微分方程习题解答

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

常微分方程习题及解答

常微分方程习题及解答

常微分方程习题及解答常微分方程习题及解答常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。

常微分方程,自变量的个数只有一个。

偏微分方程,自变量的个数为两个或两个以上。

常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。

2.举例阐述常数变易法的基本思想。

答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。

例:求()()dy P x y Q x dx=+的通解。

首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ?=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ?=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx=+l l ,将上述两式代入方程中,得到()()()()()()()()()P x dxP x dx P x dxdc x c x P x dxc x P x Q x ??+?=+l l l即 ()()()P x dxdc x Q x dx-?=l积分后得到()()()P x dxc x Q x dx c-?=+?%l进而得到方程的通解()()(())P x dxP x dxy Q x dx c -?=+?%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中12()(),...(),()na t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,nηηη是已知常数。

常微分方程部分习题答案

常微分方程部分习题答案

1.第1题微分方程是( ).A.n阶常系数非齐次线性常微分方程;B.n阶常系数齐次线性常微分方程;C.n阶变系数非齐次线性常微分方程;D.n阶变系数齐次线性常微分方程.您的答案:C题目分数:2此题得分:2.02.第2题设有四个常微分方程:(i) , (ii) ,(iii) , (iv).A.线性方程有一个;B.线性方程有两个;C.线性方程有三个;D.线性方程有四个.您的答案:C题目分数:2此题得分:2.03.第3题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:A题目分数:2此题得分:2.04.第5题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .A.AB.BC.CD.D您的答案:A题目分数:2此题得分:2.05.第7题满足初始条件和方程组的解为( ).A. ;B.; C.; D. .A..B..C..D..您的答案:B题目分数:2此题得分:2.06.第8题可将六阶方程化为二阶方程的变换是( ).A.;B.; C.;D..A..B..C..D..您的答案:B题目分数:2此题得分:2.07.第10题可将一阶方程化为变量分离方程的变换为A. ;B.; C. ; D..A..B..C..D..您的答案:C题目分数:2此题得分:2.08.第12题下列四个微分方程中, 三阶常微分方程有( )个.(i) , (ii) ,(iii) , (iv) .A.1B.2C.3D.4您的答案:C题目分数:2此题得分:2.09.第13题设有四个常微分方程:(i) , (ii),(iii) , (iv) .A.非线性方程有一个;B.非线性方程有两个;C.非线性方程有三个;D.非线性方程有四个.您的答案:B题目分数:2此题得分:2.010.第14题微分方程的一个解是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:D题目分数:2此题得分:2.011.第20题已知是某一三阶齐次线性方程的解, 则和的伏朗斯基行列式( ).A. ;B.; C.; D. .A.AB.BC.CD.D您的答案:A题目分数:2此题得分:2.012.第21题设,及是连续函数,和是二阶变系数齐次线性方程的两个线性无关的解, 则以常数变易公式作为唯一解的初值问题是A. B.C. D.A..B..C..D..您的答案:B题目分数:2此题得分:2.013.第22题初值问题, 的第二次近似解可以写为( ). +A. 6;B.; C.; D. +.A..B..C..D..您的答案:D题目分数:2此题得分:2.014.第24题设是n 阶齐次线性方程的线性无关的解, 其中是连续函数. 则A. 的朗斯基行列式一定是正的;B. 的朗斯基行列式一定是负的;C. 的朗斯基行列式可有零点, 但不恒为零;D. 的朗斯基行列式恒不为零.A.AB.BC.CD.D您的答案:B题目分数:2此题得分:2.015.第25题设和是方程组的两个基解矩阵, 则A. 存在某个常数方阵C使得, 其中;B. 存在某个常数方阵C使得, 其中;C. 存在某个常数方阵C使得, 其中;D. 存在某个常数方阵C使得, 其中.A..B..C..D..您的答案:A题目分数:2此题得分:2.016.第15题求解方程时, 以下的解题步骤中不能省略的有哪几步:A. 因为,B. 所以原方程是恰当方程;C. 将方程中的重新分项组合,D. 凑出全微分:,E. 得到通解:.A.AB.BC.CD.DE.E您的答案:A,B,C,D,E题目分数:5此题得分:5.017.第16题设为方程(A 为常数矩阵)的一个基解矩阵,试指出如下的断言中哪些是错误的:A. 可以是也可以不是原方程组的解矩阵,B. 因为不知道是否有, 故无法判断是否是原方程组的基解矩阵,C. 存在奇异的常数矩阵C, 使得,D. 取, 可得到.E. .A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:5.018.第17题以下是一阶微分方程的求解过程, 请说明下划线所指出那些步骤中, 哪些是可以省略的:解答:记, 则(A), 注意到(B),因此方程不是恰当方程(C). 可以计算, 因而方程有只与x 有关的积分因子,并且该积分因子可以求出为:.将该积分因子乘在原方程的两端:(D),分项组合为,或可整理为(E), 最后得到原方程的通解.A.AB.BC.CD.DE.E您的答案:A,B,C,D,E题目分数:5此题得分:5.019.第18题如下求解三阶常系数线性方程的过程中, 下划线所指出的部分哪些计算有错误或叙述有错误:解答:(i) 先求对应齐方程的通解:对应齐方程的特征方程及特征根分别为(A), , , .故对应齐方程的通解为(B).(ii) 因为有特征根非零(C), 故应设原方程的特解有形如, 这里a,b是待定常数.代入原方程可得.利用对应系数相等便得到代数方程组:.由此可解得(D), 故.(iii) 原方程的通解可以表示为(E).A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:5.020.第19题利用降阶法求解二阶方程的过程中, 下划线所指出的那些步骤中, 哪些是关键性的:解答:这是不显含自变量的二阶方程, 因此可以用第二种降阶法。

