北师大版八年级数学上册 第七章 平行线的证明 单元测试题(有答案)
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(包含答案解析)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40° 2.如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是( ) (1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个3.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°4.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个5.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 6.用反证法证明“m 为正数”时,应先假设( ).A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数7.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角8.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离9.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6810.下列说法:①同位角相等; ②任意三角形的三条中线交于一点;③钝角三角形只有一条高;④三角形的两边长分别为6和9,则这个三角形的第三边长不可能为16;⑤面积相等的两个三角形是全等图形;⑥两个直角一定互补其中,正确的有( )A .4个B .3个C .2个D .1个 11.下列说法正确的是( ) A .同位角相等B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 12.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确二、填空题13.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.14.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.15.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.16.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.17.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.18.如图,BE 、CE 分别是△ABC 内角∠ABC 和外角∠ACD 的平分线,若∠A=70°,则∠BEC=___________.19.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.20.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.三、解答题21.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .22.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值. (2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A 的最大值. 23.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.24.如图,AF 分别与BD 、CE 交于点G 、H ,155∠=︒,2125∠=︒.若A F ∠=∠,求证:C D ∠=∠.25.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .26.如图,AB DB =,ABD ACD ∠=∠,AC 与BD 交于点F ,点E 在线段AF 上,AE DC =,6DBE ∠=︒,108BCD ∠=︒.(1)求证:BCD BEA ≅△△;(2)求AFD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】过点E 做直线EF 平行于直线AB ,然后根据同位角和同旁内角即可判断(2)和(3),其中(1)和(4)无法判断.【详解】过点E 做直线EF 平行于直线AB ,如下图所示,(1)无法判断;(2)∵AB//CD ,AB//EF∴EF//CD∴70AEF ∠=︒,15DEF ∠=︒∴85AED ∠=︒故(2)正确;(3)由(2)得A CEF CED DEF ∠=∠=∠+∠,DEF D ∠=∠∴A CED D ∠=∠+∠故(3)正确;(4)无法判断;故选B .【点睛】本题考查了平行线的性质和判定,重点是做出辅助线,然后利用平行线的性质进行求解. 3.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C ,则2∠C=180°,∠C=90°,所以△ABC 是直角三角形;②因为∠A :∠B :∠C=2:3:5,设∠A=2x ,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC 是直角三角形;③因为∠A=90°﹣∠B ,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠B ﹣∠C=90°,则∠B=90°+∠C ,所以三角形为钝角三角形.所以能确定△ABC 是直角三角形的有①②③.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC 是直角三角形.5.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 7.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A 选项中,两直线平行,同位角相等,说法正确,是真命题;B 选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C 选项中,只有两直线平行时,同旁内角才互补,是假命题;D 选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题. 故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.8.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B .两直线平行,内错角相等,该项为假命题;C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C .【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.9.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.10.B解析:B【分析】根据相关性质依次判定各个说法即可.【详解】①错误,仅当两直线平行时,同位角才相等;②正确,三角形的中线一定会交于一点;③错误,钝角三角形也有三条高,其中有两条高在三角形外部;④正确,三角形两边长分别为6和9,则3<第三边长<15;⑤错误,不可通过面积判定全等;⑥正确,两个直角相加为180°,互补故选:B .【点睛】本题考查一系列性质,解题时需要注意一些性质或定理成立的前提条件,若遗失前提条件,则不成立.11.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.12.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a ∥b ,b ∥c ,则a ∥c ,说法正确;②若a ⊥b ,b ⊥c ,则a ⊥c ,说法错误,应为同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ; 故选:A .【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.二、填空题13.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.14.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 15.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键. 16.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∴当DAB B∠=∠时,AD∥BC(内错角相等,两直线平行).故答案为DAB B∠=∠【点睛】此题考查平行线的性质,难度不大17.15°【分析】根据三角形的内角和等于180°求出∠BAC再根据角平分线的定义求出∠BAE根据直角三角形两锐角互余求出∠BAD然后根据∠DAE=∠BAE-∠BAD计算即可得解【详解】解:∵∠ABC=3解析:15°【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【详解】解:∵∠ABC=30°,∠ACB=60°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是三角形的平分线,∴∠BAE=12∠BAC=12×90°=45°,∵AD是三角形的高,∴∠BAD=90°-∠B=90°-30°=60°,∴∠DAE=∠BAD-∠BAE=60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.18.35°【分析】根据角平分线的定义可得出再根据外角的性质可得与通过角度的计算可得出答案【详解】解:∵BECE分别是△ABC内角∠ABC和外角∠ACD 的平分线∴又∵∠ACD是△ABC的外角∴∴∵∠ECD解析:35°【分析】根据角平分线的定义,可得出12EBC ABC∠=∠,12ECD ACD∠=∠,再根据外角的性质可得ACD A ABC ∠=∠+∠与ECD BEC EBC ∠=∠+∠,通过角度的计算可得出答案.