离散余弦变换(DCT).
DCT--离散余弦变换

K. R. Rao and P. Yip, 离散余弦变换 : 算法、优点和应用 (Discrete Cosine Transform: Algorithms, Advantages, Applications) (Academic Press, Boston, 1990).
A. V. Oppenheim, R. W. Schafer, and J. R. Buck, 时间离散信号处理 (Discrete-Time Signal Processing), second edition (Prentice-Hall, New Jersey, 1999).
mhtml:file://C:\Documents%20and%20Settings\Administrator\桌面\FAT3... 2010-10-22
Hale Waihona Puke 反变换DCT-I的反变换是把DCT-I乘以系数
。 DCT-IV的反变换是把DCT-IV乘以系数 。
DCT-II的反变换是把DCT-III乘以系数 ,反之亦然。
离散余弦变换
维基百科,自由的百科全书
离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一 种变换,它类似于离散傅里叶变换 (DFT for Discrete Fourier Transform),但 是只使用实数。离散余弦变换相当于 一个长度大概是它两倍的离散傅里叶 变换,这个离散傅里叶变换是对一个 实偶函数进行的(因为一个实偶函数的 傅里叶变换仍然是一个实偶函数),在 有些变形里面需要将输入或者输出的 位置移动半个单位(DCT有8种标准类 型,其中4种是常见的)。
和离散傅里叶变换类似,变化前面的归一化系数仅仅是常规而已,改变这个系数并不改变变
DCT变换

DCT变换的全称是离散余弦变换(Discrete Cosine Transform),离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的。
通过数字信号处理的学习我们知道实函数的傅立叶变换获得的频谱大多是复数,而偶函数的傅立叶变换结果是实函数。
以此为基础,使信号函数成为偶函数,去掉频谱函数的虚部,是余弦变换的特点之一。
要实现DCT有多种方法,一种可以采用DSP处理器,但这是牺牲了速度换来设计的灵活;一种是采用ASIC技术,这使得速度较快但灵活性又不好;还有一种就是用FPGA(可编程逻辑器件),利用这项技术既能加快速度又能带来设计的灵活性。
图中主要由串并转换电路、一维DCT 变换单元、转置RAM 和并串转换电路组成。
对于1 个8×8 的数据块来说, 共有64 个数据, 他们以串行的方式输入, 可以把这64 个数据分组, 每行数据为一组, 共8 组。
当第一组8 个数据输入后, 经串并转换电路将其转换成并行数据, 然后经一维DCT 变换电路完成一行数据的DCT 变换, 然后经并串转换电路后转换成串行数据依次存入转置RAM 中。
随着64 个数据的不断输入, 当所有的8 行数据都完成一维DCT 变换并存储在转置RAM 后, 再将经过转置的8 组数据从转置RAM 中取出, 依次经串并转换送入后一个一维DCT 变换电路按列进行一维DCT 变换。
完成一列的一维DCT 变换后, 再经并串转换电路, 转换成串行数据输出。
当所有8 列数据都完成转换后, 就完成了一个8×8数据块的二维DCT 变换。
离散余弦变换(DCT)