微分方程(习题及解答)0001

微分方程(习题及解答)0001

2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。

常微分习题解答1

常微分习题解答1
x 解: y′ = y / x + tan( y / x) 令 y = zx z + xz′ = z + tan z ⇒ z′ = tan z / x; z = kπ ⇒ y = kπ x , sin z = Cx ⇔ sin y = Cx
x
20
5) xy′ − y = (x + y) ln x + y x
18
z = 0, z = 1 ⇔ y = 0, y = x ,
或 ln(z −1) − ln z = − ln x + c , x( y − x) = Cx
3) (x2 + y2 ) dy = 2xy dx
解: dy = 2 y / x ,let z = y , then
dx 1+ ( y / x)2
8
另外,当 y ≠ 0 且 y ≠ 1时 dy = dx 既 dy − dy = dx
y( y −1)
y −1 y
所以 ln y −1 = x + c y
再考虑初始条件,故原初值问题的解为 y = 1
2) (x2 −1) y′ + 2xy2 = 0, y(0) = 1
解: dy + 2xdx = 0 , − 1 + ln | x2 −1 |= C 得 C = −1
y2 x2 −1
y
9
因此 y(ln | x2 −1 | +1) = 1
3) y′ = 33 y2 , y(2) = 0
解: y = 0 或 y = (x + C)3 得 C = −2 ,
y
=
⎧(x ⎩⎨0
+
C)3, ,
x x
≥ <

微分方程课后习题答案

微分方程课后习题答案

微分方程课后习题答案微分方程是数学中的重要分支,它研究的是描述自然现象中变化规律的方程。

在学习微分方程的过程中,课后习题是巩固知识、提高技能的重要途径。

本文将为大家提供一些微分方程课后习题的答案,希望能够帮助大家更好地理解和掌握微分方程的知识。

1. 一阶线性微分方程题目:求解微分方程 dy/dx + y = 2x解答:这是一个一阶线性微分方程,我们可以使用常数变易法来求解。

首先,将方程改写为 dy/dx = 2x - y设 y = u(x) * v(x),其中 u(x) 是未知函数,v(x) 是待定函数。

将 y = u(x) * v(x) 带入方程,得到 u(x) * v'(x) + u'(x) * v(x) = 2x - u(x) * v(x)整理得 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x根据乘积法则,有 (u(x) * v(x))' = 2x对上式两边同时积分,得到 u(x) * v(x) = x^2 + C,其中 C 是常数。