【详解】解:∵BE 、CE 分别是△ABC 内角∠ABC 和外角∠ACD 的平分线, ∴12EBC ABC ∠=∠,12ECD ACD ∠=∠, 又∵∠ACD 是△ABC 的外角,∴ACD A ABC ∠=∠+∠, ∴A ACD ABC ∠=∠-∠∵∠ECD 是△BCE 的外角,∴ECD BEC EBC ∠=∠+∠∴1111()2222ECD EBC ACD ABC ACD E ABC A B C ∠-∠=∠-∠=∠-∠=∠∠=, ∵∠A=70°, ∴1352A BEC ∠∠==︒, 故答案为:35°.【点睛】 本题考查了角平分线的定义和三角形外角的性质,熟练运用三角形外角的性质进行角度的计算是解题的关键.19.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG 中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.20.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正 解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 22.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去,B A的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.23.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.24.见详解【分析】根据平行线的判定与性质进行推理论证即可.【详解】证明:∵∠2+∠AHC =180°,∴∠AHC =180°−∠2=180°−125°=55°,∴∠AHC =∠1=55°,∴BD ∥CE (同位角相等,两直线平行),∴∠ABD =∠C (两直线平行,同位角相等),∵∠A =∠F (已知),∴AC ∥DF (内错角相等,两直线平行),∴∠ABD =∠D (两直线平行,内错角相等),∴∠C =∠D (等量代换);【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.25.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠, AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.26.(1)见解析;(2)78︒【分析】(1)根据ABD ACD ∠=∠,AFB CFD ∠=∠得出D A ∠=∠,然后利用SAS 即可证明三角形全等;(2)由(1)可知BCD BEA ∆≅∆,由题意知108BCD ∠=︒,即可得出 BEF ∠的度数,然后由AFD BEF DBE ∠=∠+∠求值即可;【详解】解:(1)证明:ABD ACD ∠=∠,AFB CFD ∠=∠,D A ∴∠=∠.在BCD ∆和BEA ∆中,CD EA D A BD BA =⎧⎪∠=∠⎨⎪=⎩()BCD BEA SAS ∴∆≅∆.(2)BCD BEA ∆≅∆,108BCD ∠=︒,108BEA BCD ∴∠=∠=︒,18010872BEF ∴∠=︒-=︒.6DBE ∠=︒,72678AFD BEF DBE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质与判定以及三角形的内角和,正确理解知识点是解题的关键;。
北师大版八年级数学上册第七单元《平行线的证明》单元练习题(含答案)

北师大版八年级数学上册第七单元《平行线的证明》单元练习题(含答案)一、单选题1.如图,AB∥CD,AD与BC 相交于点E,若∠A=40°,∠C=35°,则∠BED=()A.70°B.75°C.80°D.85°2.下列四个命题中:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④垂直于同一条直线的两条直线相互垂直. 真命题有()A.0个 B.1个 C.2个 D.3个3.如图,把一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C'、D'的位置上,ED'的延长线与BC的交点为G,若∠EFG=50°,那么∠1=()A.50°B.60°C.70°D.80°4.如图所示,如果∠D=∠EFC,那么()A.AD∥BC B.EF∥BC C.AB∥DC D.AD∥EF5.在△ABC中,已知∠A=∠B=12∠C,则三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤7.如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CDB.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BCD.由AD∥BC得到∠3=∠48.如图,AB∥CD,∠B=20°,∠D=60°,则∠BED的度数为( )A.40°B.80°C.90°D.l00°9.下列结论中。
2021-2022学年北师大版八年级数学上册《第7章平行线的证明》单元综合练习题(附答案)

2021-2022学年北师大版八年级数学上册《第7章平行线的证明》单元综合练习题(附答案)1.如图,在正方体ABCD﹣EFGH中,下列各棱与棱AB平行的是()A.BC B.CG C.EH D.HG2.三条直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定3.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠24.下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.同角的补角相等D.相等的角是对顶角5.若三角形三个内角度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°8.具备下列条件的三角形ABC中,不为直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠C C.∠A=90°﹣∠B D.∠A﹣∠B=90°9.下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1B.2C.3D.410.下列命题的逆命题是真命题的是()A.两直线平行同位角相等B.对顶角相等C.若a=b,则a2=b2D.若(a+1)x>a+1,则x>111.5月1日,小明一家准备在市内作短途旅游.小明征求大家的意见:爷爷奶奶:如果去玉泉观就一定再去伏羲庙;爸爸妈妈:如果不去南寺也就不去李广墓;姑姑:要么去玉泉观,要么去南郭寺.如果只去一个景点,小明应该选择去()A.玉泉观B.伏羲庙C.南郭寺D.李广墓12.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A.嫌疑犯乙B.嫌疑犯丙C.嫌疑犯甲D.嫌疑犯甲和丙13.在同一平面内,两条直线有种位置关系,分别是和.14.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是;(2)若a⊥b,b⊥c,则a与c的位置关系是.15.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.16.△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=.17.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=度.18.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)19.把命题“等角的补角相等”改写成“如果…那么…”的形式是.20.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为.组合连接a⊕b b⊕d d⊕c21.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.22.如图∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,那么DE ∥BF吗?请说明理由.23.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(),∴AB∥CD()∴∠B=∠DCE()又∵∠B=∠D(),∴∠DCE=∠D()∴AD∥BE()∴∠E=∠DFE()24.已知:如图,直线AB∥CD,并且被直线EF所截,EF分别交AB和CD于点P和Q,射线PR和QS分别平分∠BPF和∠DQF,求证:∠BPR=∠DQS.25.如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,∠BAC=80°,∠B=60°,求∠AEC和∠DAE的度数.26.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.参考答案1.解:结合图形可知,与棱AB平行的棱有CD,EF,GH.故选:D.2.解:∵三条直线a、b、c中,a∥b,b∥c,∴a∥c,故选:B.3.解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC和EC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.4.解:A、内错角相等,两直线平行,是平行线的判断方法之一,正确;B、两直线平行,同旁内角互补,是平行线的性质之一,正确;C、根据数量关系,同一个角的补角一定相等,正确;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误.故选:D.5.解:∵三角形三个内角度数之比为1:2:3,∴可以假设三个内角分别为x.2x,3x.∵x+2x+3x=180°,∴x=30°,∴三角形的三个内角分别为30°,60°,90°,∴△ABC是直角三角形.6.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.7.解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.8.解:根据三角形内角和定理,∠A+∠B+∠C=180°.A、∠A+∠B=∠C成立,则∠C=90°;B、∠A=∠B=∠C,则∠C=90°;C、∠A=90°﹣∠B,即∠A+∠B=90°所以∠C=90°;D、∠A﹣∠B=90°,那么∠A>90°,一定不是直角三角形.