六年级数学上册知识点汇总

合集下载

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级数学上册知识点汇总及例题解析

六年级数学上册知识点汇总及例题解析

本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。

(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。

(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。

a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。

(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。

(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。

(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。

六年级上册数学全部知识点

六年级上册数学全部知识点

六年级上册数学全部知识点一、分数1、理解分数概念:分数是由分子和分母组成,分子是分开的,分母是分子所在的总数,表示两个整数之间的比重;特征:分子与分母之间的比值;作用:用分数可以表示出一个数介于两个整数之间的任何数;2、运算(1)相同分母分数的加减法相同分数的加减法:将分子加减即可。

(2)不同分母分数的加减不同分数的加减法:先将分母统一,然后将分子加减即可。

(3)分数的乘除运算将两个分数相乘:将分子和分母分别相乘即可;将两个分数相除:将分子和分母交换再相乘即可。

三、根式1、根式的定义根式又称亚分式、立方根式,是表示平方根(或立方根)的一种式子。

是包含开方符号的一种数学运算表达式,它是一种特殊的正分式或正亚分式。

2、根式的展开展开根式:乘方法;联立根式:开根号法;3、根式的乘除运算二次方根式的乘法:将乘方的同类项相乘;三次方根式的乘法:将系数相乘,连分数乘积的分子、分母乘积;二次方根式的除法:把被除式减去除数,得出商;三次方根式的除法:把被除式分为分子和分母,把除数分为分子和分母,再分别将这两个分子和两个分母相乘,得到商;四、几何成比例1、定义几何成比例是指在一个相同的几何图形内,测量出的条形(或弧形)长或圆的半径之间,呈现出等比例。

2、求出成比例比求出比例比:将所测量出的两个数分别除以其中最小的一个数,得出两个数之间的比例比;3、判断几何图形是否成比例判断几何图形是否成比例:将该图形内测量出的长度和半径分别除以其中最小的一个,若所得到的两个数之间的比例比相同,即可判断该图形成比例;五、统计与概率1、统计统计是指收集与分析文字、表格或图表中的数字信息,以便准确地反映其情况。

它包括:(1)收集与分析数据;(2)求出变量的均值、方差、离差等;(3)使用中心弦图、直方图、折线图等工具绘制出数据的分布情况;(4)根据数据判断变量的特征;(5)利用函数描述数据的变化规律。

2、概率概率:指在多次实验中,当发生某一事件时的可能性大小。

六年级上册数学知识点汇总

六年级上册数学知识点汇总


圆 周 率 及 圆 例 4 红星剧场的圆形舞台的 的周长 直径是 15 米, 它的周长是多少 米? C=πd =3.14×15 =47.1(米) 答:它的周长是 47.1 米。 圆的面积
圆环的面积
例 5 一个圆形湖心岛的直径 是 200 米 它的面积是多少平 方米? r=d÷ 2=200÷ 2=100 米 S=πr² =3.14×100×100 =31400(平方米) 例 6 在一个周长是 62.8 米的 圆环面积为 S 环=πR² -πr² =π(R² -r² ) 圆形花圃边缘修一条宽 1 米的 环形小路,这条小路的面积是 多少平方米?
例 14 一项工程,由甲队做 30 天完成,由 三、将工作总量假设为“ 1” ,用工 乙队做 20 天完成,两队合作几天完成? 作总量 ÷工作效率的和=合作工作时 1 1 间 1 ( ) 12 (天) 20 30 答:两队合作 12 天完成。 3.比 知识要点 比的意义
典型例题 例 15 填一填:小强和小丽在礼品店买同样的 花,小强买了 4 枝,小丽买了 8 枝,小强和小 丽买的花的枝数之比为( ) : ( ) ,比值是 1 ( ) 答案:4:8 2 比的基本性质 例 16 把下面各比化成最简的整数比, 1 3 : 35:7 0.8:0.2 4 4 =5:1 =4:1 =1:3 3 比、分数、除法 例 17 填一填 : 3 : 5 3 5 的联系与区别 5
六年级上册数学知识点汇总 1.分数乘法 知识要点 分数乘整数 典型例题 例1 计算
5 8 12
姓名: 重点内容 分数乘整数: 用分子和整数相乘的积 作分子,分母不变,能约分的要先约 分,再计算。
分数乘分数
例2
8 3 计算 9 10