然后,我们需要求解 u(x) 和 v(x)。

由于 v(x) 是待定函数,我们可以选择 v(x) = e^(-x),这样 v'(x) = -e^(-x)。

将 v(x) = e^(-x) 带入 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x,得到 u'(x) * e^(-x) = 2x对上式两边同时积分,得到 u(x) * e^(-x) = x^2 + C将 u(x) * e^(-x) = x^2 + C 代入 y = u(x) * v(x),得到 y = (x^2 + C) * e^x所以,原微分方程的通解为 y = (x^2 + C) * e^x,其中 C 是常数。

2. 二阶线性常系数齐次微分方程题目:求解微分方程 d^2y/dx^2 + 2dy/dx + 2y = 0解答:这是一个二阶线性常系数齐次微分方程,我们可以使用特征方程法来求解。

微分方程习题和答案

微分方程习题和答案

微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 设曲 yf (x)dx [2xf (x) x2]dy 在右半平面(x0)内与路径无关 其中 f(x)可导 且 L
f(1)1 求 f(x) 解 因为当 x0 时 所给积分与路径无关 所以
[yf (x)] [2xf (x) x2]
y
x
即 f(x)2f(x)2xf(x)2x
或 f (x) 1 f (x) 1 2x
即 d(y2) 2 y2 2(1ln x) dx x
y2
e
2 x
dx[2
(1ln
x)e
2 x
dxdxC]
1 x2
[2
(1ln x)x2dxC]
C x2
2 3
xln
x
4 9
x
原方程的通解为
1 y2
C x2
2 3
xln x 4 9
x
8 验证形如 yf(xy)dxxg(xy)dy0 的微分方程 可经变量代换 vxy 化为可分离变量的方 程 并求其通解
解 y etan xdx( sin 2xetan xdxdxC)
elncosx( sin 2xelncosxdx C)
cosx(2sin
xcosx
1 cosx
dxC)
cos x(2cos x+C)C cos x2cos2x
(5)(x21)y2xycos x0

原方程变形为
y
2x x2 1
y
(10) (y2 6x) dy2y 0 dx
解 原方程变形为 dx 3 x 1 y dy y 2
x
e
3 y
dy
[
(
1
y)e
3 y
dy
dyC]
2
y3( 1
2
y
1 y3
dy
C)
y3( 1 C) 1 y2 Cy3
2y
2
2 求下列微分方程满足所给初始条件的特解
(1)
dy dx
y
t
anx
u3 x2(1u
u
2)
分离变量得
1 x
dx
(u13
1 u2
1)du u
两边积分得
ln
xC1
1 2u2
1 u
lnu
将 uxy 代入上式得原方程的通解
ln
x
C1
1 2x2 y2
1 xy
ln
xy

2x2y2ln y2xy1Cx2y2(C2C1)
(5)
dy dx
2 3x 2 x3
y
1
y|x10

y
e
23x x3
2
d
x
(
1e
23x2 x3
d
x
dx
C)
1
x3e x2 (
1 x3
e
1 x2
dxC)
x3e
1 x2
(1 2
e
1 x2
C)
由 y|x10
得C 1 2e
故所求特解为
y
1
x3(1
e
1 x2
1
)
2
3 求一曲线的方程 这曲线通过原点 并且它在点(x y)处的切线斜率等于 2xy 解 由题意知 y2xy 并且 y|x00 由通解公式得
t
C)
k2
k22
由题意
当 t0 时 v0
于是得
C
k1m k22
因此
v
e
k2 m
t
(
k1 k2
te
k2 m
t
k1m k22
e
k2 m
t
kk12m2 )