故选:D.9.解:①每一个外角都等于60°的多边形是正六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式有意义的条件是分母不为零,故错误;正确的有2个.故选:B.10.解:A、“两直线平行同位角相等”的逆命题是“同位角相等两直线平行”正确,故是真命题;B、“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;C、“若a=b,则a2=b2”的逆命题是“若a2=b2,则a=b”,因为a2=b2,则a=±b,所以逆命题错误,故是假命题;D、“若(a+1)x>a+1,则x>1”的逆命题是“若x>1,则(a+1)x>a+1”,逆命题中若a+1<0,则(a+1)x<a+1,所以逆命题错误,故是假命题.故选:A.11.解:姑姑的意见中有两个景点,必须选择其中的一个.若选去玉泉观,按爸爸妈妈的意见就得还去一个景点:伏羲庙,这与只去一个景点相矛盾,所以不可取.若去南郭寺,与爷爷奶奶、爸爸妈妈的意见均不矛盾.所以应去南郭寺.故选:C.12.解:由于“大量的商品在夜间被罪犯用汽车运走”,根据条件(3)可知:乙肯定不是主犯;根据(1)可知:嫌疑犯必在甲和丙之间;由(2)知:若丙作案,则甲必作案;由于没有直接证明丙作案的证据,因此根据(1)(2)可以确定的是甲一定是嫌疑犯.故选:C.13.解:在同一平面内,两条直线有两种位置关系,分别是平行和相交.故答案为:两;平行;相交.14.解:(1)∵a∥b,b∥c,∴a∥c;(2)∵a、b、c为平面上三条不同直线,a⊥b,b⊥c,∴a∥c.故答案为:a∥c,a∥c.15.解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.16.解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×120°=60°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°.故答案为:120°.17.解:设∠A=x,则∠C=∠ABC=2x.根据三角形内为180°知,∠C+∠ABC+∠A=180°,即2x+2x+x=180°,所以x=36°,∠C=2x=72°.在直角三角形BDC中,∠DBC=90°﹣∠C=90°﹣72°=18°.故填18°.18.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.19.解:题设为:两个角是等角的补角,结论为:它们相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么这两个角相等.故答案为:如果两个角是等角的补角,那么这两个角相等.20.解:结合前两个图可以看出:b代表正方形;结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c故答案为:a⊕c.21.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.22.解:DE∥BF,理由是:∵∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,∴∠CDE=∠ABF,∵∠ADE=∠AED,∴∠AED=∠ABF,∴DE∥BF.23.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).24.证明:∵AB∥CD,∴∠BPQ=∠DQF,∵射线PR和QS分别平分∠BPF和∠DQF,∴∠BPR=∠RPQ=∠BPQ,∠DQS=∠SQF=∠DQF,∴∠BPR=∠DQS.25.解:∵AE平分∠BAC,∠BAC=80°,∴∠BAE=40°,又∵∠B=60°,∴∠AEC=∠BAE+∠B=100°.又∵AD⊥BC,∴∠ADE=90°,∴∠DAE=∠AEC﹣∠ADE=100°﹣90°=10°.26.解:在三角形ABD中,∠ADB=∠ABD=(180°﹣32°)=74°,在三角形ADC中,∠DAC=∠DCA=∠ADB=37°,∴∠BAC=∠DAC+∠BAD=37°+32°=69°.。
北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4 B .3 C .2 D .16.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°7.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 8.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 10.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 11.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 12.下列说法正确的是( ) A .同位角相等 B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 二、填空题13.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).16.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.17.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.18.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是_____(填序号)19.下列命题是假命题的是有____________①内错角相等 ②同位角相等,两直线平行 ③一个角的余角不等于它本身 ④相等的角是对顶角.20.如图,将ABC 纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若1268∠+∠=︒,则'BA C ∠的度数是______________.三、解答题21.如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .22.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.25.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.26.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误;②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.6.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠DAC=1∠BAC=31°,2∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.11.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.12.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.二、填空题13.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒,∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.16.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 17.40【分析】根据三角形的内角和得出再利用角平分线得出利用三角形内角和解答即可【详解】是高是角平分线故答案为40【点睛】本题考查了三角形的内角和定理熟悉直角三角形两锐角互余和三角形的内角和等于是解题的 解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可. 【详解】AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=,AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.18.①③【解析】分析:分别根据平行线的性质对顶角及邻补角的定义平行公理及推论对各小题进行逐一分析即可详解:①符合对顶角的性质故①正确;②两直线平行内错角相等故②错误;③符合平行线的判定定理故③正确;④如解析:①③【解析】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.详解:①符合对顶角的性质,故①正确;②两直线平行,内错角相等,故②错误;③符合平行线的判定定理,故③正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故④错误.故答案为①③.点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.19.①③④【分析】根据平行线的判定与性质判断①②利用反证法证明③④即可【详解】①应该是两直线平行内错角相等故①是假命题;②同位角相等两直线平行正确故②是真命题;③直角的余角等于它本身故③是假命题;④相等解析:①③④【分析】根据平行线的判定与性质判断①②,利用反证法证明③④即可.【详解】①应该是两直线平行,内错角相等,故①是假命题;②同位角相等,两直线平行,正确,故②是真命题;③直角的余角等于它本身,故③是假命题;④相等的角不一定是对顶角,故④是假命题.故答案为:①③④.【点睛】本题主要考查判断命题的真假,解此题的关键在于熟练掌握各个基本知识点.20.107°【详解】【考点】几何图形翻折变换(折叠问题)四边形内角和定理平角的定义三角形的两条内角平分线所夹的角与顶角的关系【分析】将纸片沿折叠使点落在点处可知根据四边形内角和等于可得而所以所以根据可求 解析:107°【详解】【考点】几何图形翻折变换(折叠问题)、四边形内角和定理、平角的定义、三角形的两条内角平分线所夹的角与顶角的关系.【分析】将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,可知A DA E ∠=∠' .根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' .