六年级数学上册知识点汇总

六年级数学上册知识点汇总

六年级数学上册知识点汇总六年级数学上册主要包括整数、分数、小数、正比例和反比例、图形与尺规作图等知识点。

以下是这些知识点的详细汇总:一、整数1. 整数的概念:整数包括自然数、0和负整数。

2. 整数的加法和减法:同号相加为同号,异号相减取绝对值相减。

3. 整数的乘法和除法:同号相乘为正,异号相乘为负;除法时,被除数的符号与商的符号相同。

二、分数1. 分数的概念:分数由分子和分母组成,分母表示分成几等份,分子表示取几份。

2. 分数的加法和减法:分母相同时可相加减,否则通分后再计算。

3. 分数的乘法和除法:乘法时分子相乘,分母相乘;除法时乘以倒数。

三、小数1. 小数的概念:小数是比分数更精确的数。

2. 小数的加法和减法:小数点对齐后进行加减运算。

3. 小数的乘法和除法:小数相乘时先忽略小数点,最后根据小数位数确定小数点位置;小数相除时将除数乘以倍数使之为整数后再计算。

四、正比例和反比例1. 正比例的关系:两个量成正比例时,一个量的增大引起另一个量增大,二者的比值保持不变。

2. 反比例的关系:两个量成反比例时,一个量的增大引起另一个量减小,二者的乘积保持不变。

3. 正比例和反比例的应用:利用正比例和反比例的性质进行问题求解,如比例系数、单位比值等。

五、图形与尺规作图1. 图形的认识:认识常见的图形,如三角形、矩形、圆等。

2. 尺规作图:利用尺规绘制各种图形,如已知边长画正方形、已知半径画圆等。

以上即为六年级数学上册的主要知识点汇总,通过系统的学习和巩固可以帮助学生更好地掌握数学知识,提高解题能力。

希望同学们能够认真学习,不断提升自己的数学水平!。

六年级上册数学必背知识点

六年级上册数学必背知识点

六年级上册数学必背知识点
一、有关圆的计算公式
1、已知圆的直径,求圆的半径:r=d÷2 ;
已知圆的周长,求圆的半径:r=C÷3.14÷2
2、已知圆的半径,求圆直径:d=2r ;
已知圆的周长,求圆的直径:d=C÷3.14
3、已知圆的半径,求圆的周长:C=2πr;
已知圆的直径,求圆的周长: C=πd
=πr+d
4、已知圆的半径,求半圆的周长:C
半圆
=πd÷2+d
已知圆的直径,求半圆的周长:C
半圆
5、已知圆的半径,求圆的面积:S=πr²(半径未知,先求半径)
6、圆环的面积:S
=大圆面积-小圆面积(先求大圆的半径和小圆的半径)圆环
7、其他平面图形的面积公式
(1)平行四边形面积=底×高
(2)三角形面积=底×高÷2
(3)梯形面积=(上底+下底)×高÷2
(4)长方形面积=长×宽
(5)正方形面积=边长×边长
二、有关百分数和分数的问题
1、求一个数是另一个数的百分之几,用除法:前面的数÷后面的数=百分之几
2、求百分率:什么率的数量÷总数量=什么率。

3、求一个数的百分之几是多少,用乘法:单位“1”的量×对应的百分数
4、已知一个数的百分之几是多少,求这个数。

用除法
部分量÷部分量所对应的百分数=单位“1”的量。

六年级上册数学知识重点

六年级上册数学知识重点

六年级上册数学知识重点第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2.一个数乘以一个分数的意思就是找出一个数的分数是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简单,可以先进行近似计算,再进行计算。

(整数和分母的近似)(2)近似就是用整数和以下的分母来近似最大公因数。

(整数绝对不能乘以分母,计算结果必须是最简单的分数)。

2.分数与分数相乘的算法是:分子相乘的乘积作为分子,分母相乘的乘积作为分母。

(分子乘以分子,分母乘以分母)(1)如果分数乘法公式中含有分数,则在计算前应将分数转换成假分数。

(2)分数化简的方法是将分子和分母同时除以它们的最大公因数。

(3)乘法过程中的近似是先在分子和分母上划掉两个可以近似的数,然后分别在上面和下面写出近似的数。

(分子和分母不得再包含近似分数后的公因数,这样计算出来的结果就是最简单的分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1.分数乘法和混合运算的顺序与整数相同。

先乘,后除,再加减。

如果有括号,先算括号里面是什么,再算括号外面是什么。

2.整数乘法定律也适用于分数乘法;运算法则可以使一些计算变得简单。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。

二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。

三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。

四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。

五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。

六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。

七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。

八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。

九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。

十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。

十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。

十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。

十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。

十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

单位“1”×分率=比较量;比较量÷分率=单位“1”(10)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11)单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。

(12)分率与量要对应。

①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。

找到每一个分率的单位“1”。

(五)倒数1、倒数:乘积是1的两个数互为倒数。

2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。

3、0没有倒数,1的倒数是它本身。

4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

第二单元位置与方向一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第三单元 分数除法(一)分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例如: 4152 表示:已知两个数的积是52 ,与其中一个因数41 ,求另一个因数是多少。

52÷4表示已知两个数的积是52 ,与其中一个因数4,求另一个因数是多少。

还表示把52平均分成4份,每份是多少。

(二)分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比。

比的后项不能为0。

2. 比值的意义:比的前项除以后项所得的商,叫做比值。

3.比值的表示方式:通常用分数、小数和整数表示。

4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。

例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5(2)56 ﹕34 =( 56 ×12)﹕( 34×12)=10﹕9(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几。

(2)用总数乘各部分的分率求出各部分的数量。

10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身。

一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

一个数(0除外)除以一个带分数,所得的商小于它本身。

(四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

数量关系:单位“1”×对应分率=对应数量;对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

4.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。

5.“已知一个数的几分之几是多少,求这个数”的解题方法:(1)设单位“1”的量为x,列方程解答。

(2)对应数量÷对应分率=单位“1”的总数量。

6.工程问题:把工作总量看作单位“1”,工作效率 =1工作时间工作时间 = 1÷工作效率合作时间=工作总量÷工作效率之和第四单元比1、两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能为0。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 2、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。

比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。

注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

5、比的基本性质(1)根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

根据比的基本性质,把比化成最简整数比。

(3)化简比:用求比值的方法。

注意:最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 3/2 = 3∶2 5 。

按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

第五单元圆1、圆心:圆中心一点叫做圆心。

用字母“O”来表示。

半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

2、圆心确定圆的位置,半径确定圆的大小。

3、在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d4、圆的周长:围成圆的曲线的长度叫做圆的周长。

5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

6、圆的周长公式:C=πd 或C=2πr7、圆的面积:圆所占平面的大小叫圆的面积。

8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²9、圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

相关文档
最新文档