离散余弦变换(DCT)DCT变换、DCT反变换、分块DCT变换⼀、引⾔DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要⽤于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。
DCT变换本⾝是⽆损的,但是在图像编码等领域给接下来的量化、哈弗曼编码等创造了很好的条件,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利⽤DCT反变换,在接收端恢复原始的图像信息。
DCT变换在当前的图像分析已经压缩领域有着极为⼴⼤的⽤途,我们常见的JPEG静态图像编码以及MJPEG、MPEG动态编码等标准中都使⽤了DCT变换。
⼆、⼀维DCT变换⼀维DCT变换时⼆维DCT变换的基础,所以我们先来讨论下⼀维DCT变换。
⼀维DCT变换共有8种形式,其中最常⽤的是第⼆种形式,由于其运算简单、适⽤范围⼴。
我们在这⾥只讨论这种形式,其表达式如下:其中,f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是⼀个补偿系数,可以使DCT变换矩阵为正交矩阵。
三、⼆维DCT变换⼆维DCT变换其实是在⼀维DCT变换的基础上在做了⼀次DCT变换,其公式如下:由公式我们可以看出,上⾯只讨论了⼆维图像数据为⽅阵的情况,在实际应⽤中,如果不是⽅阵的数据⼀般都是补齐之后再做变换的,重构之后可以去掉补齐的部分,得到原始的图像信息,这个尝试⼀下,应该⽐较容易理解。
另外,由于DCT变换⾼度的对称性,在使⽤Matlab进⾏相关的运算时,我们可以使⽤更简单的矩阵处理⽅式:接下来利⽤Matlab对这个过程进⾏仿真处理:1clear;2clc;3 X=round(rand(4)*100) %产⽣随机矩阵4 A=zeros(4);5for i=0:36for j=0:37if i==08 a=sqrt(1/4);9else10 a=sqrt(2/4);11 end12 A(i+1,j+1)=a*cos(pi*(j+0.5)*i/4);13 end14end15 Y=A*X*A' %DCT变换16 YY=dct2(X) %Matlab⾃带的dct变换运⾏结果为:1 X =23 42 66 68 664 92 4 76 175 79 85 74 716 96 93 39 3789 Y =1011 242.7500 48.4317 -9.7500 23.505212 -12.6428 -54.0659 7.4278 22.795013 -6.2500 10.7158 -19.7500 -38.804614 40.6852 -38.7050 -11.4653 -45.9341151617 YY =1819 242.7500 48.4317 -9.7500 23.505220 -12.6428 -54.0659 7.4278 22.795021 -6.2500 10.7158 -19.7500 -38.804622 40.6852 -38.7050 -11.4653 -45.9341由上⾯的结果我们可以看出,我们采⽤的公式的⽅法和Matlab⾃带的dct变化⽅法结果是⼀致的,所以验证了我们⽅法的正确性。
离散余弦变换

可逆性
DCT是可逆的,意味着经过变换和压缩后的图像可以通过 反变换和反压缩完全恢复到原始状态,不会产生任何失真 或损失。
广泛的应用
由于DCT的高效性和可逆性,它在图像处理、视频压缩、 信号处理等领域得到了广泛的应用,为各种实际应用提供 领域, 因为它能够有效地去除信号中的冗余信息,减小数据量,提 高存储和传输效率。
离散余弦变换的历史与发展
离散余弦变换的起源可以追溯到1974年,由Ahmed和 Rao提出。起初,它被用于信号处理领域,后来逐渐扩展 到图像和视频处理领域。
随着数字信号处理技术的发展,DCT在图像和视频压缩标 准中得到了广泛应用。JPEG和MPEG等国际标准中采用了 DCT技术,使得图像和视频数据的压缩成为可能。
图像增强
离散余弦变换可以用于图像增强, 通过对图像的频率域进行分析和 操作,改善图像的清晰度和对比 度。
图像去噪
离散余弦变换在图像去噪方面具 有较好的效果,通过去除噪声干 扰,提高图像质量。
在信号处理领域的应用前景
音频处理
离散余弦变换可以用于音频信号的处理,如音频 压缩、音频去噪等。
雷达信号处理
雷达信号处理中,离散余弦变换可以用于信号的 频域分析、目标检测和跟踪等。
理想的压缩效果。
对动态范围 有限制
虽然DCT算法相对简单,但对于大规模的高分辨率图 像,其计算复杂度和时间成本仍然较高,需要更高效 的算法和硬件支持。
06 离散余弦变换的前景与展 望
在图像处理领域的应用前景
图像压缩
离散余弦变换在图像压缩领域具 有广泛应用,通过减少图像数据 的冗余信息,实现高效的图像存 储和传输。
dct 多次 离散余弦变换

