵∠CPF=∠PCF=45°,∴CF=PF.设CF=PF=m米,则OC=(m+5)米,OA=(m−5√3)米.在Rt△AOC中,tan60°=OCOA =m−5√3,即m−5√3=√3,解得m=10(√3+1),∴OC=10(√3+1)+5≈32(米).答:该居民楼的高度约为32米.【解析】过点P 作PE ⊥OB 于点E ,PF ⊥CO 于点F ,解Rt △AEP ,求出PE =5,AE =5√3.解Rt △CPF ,得出CF =PF.设CF =PF =m 米,则OC =(m +5)米,OA =(m −5√3)米.在Rt △AOC 中,由tan60°=OC OA =m−5√3=√3,求出m =10(√3+1),进而得到OC .考查了解直角三角形的应用−仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形. 24.【答案】解:(1)由题意y 1=30×0.6x +60=18x +60,由图可得,当0≤x ≤10时,y 2=30x ;当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,解得y 2=15x +150,所以y 2={30x (0≤x ≤10)15x +150(x >10); (2)当0<x ≤10时,18x +60<30x ,解得:x >5,∴5<x ≤10,当x >10时,18x +60<15x +150解得:x <30,∴10<x <30,综上所述,5<x <30时,满足条件,答:甲采摘园所需总费用较少时,草莓采摘量x 的范围5<x <30.【解析】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是理解题意,熟练掌握待定系数法确定函数解析式,属于中考常考题型.(1)y 1函数表达式=60+单价×数量,y 2与x 的函数表达式结合图象利用待定系数法即可解决.(2)分两种情形构建不等式即可解决问题.25.【答案】(1)证明:连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC =90°.∴∠BEC =90°.∵点F 为BC 的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线;(2)解:设P点到直线AD的距离为d,记△PAD的面积S△PAD,则有:S△PAD=12AD⋅d=12PD⋅AC,∴d=PD⋅ACAD①∵⊙O的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得BC=6√3,∴PC=3√3,∵O,P分别是AC,BC的中点,∴OP//AB,∴∠OPC=∠B=30°,∵OE=OA,∠OAE=60°,∴△OEA为等边三角形,∴∠EOA=60°,∴∠ODC=90°−∠COD=90°−∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD,∵OC⊥PD,∴CD=PC=3√3,在Rt△ACD中,由勾股定理得:AD=√AC2+CD2=3√7,将以上数据代入①得:d=PD⋅ACAD =√3×63√7=12√217.【解析】(1)连接FO,由F为BC的中点,AO=CO,得到OF//AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF//AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)设P点到直线AD的距离为d,记△PAD的面积S△PAD,根据三角形的面积得到d=PD⋅AC①由勾股定理得BC=6√3,根据平行线的性质得到∠OPC=∠B=30°,推出△ADOEA为等边三角形,得到∠EOA=60°,在Rt△ACD中,由勾股定理得:AD=√AC2+CD2=3√7,将以上数据代入①得即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,勾股定理,等边三角形的判定和性质,正确的作出辅助线是解题的关键.26.【答案】解:(1)将A、C两点坐标代入抛物线,得到:解得:所以抛物线的函数解析式为:(2)∵C(6,0),∴AB=OC=6把y=8代入解析式得x₁=0,x₂=3∴D(3,8),∴D为AB中点.(3)①∵OC=6,OA=8,过点Q作QE⊥BC与E,则②满足条件的点F共有四个,坐标分别为:【解析】解:(1)将A、C两点坐标代入抛物线,得到:解得:所以抛物线的函数解析式为:(2)∵C(6,0),∴AB=OC=6把y=8代入解析式得x₁=0,x₂=3∴D(3,8),∴D为AB中点.(3)①∵OC=6,OA=8,过点Q作QE⊥BC与E,则②满足条件的点F共有四个,坐标分别为:。
2020-2021学年河北省秦皇岛市海港区九年级上学期期末考试数学试卷及答案解析

2020-2021学年河北省秦皇岛市海港区九年级上学期期末考试
数学试卷
一.选择题(共16小题,满分48分,每小题3分)
1.(3分)下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.
C.D.
2.(3分)下列事件中,属于必然事件的是()
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180°
D.抛一枚硬币,落地后正面朝上
3.(3分)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1 4.(3分)如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()
A.3B.4C.6D.9
5.(3分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论正确的是()
第1 页共28 页。
秦皇岛市2020年九年级上学期数学期末考试试卷(II)卷

秦皇岛市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A .B .C .D .2. (2分) (2018九上·徐闻期中) 如图,将△ABC绕点A逆时针旋转110°,得到△ADE ,若点D落在线段BC的延长线上,则∠B大小为()A . 30°B . 35°C . 40°D . 45°3. (2分) (2018九上·滨州期中) 如图,抛物线与x轴交于点A,B,把抛物线与线段AB 围成的图形记为C1 ,将Cl绕点B中心对称变换得C2 , C2与轴交于另一点C,将C2绕点C中心对称变换得C3 ,连接C与C3的顶点,则图中阴影部分的面积为()A . 32B . 24C . 36D . 484. (2分) (2019九上·上街期末) 已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .5. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小6. (2分) (2019九上·济阳期末) 抛物线y=﹣(x﹣2)2﹣1的顶点坐标是()A . (﹣2,1)B . (﹣2,﹣1)C . (2,1)D . (2,﹣1)7. (2分) (2019九上·济阳期末) 面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()A .B .C .D .8. (2分) (2019九上·济阳期末) 如图,一辆小车沿倾斜角为的斜坡向上行驶13米,已知,则小车上升的高度是()A . 5米B . 6米C . 6.5米D . 12米9. (2分) (2017九上·鄞州月考) 如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A . 25°B . 50°C . 60°D . 30°10. (2分) (2019九上·济阳期末) 在一个不透明的袋中有除颜色外没有其他区别的2个黄球和2个红球,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河北省秦皇岛市海港区九年级上学期期末考试
数学试卷
一、选择题(本大题共16个小题,共42分.1~10小题各3分,1~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.
C.D.
2.(3分)下列事件中,属于必然事件的是()
A.明天我市下雨
B.抛一枚硬币,正面朝下
C.购买一张福利彩票中奖了
D.掷一枚骰子,向上一面的数字一定大于零
3.(3分)用配方法解方程x2=4x+1,配方后得到的方程是()
A.(x﹣2)2=5B.(x﹣2)2=4C.(x﹣2)2=3D.(x﹣2)2=1 4.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()
A.△ABC∽△A′B′C′
B.点C、点O、点C′三点在同一直线上
C.AO:AA′=1:2
D.AB∥A′B′
第1 页共30 页。