概率论常用统计分布60页PPT

合集下载

《概率论概率分布》PPT课件

《概率论概率分布》PPT课件
第一章 随机事件及其概率
内容提要
一、随机事件
1、随机试验:观察一定 综合条件的实现。(条 件
实现就完成一次试验) 一般用字母‘ E ’表示试验。
2、样本空间:试验可能 出现的全部结果组成的 集
合。一般用字母‘ ’表示,组成样本空间的 元素称
为样本点,(或称为基 本事件)一般用字母‘ ’表
示。
3、随机事件:样本空间 的子集称为随机事件。 一
这些题目所考的知识点 实际上是相同的, 本质上式一样的。
编辑ppt
பைடு நூலகம்
7
三、随机事件概率的定

1 、概率的统计定义:设
随机事件 A 在 n 次重
复试验中出现了
k 次, P ( A ) k 。 n
2 、概率的古典定义:若
随机试验
E 满足
10 { 1, , n } 2 0 P ( 1) P ( n ) 则称 E 是古典概率模型。
A i 表示
A 表示至少有一个盒子无
N
球,则 A A i
i1
B 表示每个盒子至少有一
N
个球,则 B A i
编辑ppt
i1
3
5、事件 A 与 B 互不相容 AB . 6、事件 A 与 B 相互对立 A B 且 AB
注:相互对立的事件一定是互不相容的事件,反
之不一定。
7、两个事件的差A B AB A发生但 B不发生。 8、事件运算的一条性质:
P ( Ai ) 1 P ( Ai )
i 1
i 1
n
n
7 0、 P ( Ai ) P ( Ai )
P ( Ai A j )
P ( Ai A j Ak )
i 1

统计学概率和分布PPT课件

统计学概率和分布PPT课件
• 在概率论中所说的事件(event)相 当于集合论中的集合(set)。而概 率则是事件的某种函数。
• 为什么会这么说呢,让我们看掷两个 骰子的试验。
§4.2 概率的运算
• 如所关心的是两骰子点数之和,则 下表包含了所有36种可能试验结果 的搭配和相应的点数和。
两骰子
第一个的点数
点数和 1 2 3 4 5 6
• 在掷10次骰子中有一半或以上的次数 得到5或6的概率又是多少呢?
• 读者很快就可能很快会得到答案。但 再复杂一些,也许就不简单了。
§4.2 概率的运算
• 我们需要了解怎样从简单的情况计算 稍微复杂情况时的概率。
• 需要读者回忆一下上中学时学过的集 合概念,比如两个集合的交和并,互 余(互补)等概念。
§4.2 概率的运算: 3.概率的乘法
• 但是由于一个人抽中,其他人就不 可能抽中,
• 所以,这三个事件不独立。刚才的 乘法规则不成立;
• 这 P会(A得时2∩到A,错3)误=P(的0A;1(∩1如/A3)错32)=误=1/9照。P搬(A乘1∩法A2规) 则=
§4.2 概率的运算: 3.概率的乘法
• 但是如果两个事件可能同时发生 时这样做就不对了。
§4.2 概率的运算: 2.概率的加法
• 假定掷骰子时,一个事件A为“得到 偶数点”(有3种可能:2、4、6点), 另一个事件B为“得到大于或等于3点” (有4种可能:3、4、5、6点);
• 这样,事件A的概率显然等于3/6=1/2, 即 P(A)=1/2 。 而 事 件 B 的 概 率 为 P(B)=4/6=2/3。
事件: 两骰子点数和
集合: 相应的试验结果(两个数字分别 表示第一和第二个骰子的点数)
集合中元素 的个数

概率论与数理统计连续型随机变量及其概率分布ppt课件

概率论与数理统计连续型随机变量及其概率分布ppt课件

0 x
则t , dt d
1-(x)
x1
2
3
F(x) 1
(t )2
1 x e
2 2
dt
x
2
e 2 d
( x )
2
2
4. P{a X b} (b ) ( a )
P{X b} (b ) P{X a} 1 (a )
例6
设 X ~ N(1,4) , 求 P (0 X 1.6)
解:X 的密度函数为
f
x
1 10
e
x 10
0
x0 x0
令:B={ 等待时间为10-20分钟 }
则 PB P10 X 20
20
1
x
e 10 dx
10 10
x
e 10
20
e 1
e 2
0.2325
10
例5 假定一大型设备在任何长为 t 的时间内发生
故障的次数 N( t ) 服从参数为t 的Poisson分布,
P(2
X
4)
4
2
2
2
2
(0)
0.3
2
0.8
P( X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图 P( X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
解 P(| X | 3 ) P( 3 X 3 )
应用场合:
若随机变量X在区间(a,b)内等可能的取值,则
X ~ U a,b
例3 秒表的最小刻度差为0.01秒. 若计时精度 是取最近的刻度值, 求使用该秒表计时产生的 随机误差X 的概率密度, 并计算误差的绝对值 不超过0.004秒的概率.