dct 多次离散余弦变换DCT(离散余弦变换)在信号处理领域中是一种常用的数学工具,用于将信号从时域转换为频域。
它在图像和音频压缩、特征提取和数据隐藏等方面有着广泛的应用。
本文将介绍DCT的基本概念、算法原理和应用领域。
一、DCT的基本概念离散余弦变换(DCT)是一种将时域信号转换为频域信号的方法。
它可以将信号分解为一系列频率成分,每个频率成分都有相应的振幅和相位。
DCT将信号表示为一组余弦函数的加权和,其中每个余弦函数代表不同的频率成分。
DCT系数表示了每个频率成分的振幅,可以用于分析信号的频谱特性。
二、DCT的算法原理DCT算法可以分为两个步骤:正变换和逆变换。
正变换将时域信号转换为频域信号,逆变换将频域信号转换回时域信号。
正变换的过程如下:1. 将时域信号分割成若干个重叠的子块。
2. 对每个子块进行加窗处理,通常使用汉宁窗或哈密顿窗来减小边界效应。
3. 对每个子块进行DCT变换,得到每个子块的DCT系数。
逆变换的过程如下:1. 对每个子块的DCT系数进行逆DCT变换,得到每个子块的时域信号。
2. 对每个子块进行加窗处理,通常使用与正变换相同的窗函数。
3. 将每个子块的时域信号合并,得到整个信号的时域表示。
三、DCT的应用领域1. 图像压缩:DCT在JPEG图像压缩中起到了关键作用。
通过对图像的每个小块进行DCT变换,并保留最重要的DCT系数,可以大幅度减小图像的体积,同时保持较高的图像质量。
2. 音频压缩:DCT也被广泛用于音频压缩算法中,如MP3。
通过对音频信号进行DCT变换,并根据DCT系数的重要性进行量化和编码,可以实现高压缩比的音频压缩。
3. 特征提取:DCT系数可以用于提取信号的特征。
例如,在语音识别中,可以通过对语音信号进行DCT变换,并提取出DCT系数的统计特征,用于识别不同的语音。
4. 数据隐藏:DCT系数可以用于数据隐藏和水印嵌入。
通过将秘密信息嵌入到DCT系数中,可以隐藏信息并对原始信号造成较小的影响,从而实现数据的安全传输和保护。
DCT离散余弦变换

DCT 离散余弦变换离散余弦变换(DCT)是N.Ahmed等人在1974年提出的正交变换方法。
它常被认为是对语音和图像信号进行变换的最佳方法。
为了工程上实现的需要,国内外许多学者花费了很大精力去寻找或改进离散余弦变换的快速算法。
由于近年来数字信号处理芯片(DSP)的发展,加上专用集成电路设计上的优势,这就牢固地确立离散余弦变换(DCT)在目前图像编码中的重要地位,成为H.261、JPEG、MPEG等国际上公用的编码标准的重要环节。
在视频压缩中,最常用的变换方法是DCT,DCT被认为是性能接近K-L变换的准最佳变换,变换编码的主要特点有:(1)在变换域里视频图像要比空间域里简单。
(2)视频图像的相关性明显下降,信号的能量主要集中在少数几个变换系数上,采用量化和熵编码可有效地压缩其数据。
(3)具有较强的抗干扰能力,传输过程中的误码对图像质量的影响远小于预测编码。
通常,对高质量的图像,DMCP要求信道误码率,而变换编码仅要求信道误码率。
DCT等变换有快速算法,能实现实时视频压缩。
针对目前采用的帧内编码加运动补偿的视频压缩方法的不足,我们在Westwater等人提出三维视频编码的基础上,将三维变换的结构应用于视频图像压缩,进一步实现了新的视频图像序列的编码方法。
在基于DCT变换的图像压缩编码方法中,对DCT系数必须做量化处理。
量化过程是一个多对一的映射,例如对一个8×8块的64个DCT变换系数分别除以量化步长后取整。
由于大多数DCT变换系数量化后变为零,因而达到压缩的目的。
由于在量化过程中用到除法,因此通常需要进行浮点运算。
但是,可进行浮点运算的数字信号处理器(DSP)芯片结构比定点DSP芯片复杂,价格一般也比定点DSP芯片高很多。
所以数字图像处理系统中通常采用定点DSP芯片来完成图像压缩运算,这种方法已经成为数字图像处理技术的的一个趋势。
可用于数字图像处理的比较好的定点DSP芯片有德州仪器公司新一代高性能定点DSP芯片TMS320C6200系列。
离散余弦变换