而1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=,所以12360ADA AEA ︒∠+∠+∠+='∠',所以12A ∠+∠=∠+2DA E A '+∠=∠ .根据1268︒∠+∠=,可求出68234A ︒︒∠=÷= .根据'A B 平分ABC ∠,'A C 平分ACB ∠ 可知,'BA C ∠是两条内角平分线所夹的角,根据公式有'BA C ∠190902A ︒︒=+∠= 1341072︒︒+⨯= . 【解答】解:根据折叠可得A DA E ∠=∠',根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' . 根据平角的定义有1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=12360ADA AEA ︒''∴∠+∠+∠+∠=122A DA E A ∴∠+∠=∠+='∠∠'A B 平分ABC ∠,'A C 平分ACB ∠∴'BA C ∠1190903410722A ︒︒︒︒=+∠=+⨯= 故答案为:107︒ .三、解答题21.证明见解析【分析】先根据已给的角度判断BD//CE ,从而可得∠ABD=∠C ,再根据等量代换可得∠ABD=∠D ,从而可证//AC DF .【详解】证明:∵178∠=︒,2102∠=︒,∴∠1+∠2=78°+102°=180°,∴BD//CE ,∴∠ABD=∠C ,∵C D ∠=∠,∴∠ABD=∠D ,∴//AC DF .【点睛】本题考查平行线的性质和判定.熟练掌握平行线的性质和判定定理,并能正确识别同位角、同旁内角是解题关键.22.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A , 则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 26.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.。
北师大版八年级数学上册第7章《平行线的证明》单元测试(含答案)

第7章《平行线的证明》单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中是真命题的为().A.两锐角之和为钝角B.两锐角之和为锐角C.钝角大于它的补角D.锐角大于它的余角3.“两条直线相交,有且只有一个交点”的题设是().A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().A.相等B.互余或互补C.互补D.相等或互补5.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为().A.45°,45°,90°B.30°,60°,90°C.25°,25°,130°D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,则与∠FCD相等的角有().A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有().(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个角的余角一定小于这个角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是().A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定9.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=().A.50°B.65°C.80°D.95°10.如图所示,已知AB∥CD,AD和BC相交于点O,若∠A=42°,∠C=58°,则∠AOB 的度数为().A.45°B.60°C.80°D.90°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=__________.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于点F,则∠D=__________.13.如图所示,AB∥CD,∠1=115°,∠3=140°,则∠2=__________.14.如果一个三角形三个内角的比是1∶2∶3,那么这个三角形是__________三角形.15.一个三角形的三个外角的度数比为2∶3∶4,则与此对应的三个内角的比为__________.16.如图所示,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=65°,则∠BFC=__________.17.“同角的余角相等”的题设是__________,结论是__________.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为__________.19.如果一个等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于__________.20.过△ABC的顶点C作AB的垂线,如果该垂线将∠ACB分为40°和20°的两个角,那么∠A,∠B中较大的角的度数是__________.三、解答题(本大题共5小题,共30分)21.(5分)如图所示,已知∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.(5分)如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC.23.(6分)如图所示,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.(6分)如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM.25.(8分)在△ABC中,BE平分∠ABC,AD为BC边上的高,且∠ABC=60°,∠BEC =75°,求∠DAC的度数.参考答案1答案:B2答案:C3答案:C4答案:D5答案:B6答案:B7答案:C8答案:B9答案:C10答案:C11答案:80°∴∠4=∠3=80°.12答案:53°20′13答案:75°14答案:直角15答案:5∶3∶116答案:122.5°17答案:两个角是同一个角的余角这两个角相等18答案:90°19答案:90°20答案:70°21证明:∵AE∥BC,(已知)∴∠2=∠C,(两直线平行,内错角相等)∠1=∠B.(两直线平行,同位角相等)∵∠1=∠2,(已知)∴∠B=∠C.(等量代换)∴AB=AC,△ABC是等腰三角形.(等角对等边)22证明:∵BF∥DE,(已知)∴∠2=∠FBC.(两直线平行,同位角相等)∵∠2=∠1,(已知)∴∠FBC=∠1.(等量代换)∴GF∥BC.(内错角相等,两直线平行)23解:∵AB∥CD,∴∠AEF=∠EFD=62°,∠CFE=180°-∠AEF=118°.又FH平分∠EFD,∴∠EFH=31°.又GF⊥FH,∴∠EFG=90°-31°=59°.∴∠GFC=∠CFE-∠EFG=59°24证明:∵AB∥CD,(已知)∴∠AEF=∠CFM.(两直线平行,同位角相等)又∵∠PEA=∠QFC,(已知)∴∠AEF+∠PEA=∠CFM+∠QFC,(等式性质)即∠PEF=∠QFM.∴PE∥QF.(同位角相等,两直线平行)∴∠EPM=∠FQM.(两直线平行,同位角相等)25解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°.∴∠C=180°-∠EBC-∠BEC=180°-30°-75°=75°. 又∵∠C+∠DAC=90°,∴∠DAC=90°-∠C=90°-75°=15°.。
北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析

北师大新版八年级上学期《第7章平行线的证明》单元测试卷一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠46.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3 13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为个.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)18.已知:a∥b,b∥c,则a∥c.理由是.19.已知直线a∥b,b∥c,则直线a、c的位置关系是.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是.21.如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上点E处,若∠A=32°;则∠BDC=°.22.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.23.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.24.如图,△ABC沿直线AB向下翻折得到△ABD,若∠ABC=25°,∠ADB=110°,则∠DAC的度数是.25.如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为.26.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为.27.举反例说明命题对于“对于任意实数x,代数式x2﹣1的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).28.下列命题:①若a2=b2,则a=b;②点(﹣2,1)关于y轴的对称点为(2,1);③两组对边分别相等的四边形是平心四边形,其中真命题有(填写序号).29.重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.30.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2min;②洗菜3min;③准备面条及佐料2min;④用锅把水烧开7min;⑤用烧开的水煮面条和菜要3min.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少需要min.三.