概率论与数理统计课件:随机变量及其分布

概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律

k
P X k p(
1 p)1k k 0,1
(0 p 1)

概率论与数理统计图文课件最新版-第2章-随机变量及其分布

概率论与数理统计图文课件最新版-第2章-随机变量及其分布
一. 连续型随机变量的概率密度 1.定义 若对于随机变量 X 的分布函数,存在非负
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0

多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量

概率论与数理统计 第二章 随机变量及其分布

概率论与数理统计 第二章 随机变量及其分布
解:
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10

《常用概率分布》PPT课件

《常用概率分布》PPT课件

n=20,π=0.5
π=0.5时,不同n值对应的二项分布
n=5,π=0.3
n=10,π=0.3
n=30,π=0.3
π=0.3时,不同n值对应的二项分布
二项分布图的形态取决于π和n,高峰在µ= πn处
➢ 当π=0.5,图形是对称的; ➢ 当π≠0.5,图形不对称;π离0.5愈远,对称性愈差,
但随着n的增大,分布趋向于对称.
〔2〕其中最少有2人感染的概率有多大?
解:P(x ≥ 2)= x1=5∑02 C150x 0.13x(0.97)150-x
= 1 -(C1500 0.130 × 0.97150 +C1501 0.131 × 0.97149) ≈1
〔3〕其中最少有20人感染的概率有多大?
解:P(x ≥
150
20)=
∑C150x
第一节 二项分布及其应用
1.1 二项分布的概念和函数 1.2 二项分布的特征 1.3 二项分布的应用
一、二项分布的概念 和概率函数
摸球模型
一个袋子里有5个乒乓球,其中2个黄球、3个白球, 我们进行摸球游戏,每次摸1球,放回后再摸.先后摸 100次,请问:
⑴摸到0次黄球的概率是多大?
解:① 每次摸到白球的概率 =0.6
〔1〕至多有4人患先天性心脏病的概率是多少? 〔2〕至少有5人患先天性心脏病的概率是多少?
举例2:实验室显示某100cm2的培养皿中平均菌落数为6
个,试估计<1>该培养皿中菌落数小于3的概率,
<2>大于1个的概率.
解析:菌落长、不长
二项分布
长概率很小, n很大
Poission分布
故:
=nπ=6 (1) P(x<3)=

常用概率分布.ppt

常用概率分布.ppt

表4—1 抛掷一枚硬币发生正面朝上的 试验记录
上一张 下一张 主 页 退 出
从表4-1可看出,随着实验次数的增多, 正面朝上这个事件发生的频率越来越稳定地接 近0.5,我们就把0.5作为这个事件的概率。
在一般情况下,随机事件的概率p是不可 能准确得到的。通常以试验次数n充分大时随机 事件A的频率作为该随机事件概率的近似值。
上一张 下一张 主 页 退 出
二、概 率
(一)概率的统计定义 研究随机试验,仅知道可能发生哪些随机
事件是不够的,还需了解各种随机事件发生的 可能性大小,以揭示这些事件的内在的统计规 律性,从而指导实践。这就要求有一个能够刻 划事件发生可能性大小的数量指标,这指标应 该是事件本身所固有的,且不随人的主观意志 而改变,人们称之为概率(probability)。 事件A的概率记为P(A)。
P(x=xi)=pi i=1,2,… (4—3) 则称 (4—3)式为离散型随机变量x的概 率分布或分布。常用 分 布 列 (distribution series)来表示离散型随机变量:
上一张 下一张 主 页 退 出
x1 x2 … xn …. p1 p2 … pn … 显然离散型随机变量的概率分布具有pi≥0 和Σpi=1这两个基本性质。 三、连续型随机变量的概率分布
第一节 事件与概率
一、事 件 (一)必然现象与随机现象 在自然界与生产实践和科学试验中,人 们会观察到各种各样的现象,把它们归纳起 来,大体上分为两大类:
上一张 下一张 主 页 退 出
一类是可预言其结果的,即在保持条件不 变的情况下,重复进行试验,其结果总是确定 的,必然发生(或必然不发生)。这类现象称 为必然ite phenomena)。
这样定义的概率称为 统计概率 (statistics probability),或者称后验概 率(posterior probability)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档