v
k1 k2
t
k1m k22
(1
e
k2 m
t
)
5 设有一个由电阻 R10、电感 L2h(亨)和电源电压 E20sin5t V(伏)串联组成的电路 开关 K 合上后 电路中有电源通过 求电流 i 与时间 t 的函数关系
x
即 d(y4) 4y4 4x dx
y4 e4dx[ (4x)e4dxdxC]
e4(4 xe4xdx C)
x 1 Ce4x 4
原方程的通解为
1 y4
x
1 Ce4x 4
(5)xdy[yxy3(1ln x)]dx0 解 原方程可变形为
1 y3
dy dx
1 x
1 y2
(1ln x)
1x[(x2
3x
2)dxC]
1 (1 x3 3 x2 2xC) 1 x2 3 x2 C
x3 2
32
x
(3)yycos xesin x
解 y ecosdx( esinx ecosxdxdxC)
esinx( esinx esinxdx C) esinx(x C)
(4)yytan xsin 2x
解 原方程可变形为
dy dx
yf (xy) xg (xy)
在代换 vxy 下原方程化为
x
dv dx
v
x2
vf (v) x2g(v)

g(v) v[g(v) f
(v)]
du
1 x
dx
积分得
g(v) v[g(v) f
(v)]
du
ln
x
C
对上式求出积分后 将 vxy 代回 即得通解
9 用适当的变量代换将下列方程化为可分离变量的方程 然 后求出通解
即 d(y1) y1 sin x cos x dx
y1 edx[ (sin xcosx)edxdxC]
ex[ (cos xsin x)exdx C] Cex sin x
原方程的通解为
1 y
Ce x
sin
x
(2) dy 3xy xy2 dx
解 原方程可变形为
1 y2
dy 3x 1 dx y
sec
x
y|x00
解 y etan xdx( secxetanxdxdxC)
1 cosx
(sec
xcosxdxC)
1 cosx
(xC)
由 y|x00 得 C0 故所求特解为 yxsec x
(2)
dy dx
y x
sin x
x
y|x1

y
e
1 x
dx(
sin
x
e
1 x
dxd
x
C)
x
1 x
(
sin x
y edx( 2xedxdxC) ex(2 xexdxC)
ex(2xex2exC)Cex2x2
由 y|x00 得 C2 故所求曲线的方程为 y2(exx1)
4 设有一质量为 m 的质点作直线运动 从速度等于零的时刻起 有一个与运动方向一
至、大小与时间成正比(比例系数为 k1)的力作用于它 此外还受一与速度成正比(比例系数
sin x
sin x
由 y |x 4
2
得 C1
故所求特解为 y 1 (5ecosx 1) sin x
(4)
dy dx3y来自8y|x02解 y e3dx( 8e3dxdxC)
e3x(8 e3xdxC) e3x(8e3x C) 8 Ce3x
3
3
由 y|x02
得C 2 3
故所求特解为 y 2 (4e3x) 3
将 uxy 代入上式得原方程的通解
xyeCx 即 y 1 eCx x
(4)yy22(sin x1)ysin2x2sin xcos x1
解 原方程变形为
y(ysin x1)2cos x 令 uysin x1 则原方程化为
ducosx u2 cosx dx

1 u2
du
dx
两边积分得
1 xC u
将 uysin x1 代入上式得原方程的通解
y
1 sin
x
1
x
C

y
1sin
x
x
1 C
(5)y(xy1)dxx(1xyx2y2)dy0 解 原方程变形为
d d
y x
y(xy1) x(1 xy x2 y
2)
令 uxy 则原方程化为
1 x
du dx
u x2
u(u 1) x2(1u u
2)
即 1 du x dx
解 y e2xdx( 4xe2xdxdxC)
ex2 ( 4xex2dx C)
ex2 (2ex2 C) 2Cex2
(8)yln ydx(xln y)dy0
解 原方程变形为 dx 1 x 1 dy yln y y
x
e
1 yln
y
dy
(
1
e
1 yln
y
dy
dy
C)
y
1 ln y
(
1 y
解 由回路电压定律知
20sin5t 2 di 10i 0 即 di 5i 10sin5t
dt
dt
由通解公式得
i e5dt( 10sin5te5dtdtC) sin5t cos5t Ce5t
因为当 t0 时 i0 所以 C1 因此
i sin5t cos5t e5t e5t 2sin(5t )(A) 4
x
即 d(y1) 3xy 1 x dx
y1 e3xdx[ (x)e3xdxdxC]
3 x2
3 x2
e 2 ( xe2 dxC)
e
3 2
x2
(
1
3
e2
x2
C)
Ce
3 2
x2
1
相关文档
最新文档