解答题(共20小题)31.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.32.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD()所以∠BGF+∠3=180°()因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=.(等式性质).所以∠BGF=.(等式性质).33.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.34.如图,已知∠1=∠2求证:a∥b.35.已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+ =180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()36.(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB ①,如图(b),则∠ABE+∠BEF=180°,()因为∠ABE+∠BED+∠EDC=360°()所以∠FED+∠EDC=°(等式的性质)所以FE∥CD ②()由①、②得AB∥CD ().(2)如图(c),当∠1、∠2、∠3满足条件时,有AB∥CD.(3)如图(d),当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.37.填空,如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知)又∠1=∠DMN ()∴∠2=∠DMN(等量代换)∴DB∥EC ()∴∠DBC+∠C=180°()∵∠C=∠D(已知)∴∠DBC+ =180°(等量代换)∴DF∥AC ()∴∠A=∠F ()38.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE=.(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)40.如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数.41.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.42.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.43.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.44.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.45.在数学实践课上,老师在黑板上画出如下的图形(其中点B、F、C、E在同一条直线上),并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)写出所有的真命题.(用序号表示题设、结论)(2)请选择一个给予证明.46.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=,图2中:∠DEF=;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.47.如图,在△ABC和△DCB中,AC与BD交于点E,现有三个条件:①AB=DC;②∠A=∠D,③∠1=∠2,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.(1)条件是;结论是(填序号);(2)证明.48.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,请你根据表中数据猜一下2号,5号,8号,9号学生哪一个进入30秒跳绳决赛.说明你的理由.49.四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.50.我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.北师大新版八年级上学期《第7章平行线的证明》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④平面内过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.【点评】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【分析】根据线段是任意两点之间的距离,它有长度,故同一平面内的两条线段可以既不平行又不相交.【解答】解:根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选:C.【点评】此题主要考查了线段的定义以及线段之间的位置关系,利用线段定义得出是解题关键.3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离【分析】根据射线在一直线上课判断A;根据平行公理的推论课判断B;根据点到直线的距离定义可判断D;根据垂线的性质可判断C.【解答】解:A、当两射线在一直线上时就不平行,故本选项错误;B、过直线外一点有且只有一条直线平行于已知直线,故本选项错误;C、在同一平面内,过一点有且只有一条直线垂直于已知直线,故本选项正确;D、过直线外一点作直线的垂线,这点和垂足之间的线段的长是点到直线的距离,故本选项错误;故选:C.【点评】本题考查了对平行公理及推论,垂线,点到直线的距离等知识点的应用,关键是能根据定理和性质进行判断.5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠4【分析】利用两直线平行,同位角相等与垂直的定义,对选项一一分析,排除错误答案.【解答】解:A、正确,∵∠1=∠4,∴l1∥l2(同位角相等,两直线平行).B、错误,应为∠1+∠2=∠3+∠4.C、错误,应为∠1+∠2=90°或∠3+∠4=90°.D、错误,应为∠2=∠3.故选:A.【点评】本题此题综合考查了两直线平行,同位角相等的性质和垂直的定义.6.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数【分析】根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.【解答】解:A、因负数没有平方根,故任何数都有平方根错误;B、因0的平方根是0,故只有正数才有平方根错误;C、负数有立方根,错误;D、存在算术平方根等于本身的数,即是1和0,正确.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且﹣2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角、直线的垂直、有理数进行判断即可.【解答】解:①一个三角形中至少有两个锐角,是真命题;②垂直于同一条直线的两条直线平行,是假命题;③如果两个有理数的积小于0,但这两个数的和不一定小于0,是假命题;故选:B.【点评】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.【点评】此题主要考查了命题与定理等知识,熟练掌握相关定理是解题关键.18.已知:a∥b,b∥c,则a∥c.理由是平行于同一直线的两条直线平行.【分析】根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即可求解.【解答】解:∵a∥b,a∥c(已知),∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为平行于同一直线的两条直线平行【点评】本题考查了平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.注意:平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.19.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D.【分析】根据平行线的判定定理进行解答即可.【解答】解:添加的条件为:∠DAB=∠D,。
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》检测(答案解析)

一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒A .0B .1C .2D .3 3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 4.下列命题中,真命题的是( ) A .同旁内角互补,两直线平行B .相等的角是对顶角C .同位角相等D .直角三角形两个锐角互补5.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等6.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个7.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 9.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 10.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒11.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°12.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个 二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.15.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).16.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.18.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设___________ 19.如图,AE 平分,BAC BE AE ∠⊥于,//E ED AC ,,BAC a ∠=则BED ∠的度数为________________.