离散余弦变换离散余弦变换(DiscreteCosineTransform,简称DCT变换)是一种与傅立叶变换紧密相关的数学运算。
在傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化可导出余弦变换,因此称之为离散余弦变换。
DCT原理1(21)()()()cos,0,1, (1)2Nnn kC k k x n k NNπ-=+==-∑()11,2,,1kc kk N⎧=⎪=⎨=-⎪⎩其中函数1(21)()()()cos,0,1, (1)2Nkn kx n c k C k n NNπ-=+==-二维的DCT1100(21)(21)(,)()()(,)cos cos22M Nm nm k n lY k l k c l x m nM Nππ--==++=∑∑其中m,k=0,1,…,M-1; n,l=0,1,…,N-1。
()11,2,,1kc kk M⎧=⎪=⎨=-⎪⎩其中函数()11,2,,1kc lk N⎧=⎪=⎨=-⎪⎩二维逆离散余弦变换(IDCT)的定义如下:1100(21)(21)(,)()()(,)cos cos22M NK Lm k n lx m n c k c l Y k lM Nππ--==++=∑∑DCT到DFT的映射是非常具有吸引力的,因为我们可以利用FFT类型算法的多种变化。
推导:设()(2),(1)(21),0,1,...,12Ny n x n y N n x n n=--=-=-对()x n做DCT变换,用()y n替换()x n,得122()()()(cos cos sin sin),0,1, (1)22Nnkn k kn kX k x k y n k NN N N Nππππ-==-=-∑()11,2,,1kx kk N⎧=⎪=⎨=-⎪⎩其中函数对()y n做DFT变换,用欧拉公式展开,得122()()cos sin , k=0, 1, , N-1 N n kn kn Y k y n j N N ππ-=⎡⎤=+⎢⎥⎣⎦∑很容易得出,2()()cos (())sin (())2e m k kn X k x k R Y k I Y k N N ππ⎡⎤=-⎢⎥⎣⎦从而我们可以用FFT 计算DCTMATLAB 实现 例1%The commands below compute the discrete cosine transform for the autumn %image. Notice that most of the energy is in the upper left corner. RGB = imread('autumn.tif'); I = rgb2gray(RGB); J = dct2(I);imshow(log(abs(J)),[]), colormap(jet(64)), colorbar%Now set values less than magnitude 10 in the DCT matrix to zero, and then %reconstruct the image using the inverse DCT function idct2. J(abs(J) < 10) = 0; K = idct2(J); imview(I)imview(K,[0 255])分析:得到的系数可认为就是原始图像信号在频率不断增大的余弦函数上的投影,也就是说一个图像的DCT 低频系数分布在DCT 系数矩阵的左上角,高频系数分布在右下角,低频系数的绝对值大与高频系数的绝对值。
离散余弦变换;dct

离散余弦变换;dct离散余弦变换(Discrete Cosine Transform,DCT)是一种广泛应用于数字信号处理领域的数学变换,可以将一个长度为N的信号(比如音频、图像等)转换为一组N个离散余弦函数的系数。
DCT的应用很广泛,比如JPEG、H.264等压缩算法都使用了DCT,具有较好的压缩性能和鲁棒性。
下面我们就来看一看DCT的一些基本概念和原理。
一、离散余弦变换的定义离散余弦变换的定义可以用下面的公式表示:$ X_k = \sum_{n=0}^{N-1} x_n \cos \left[ \frac{\pi}{N} \left( n +\frac{1}{2} \right) k \right] $其中,x(n)是原始的离散信号,X(k)是它的DCT系数,N是信号的长度,k为DCT系数的下标,它的范围是0~N-1。
二、离散余弦变换的性质DCT具有诸多良好的性质,包括:1. 对称性:DCT在奇偶性、中心对称等方面具有较强的对称性,这有利于算法的实现和计算速度的提高。
2. 能量集中性:DCT可以将信号的能量分为前面的几个系数,这些系数包含了大部分信号的信息,后面的系数则可以舍弃,从而达到压缩和降噪的目的。
3. 可逆性:DCT是一种可逆变换,可以通过逆变换将DCT系数还原为原始信号。
三、离散余弦变换的种类DCT的种类比较多,常用的有DCT-I、DCT-II、DCT-III和DCT-IV等,它们的定义和公式略有不同。
其中,DCT-II是应用最广泛的一种,在JPEG和其他压缩算法中大量应用。
四、离散余弦变换的应用DCT的应用非常广泛,比如:1. 图像和视频压缩:JPEG、H.264等压缩算法都使用了DCT,能够将信号压缩到很小的数据量。
2. 语音信号处理:DCT可以将语音信号转换为频域表示,对于语音的噪声消除、识别和压缩等方面具有重要应用。
3. 数字水印:DCT可以将数字水印嵌入到信号的某些DCT系数中,从而实现数字版权保护、信息隐藏等应用。