(用含α的式子表示)20.如图,∆ABC 中,∠A= 82︒ ,∆ABC 的两条角平分线交于点 P ,∠BPD 的度数是_____;三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .23.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数24.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .25.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).26.如图,CD AB ⊥于D ,点F 是BC 上任意一点,FE AB ⊥于E ,且12∠=∠,380∠=︒.(1)证明://BC DG ;(2)若AD AG =,求ABC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∴∠EAB=3x,∠ECD=3x,∴∠FAB=4x,∠FCD=4x,∵AB∥CD,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-(∠EAF+∠ECF+∠FCA+∠FAC)=180°-(x+y+60°)=90°故选C.【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用.2.D解析:D【分析】根据同角的余角相等可得∠AOC=∠BOD;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠AOC=∠BOD,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE平分∠AOD,故①错误.综上,②③④正确,共3个,故选:D.【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.3.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∠ABC=30°,∴∠ABD=∠CBD=12DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.4.A解析:A【分析】利用平行线的判定、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【详解】解:A、同旁内角互补,两直线平行,正确,是真命题;B、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C、只有当两直线平行时,同位角才会相等;两直线不平行时,同位角不会相等,故错误,是假命题;D、直角三角形两锐角互余,不会互补,故错误,是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角的定义及互补的定义,难度不大.5.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A 、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B 、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D 、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBES S =△△,故⑤正确; ⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.7.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.11.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行);C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行).故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.12.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC 中,不妨设∠A=60︒,①若∠A=2∠C ,则∠C=30︒,∴∠B=180603090︒-︒-︒=︒;②若∠C=2∠A ,则∠C=120︒,∴∠B=180601200︒-︒-︒=︒(不合题意,舍去);③若∠B=2∠C ,则3∠C 18060=︒-︒=120︒,∴∠C 4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.66【分析】在线段CD 上取点E 使CE=BD 再证明△ADB ≅△AEC 即可求出【详解】在线段DC 取点ECE=BD 连接AE ∵CE=BD ∴BE=CD ∵AB=CD ∴AB=BE ∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD 上取点E 使CE =BD ,再证明△ADB ≅△AEC 即可求出. 【详解】在线段DC 取点E ,CE =BD ,连接AE ,∵CE =BD ,∴BE =CD ,∵AB =CD ,∴AB =BE ,∠BAE =∠BEA =(180°-48°)÷2=66°,∴∠DAE =48° ,∠AED =66°,∴△ADB ≅△AEC ,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=∠A2=∠A3=据此找规律可求解【详解】解:在△ABC 中∠A =∠ACD ﹣∠ABC =α∵∠ABC 的平分线与∠ACD 的平分线交于点A1 解析:202012α【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 16.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.18.一个三角形中有两个角是直角【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可【详解】用反证法证明命题一个三角形中不能有两个角是直角第一步应假设一个三角形中有两个角是直角故答案为一个三角形中 解析:一个三角形中有两个角是直角.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【详解】用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.故答案为一个三角形中有两个角是直角.【点睛】此题考查反证法,解题关键在于掌握其证明过程.19.【分析】由ED//AC 可以得到所以由三角形内角和定理可以得到的值再次利用三角形内角和定理就可以得到的度数【详解】解:由已知得:又ED//AC ∴∴∴∠BED=故答案为【点睛】本题考查三角形内角和定理和 解析:1902a + 【分析】由ED//AC 可以得到EDB C ∠=∠,所以由三角形内角和定理可以得到EDB EBD ∠+∠的值,再次利用三角形内角和定理就可以得到BED ∠的度数.【详解】 解:由已知得:1909022a ABE BAC ∠=︒-∠=︒-, 又ED//AC ,∴EDB C ∠=∠, ∴180180909022a a EDB EBD BAC ABE a ⎛⎫∠+∠=︒-∠-∠=︒--︒-=︒- ⎪⎝⎭ ∴∠BED=180909022a a ⎛⎫︒-︒-=︒+ ⎪⎝⎭故答案为902a ︒+. 【点睛】 本题考查三角形内角和定理和角平分线的综合应用,灵活运用三角形内角和定理是解题关键.20.49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°由角平分线定义得出∠PBC+∠PCB=(∠ABC+ACB)=49°再由三角形的外角性质即可得出结果【详解】∵△ABC 中∠解析:49°【分析】由三角形内角和定理得出∠ABC+∠ACB=180°-∠A=98°,由角平分线定义得出∠PBC+∠PCB=12(∠ABC+ACB)=49°,再由三角形的外角性质即可得出结果. 【详解】∵△ABC 中,∠A=82°,∴∠ABC+∠ACB=180°-∠A=98°,∵△ABC 的两条角平分线交于点P ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , ∴∠PBC+∠PCB=12(∠ABC+ACB)=1982⨯︒=49°, ∴∠BPD=∠PBC+∠PCB=49°,故答案为:49°.【点睛】 本题考查了三角形内角和定理、角平分线定义以及三角形的外角性质;熟练掌握三角形内角和定理是解题的关键.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB 得到FG ∥AC ,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG ∥AC 得到∠BFG=∠A=58°,结合CF ⊥AB 得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB .【详解】解:(1)∵∠1和∠3分别在CF ,GF 的同侧,并且在第三条直线BC 的同旁, ∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF ,DE 两条直线之间,并且在第三条直线AC 的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 23.∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.24.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 25.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 26.(1)证明见解析;(2)80︒【分析】(1)先根据CD ⊥AB 于D ,FE ⊥AB 得出CD ∥EF ,故可得出∠2=∠DCB ;由∠2=∠DCB ,∠1=∠2得出DG ∥BC ,由此可得出结论;(2)由(1)得B ADG ∠=∠,再证明380ADG ∠=∠=︒,最后由平行线的性质可得结论.【详解】(1)证明:∵CD AB ⊥,FE AB ⊥∴//CD EF∴2BCD ∠=∠.∵12∠=∠,∴1BCD ∠=∠,∴//BC DG(2) 由(1)得B ADG ∠=∠∵AD AG =∴380ADG ∠=∠=︒∵//DG BC∴80ABC ADG ∠=∠=︒【点睛】本题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学上册第七章平行线的证明单元测试题题号一二三总分得分一、选择题(本大题共12小题,共36分)1.下列语句中,是命题的为()A. 延长线段AB到CB. 垂线段最短C. 过点O作直线a//bD. 锐角都相等吗2.下列说法中①两条直线被第三条直线所截,同旁内角互补,②同一平面内的两条不同直线,只有相交和平行两种位置关系,③有相同的顶点,且大小相等的两个角,称为对顶角,④一个角的补角一定比这个角的余角大,正确的个数有A. 1个B. 2个C. 3个D. 4个3.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A. ∠1=∠3B. ∠2+∠4=180°C. ∠1=∠4D. ∠3=∠44. 6.如图,直线l1//l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A. 90°B. 100°C. 108°D. 110°5.如图,直线AD//BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A. 70°B. 60°C. 50°D. 40°6.已知a//b,一块含30°角的直角三角尺按如图所示的方式放置,∠2=45°,则∠1的度数为()A. 100°B. 135°C. 155°D. 165°第1页,共22页7.如图,已知长方形ABCD沿BE折叠,点C恰好落在AD边上的点F处,若∠ABF=50°,则∠CBE的度数为()A. 35°B. 30°C. 25°D. 20°8.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A. 80°B. 85°C. 95°D. 100°9.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A. 115°B. 120°C. 125°D. 130°10.如图,在△ABC中,∠B=85°,∠ACB=45°,若CD//AB,则∠ACD的度数为()A. 40°B. 45°C. 50°D. 60°11.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()A. 25°B. 50°C. 65°D. 70°12.两条平行直线被第三条直线所截,同旁内角的平分线()A. 互相重合B. 互相平行C. 互相垂直D. 无法确定二、填空题(本大题共9小题,共27分)13.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:______.14.如图,BD//EF,∠A=30°,∠B=40°,则∠E=°.15.说明命题“若x>−4,则x2>16”是假命题的一个反例可以是_______.16.一个三角形三个内角度数比为8:7:3,这个三角形是______ 三角形.17.命题“相等的两个角是内错角”的逆命题是________命题.(填“真”或“假”)18.如图,ΔABC是一块直角三角板,∠BAC=90∘,∠B=30∘,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20∘,则∠BED的度数为∘.19.如图,AB//CD,点E在AB上,点F在CD上,如果∠CFE︰∠EFB=3︰4,∠ABF=40°,那么∠BEF的度数为________.20.如图,点D在∠AOB的平分线OC上,点E在OA上,ED//OB,∠1=25∘,则∠AED的度数为°.21.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠DBC=______°.三、解答题(本大题共6小题,共57分)22.如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE//AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.第3页,共22页23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.24.已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,求证:AD//BC25.如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF.求证:AE//FB.26.如图1,直线AB//CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF.(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤说明理由)(2)如图2,若点P、Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4=.(不需说明理由,请直接写出答案)(3)如图3,在图1基础上,作P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P1=(用x,y的代数式表示),若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2,P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3…,依次平分下去,则∠P n=.(4)在一次综合实践活动课上,张开同学制作了一个图5的“回旋镖”,经测量发现∠PAC=38°,∠PBC=22°,他很想知道∠APB与∠C的数量关系,你能告诉他吗?请你直接写出答案:_____.27.如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE第5页,共22页(1)当∠BAD=60°时,求∠EDC的度数;(2)当点D在BC边(点B、C除外)上运动时,试探究∠BAD与∠EDC的数量关系;(3)如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试继续探究∠BAD与∠EDC 的数量关系.答案和解析1.【答案】B【解析】【分析】本题考查命题的定义,根据命题的定义对各选项分别判断即可.【解答】解:A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题,故选B.2.【答案】B【解析】【分析】本题考查的是平行线的判定、对顶角的定义、两直线的位置关系及余角和补角的定义,根据平行线的判定、对顶角的定义、两直线的位置关系及余角和补角的定义分别进行分析即可.【解答】解:①两条直线第三条直线所截,同旁内角不一定互补,故此说法错误;②同一平面内的两条不同直线,只有相交和平行两种位置关系,此说法正确;③如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,故此说法错误;④个角的补角比这个角的余角大90°,故此说法正确.故选B.3.【答案】D【解析】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;第7页,共22页由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.4.【答案】B【解析】【分析】依据l1//l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°−∠3−∠4=100°.【详解】如图,∵l1//l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°−∠3−∠4=180°−50°−30°=100°,故选B.【点睛】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.【答案】B【解析】【分析】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.依据三角形内角和定理,即可得到∠ABC=60°,再根据AD//BC,即可得出∠2=∠ABC= 60°.【解答】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD//BC,∴∠2=∠ABC=60°,故选:B.6.【答案】D【解析】【分析】本题主要考查了平行线的性质,三角形的内角和外角,邻补角和对顶角等知识点.解题时注意:两直线平行,同位角相等.先利用对顶角相等,求出∠7,再利用三角形内角和求出∠8,再求出∠4,根据同位角相等求出∠5,邻补角求出∠6,最后利用三角形外角求出∠1即可.【解答】解:如图,第9页,共22页由图知∠2=∠7=45°,∴∠8=180°−90°−45°=45°,∴∠4=∠8=45°,又∵a//b,∴∠5=∠4=45°,∴∠6=180°−45°=135°,∴∠1=∠6+∠A=135°+30°=165°,故选D.7.【答案】D【解析】解:∵长方形ABCD沿BE折叠,点C恰好落在AD边上的点F处,∴∠FBE=∠EBC,∵长方形ABCD,∴∠ABC=90°,∵∠ABF=50°,∴∠CBE=1(90°−50°)=20°,2故选D.根据翻折的性质可得∠FBE=∠EBC,再由∠ABC=90°,即可解答.此题考查翻折问题,关键是根据翻折的性质解答.8.【答案】B【解析】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a//b.∵∠3=85°,∴∠4=∠3=85°.故选:B.先根据题意得出a//b,再由平行线的性质即可得出结论.本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.9.【答案】D【解析】【分析】本题主要考查了三角形内角和定理和三角形的外角性质,先根据三角形的内角和为180°求出第三个内角,然后根据内角和相邻外角的关系,求出答案.【解答】解:∵三角形的内角和为180°,已知三角形的两个内角分别为55°和65°,∴第三个内角为180°−55°−65°=60°.那么55°角相邻的外角为125°,65°相邻的外角为115°,60°相邻的外角为120°;所以这个三角形的外角不可能是130°.故选D.10.【答案】C【解析】【分析】本题考查了三角形内角和定理及平行线的性质.由∠B=85°,∠ACB=45°可得∠A的度数,由CD//AB可得∠A=∠ACD.【解答】解:在△ABC中,∵∠B=85∘,∠ACB=45∘,∴∠A=180∘−∠B−∠ACB=50∘,∵CD//AB,∴∠ACD=∠A=50∘.故选C.11.【答案】C第11页,共22页【解析】解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°−∠DAC=65°故选:C.根据三角形的内角和定理以及角平分线的定义即可求出答案.本题考查三角形的内角和定理,解题的关键是熟练运用三角形的内角和定理,本题属于基础题型.12.【答案】C【解析】【分析】本题考查的是平行线性质有关知识,利用平行线的性质进行解答即可.【解答】解:如图,∵AB//CD,∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补),∵MN、OP分别是平分∠BOM,∠OMD,∴2∠POM+2∠NMO=180°,∴∠POM+∠GMO=90°,∴∠MGO=90°,∴MN⊥OP.故选C.13.【答案】如果两条直线都与第三条直线平行,那么这两条直线互相平行【解析】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.本题考查了命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14.【答案】70【解析】【分析】本题考查的是平行线的性质,三角形外角的性质有关知识,属于基础题.根据DB//EF可得∠ACD=∠E,然后再利用外角的性质进行解答.【解答】解:∵BD//EF,∴∠ACD=∠E,∵∠A=30°,∠B=40°,∴∠ACD=∠A+∠B=70°,∴∠E=70°.故答案为70.15.【答案】x=−3(答案不唯一)【解析】【分析】本题考查了命题与定理,根据判断一个命题是否为假命题,举一个反例即可.【解答】说明命题“x>−4,则x2>16”是假命题的一个反例可以是x=−3.−3>−4,但(−3)2<16故答案为−3.16.【答案】锐角【解析】第13页,共22页【分析】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.设三角形的三个内角分别是8x,7x,3x,再由三角形内角和定理求出x的值即可.【解答】解:∵一个三角形三个内角度数的比为8:7:3,∴设三角形的三个内角分别是8x,7x,3x,∴8x+7x+3x=180°,解得x=10°,∴8x=80°.∴这个三角形是锐角三角形,故答案为:锐角.17.【答案】假【解析】【分析】此题主要考查了命题与定理,正确掌握平行线的性质是解题关键.根据平行线的性质进而判断得出答案.【解答】解:∵原命题的条件为两个角相等,结论为这两个角是内错角,∴原命题的逆命题为如果两个角是内错角,那么这两个角相等,此命题是假命题.18.【答案】80【解析】【分析】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.依据DE//AF,可得,再根据三角形外角性质,即可得到,进而得出.【解答】解:如图所示,∵DE//AF,∴∠BED=∠BFA,又∵∠CAF=20∘,∠C=60∘,∴∠BFA=20∘+60∘=80∘,∴∠BED=80∘,故答案为80.19.【答案】60°【解析】【分析】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB//CD,∠ABF=40°,∴∠CFB=180°−∠ABF=140°,又∵∠CFE:∠EFB=3:4,∠CFB=60°,∴∠CFE=37∵AB//CD,∴∠BEF=∠CFE=60°.故答案为60°.20.【答案】50【解析】【分析】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,由三角形的外角的性质即可得到结论.【解答】解:∵ED//OB,第15页,共22页∴∠3=∠1=25°,∵点D在∠AOB的平分线OC上,∴∠1=∠2=25°,∴∠AED=∠2+∠3=50°,故答案为:50.21.【答案】15【解析】【分析】本题考查了三角形内角和定理,平行线的性质,三角形外角性质等知识点,能求出∠BDC 和∠BCD的度数是解此题的关键.根据平行线的性质求出∠BCD,根据三角形外角性质求出∠BDC,根据三角形内角和定理求出即可.【解答】解:∵AB//CF,∠A=60°,∴∠BCD=∠ABC=90°−∠A=30°,∵∠EFD=90°,∠E=45°,∴∠EDC=∠E+∠EFD=135°,∴∠DBC=180°−30°−135°=15°,故答案为15.22.【答案】(1)证明:∵CD平分∠ACB,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DE//AC;(2)解:∵CD平分∠ACB,∠3=30°,∴∠ACB=2∠3=60°.∵DE//AC,∴∠BED=∠ACB=60°.∵∠B=25°,∴∠BDE=180°−60°−25°=95°.【解析】考查平行线的判定与性质等知识,角平分线的定义,三角形内角和定理.(1)先根据角平分线的定义得出∠2=∠3,再由∠1=∠2可得出∠1=∠3,进而可得出结论;(2)根据∠3=30°可得出∠ACB的度数,再由平行线的性质得出∠BED的度数,由三角形内角和定理即可得出结论.23.【答案】解:∵∠CAB=50°,∠C=60°,∴∠ABC=180°−50°−60°=70°,,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°−90°−∠C=30°,∵AE,BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC−∠EAF=5°,第17页,共22页∠AFB =∠C +∠CBF =60°+35°=95°,∴∠BOA =∠EAF +∠AFB =25°+95°=120°,故∠DAE =5°,∠BOA =120°.【解析】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF 、∠CBF ,再运用三角形外角性质求出∠AFB.先利用三角形内角和定理可求∠ABC ,在直角三角形ACD 中,易求∠DAC ;再根据角平分线定义可求∠CBF 、∠EAF ,可得∠DAE 的度数;然后利用三角形外角性质,可先求∠AFB ,再次利用三角形外角性质,容易求出∠BOA .24.【答案】解:∵AD 平分∠EAC ,∴∠EAD =12∠EAC , 又∵∠B =∠C ,∠EAC =∠B +∠C ,∴∠B =12∠EAC ,∴∠EAD =∠B(同位角相等两直线平行),所以AD//BC .【解析】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,平行线的判断,熟记性质与平行线的判定方法并求出∠B =∠EAD 是解题的关键.由角平分线的定义可知:∠EAD =12∠EAC ,再由三角形的外角的性质可得∠EAD =∠B ,然后利用平行线的判定定理可证明出结论.25.【答案】证明:∵AD =BC ,∴AD +CD =BC +CD ,∴AC =BD ,在△ACE 和△BDF 中,{AC =BD AE =BF CE =DF,∴△ACE≌△BDF(SSS)∴∠A =∠B ,∴AE//BF ;【解析】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是利用SSS 证明△ACE≌△BDF.可先证明△ACE≌△BDF,得出∠A=∠B,即可得出AE//BF.26.【答案】解:(1)如图1,过点P作PH//AB,∵AB//CD,∴PH//CD,∴∠1=∠EPH,∠2=∠FPH而∠EPF=∠EPH+∠FPH∴∠EPF=∠1+∠2=110°;(2)80°;(3)12(x+y)°,(12)n(x+y)°;(4)∠APB=∠C+60°.【解析】【分析】本题考查了平行线性质的应用,关键是正确作辅助线,利用性质解决问题.(1)过点P作PH//AB//CD,根据平行线的性质:两直线平行,内错角相等即可证得;(2)同理依据两直线平行,内错角相等即可证得∠1+∠4=∠2+∠3,求得∠4=80°;(3)利用(1)的结论和角平分线的性质即可写出结论;(4)过A、B分别作直线AE、BF,使AE//BF,利用(1)的结论即可求解.【解答】解:(1)见答案;(2)由(1)可知,∠4=∠2+∠3−∠1=80°,故答案为80°;(3)由(1)可知,∠P=(x+y)°第19页,共22页∠P1=12x°+12y°=12(x+y)°∠P n=(12)n(x+y)°;故答案为12(x+y)°,(12)n(x+y)°;(4)∠APB=∠C+60°.理由如下:过A、B分别作直线AE、BF,使AE//BF.如图,由(1)规律可知∠C=∠1+∠2.∠APB=∠PAE+∠PBF=(∠PAC+∠1)+(∠PBC+∠2)=∠PAC+∠PBC+(∠1+∠2) =∠C+60°.故答案为∠APB=∠C+60°.27.【答案】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=105°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC−∠EDC=105°−∠EDC=45°+∠EDC,解得:∠EDC=30°.(2)∠EDC=12∠BAD.证明:设∠BAD=x,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=45°+x,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC−∠EDC=∠45°+x−∠EDC=45°+∠EDC,∠BAD.解得:∠EDC=12(3)∠EDC=1∠BAD.2证明:设∠BAD=x,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+x,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC−∠EDC=∠B+x−∠EDC=∠B+∠EDC,∠BAD.解得:∠EDC=12【解析】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.(1)先根据三角形外角的性质得出∠ADC=∠B+∠BAD=∠B+60°=105°,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论;(2)(3)利用(1)的思路与方法解答即可.第21页,共22页。