高中数学必修2第4章 4.2.1
高中数学选择性必修二 4 2 1 等差数列的概念新 -B提高练(含答案)

4.2.1 等差数列的概念(2) -B 提高练一、选择题1.(2021·江苏高二期末)在等差数列{a n }中,a 3+a 4+a 5=6,则a 1+a 7=( ) A .2 B .3C .4D .5【答案】C【详解】由等差数列的性质,得a 3+a 4+a 5=3a 4=6,解得a 4=2,∴a 1+a 7=2a 4=4,故选:C . 2.(2021·云南楚雄高二期末)在等差数列{}n a 中,2510a a +=,3614a a +=,则58a a +=( ) A .12 B .22C .24D .34【答案】B【详解】设数列{}n a 的公差为,d 则()362514102,22a a a a d =+-+-==故58526106222a a a a d +=++=+⨯=.故选:B3.(2021·江苏扬州市·高二期末)《张邱建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄……”其大意为:有一女子不善于织布,每天比前一天少织同样多的布,第一天织5尺,最后一天织一尺,三十天织完…….则该女子第11天织布( ) A .113尺 B .10529尺 C .6529尺 D .73尺 【答案】B【详解】设女子每天的织布数构成的数列为{}n a ,由题设可知{}n a 为等差数列,且1305,1a a ==,故公差15430129d -==--,故()1114401051115292929a a ⎛⎫=+-⨯-=-= ⎪⎝⎭,故选:B. 4.(2020·周口市中英文学校高二月考)设数列{}n a ,{}n b 都是等差数列,且125a =,175b =,22100a b +=,则3737a b +等于( )A .0B .37C .100D .37-【答案】C【详解】解:因为数列{}n a ,{}n b 都是等差数列,所以数列{}n n a b +是等差数列, 因为125a =,175b =,22100a b +=,所以数列{}n n a b +的公差为0,首项为100, 所以100n n a b +=,所以3737100a b +=,故选:C5.(多选题)(2021·福建三明一中高二期末)设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( )A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅【答案】ABC【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.6. (多选题)(2021·广东佛山高二期末)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).关于这个问题,下列说法正确的是( ) A .甲得钱是戊得钱的2倍B .乙得钱比丁得钱多12钱C .甲、丙得钱的和是乙得钱的2倍D .丁、戊得钱的和比甲得钱多13钱 【答案】AC【详解】依题意,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,且22a d a d a a d a d -+-=++++,即6a d =-,又2255a d a d a a d a d a -+-+++++==, ∴1a =,16d =-,即1421263a d ⎛⎫-=-⨯-= ⎪⎝⎭,17166a d ⎛⎫-=--= ⎪⎝⎭,15166a d ⎛⎫+=+-= ⎪⎝⎭,1221263a d ⎛⎫+=+⨯-= ⎪⎝⎭,∴甲得43钱,乙得76钱,丙得1钱,丁得56钱,戊得23钱,则有如下结论: 甲得钱是戊得钱的2倍,故A 正确;乙得钱比丁得钱多751663-=钱,故B 错误;甲、丙得钱的和是乙得钱的413276+=倍,故C 正确; 丁、戊得钱的和比甲得钱多52416336+-=钱,故D 错误.故选:AC . 二、填空题7.(2020·吴起高级中学高二月考)等差数列{}n a 中,284166a a a +==,,则公差d =_____________. 【答案】2【详解】因为数列{}n a 是等差数列,所以285216a a a =+=,所以58a =,所以公差54862d a a =-=-=.8.(2020·丰县华山中学高二月考)若2、a 、b 、c 、8成等差数列,则ca=___________. 【答案】137【详解】2、a 、b 、c 、8成等差数列,所以82342d -==,所以37222a =+=,3132322c =+⨯=, 所以137c a =,故答案为:1379.(2021·江苏扬州仪征中学高二期末)等差数列n a 中,若2a ,2020a 为方程210160x x -+=的两根,则110112021a a a ++等于__________. 【答案】15【详解】2a ,2020a 为方程210160x x -+=的两根,2022010a a ∴+=,由等差数列的性质得1011210a =,即10115a =, 1101120211011315a a a a ∴++==.10.(2021·天津高二期末)已知函数()f x 在()1,-+∞上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 【答案】2-【详解】由题意函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称,且在()1,-+∞上单调,因为()()5051f a f a =,所以50512a a +=- 因为数列{}n a 是公差不为0的等差数列,所以110050512a a a a ++=-= 三、解答题11.(2021·上海高二课时练)方程220,0x x a x x b -+=-+=的四个根组成首项为14的等差数列,求其公差d 及,a b 的值.【详解】设20x x a -+=的两根为2,,0m n x x b -+=的两根为,g h ,它们组成的等差数列为{}n x . 根据等差数列的性质,可设(1)12341,,,4x m x g x h x n =====, 则有4411,41.4x x a ⎧+=⎪⎪⎨⎪=⎪⎩和23231,.x x x x b +=⎧⎨=⎩ 14113,+3444x x d ===,∴公差16d =,所以14232335735,,,161212144a x x x xb x x ======. ∴公差1335,,.616144d a b === (2)12341,,,4x g x m x n x h =====, 有4411,41.4x x b ⎧+=⎪⎪⎨⎪=⎪⎩和23231,.x x x x a +=⎧⎨=⎩ 14113,+3444x x d ===,∴公差16d =,所以14232335735,,,161212144b x x x x a x x ====== ∴公差1353,,614416d a b ===. 综上所述,公差1335,,.616144d a b ===或公差1353,,614416d a b ===. 12.(2021·全国高二课时练)在正项无穷等差数列{}n a 中,已知5721012,=7a a a a =+. (1)求通项公式n a .(2)设n n b a t =+,且对一切*n ∈N ,恒有22n n b b =,求t 的值.对一切*,k n ∈N ,是否恒有kn n b kb =?请说明理由.【详解】(1)∵210577a a a a +=+=,又∵5712a a =,∴5734a a =⎧⎨=⎩,,或5743.a a =⎧⎨=⎩,当5743.a a =⎧⎨=⎩,时,11322n a n =-+,不恒为正,舍去.∴5734a a =⎧⎨=⎩,,∴1122n a n =+(2)2111,222n n n b a t n t b n t =+=++=++,∴1+212n t n t ++=+. ∴12t =-,∴12n b n =.因为12kn n b kn kb ==,所以恒有kn n b kb =.。
人教A版高中数学必修二4-2-1 直线与圆的位置关系

求满足下列条件的圆x2+y2=4的切线方程: (1)经过点P( 3,1);(2)斜率为-1, (3)过点Q(3,0)
[解析] (1)∵点P( 3,1)在圆上. ∴所求切线方程为 3x+y-4=0. (2)设圆的切线方程为y=-x+b, 代入圆的方程,整理得 2x2-2bx+b2-4=0,∵直线与圆相切, ∴Δ=(-2b)2-4×2(b2-4)=0. 解得b=±2 2. ∴所求切线方程为x+y±2 2=0. 也可用几何法d=r求解.
③当直线和圆相离时,Δ<0,即a<-50或a>50.
解法二:(几何法)
圆x2+y2=100的圆心为(0,0),半径r=10,
则圆心到直线的距离d= 3|2a+| 42=|a5|.
①当直线和圆相交时,d<r,即|a5|<10,所以-50<a<50;
②当直线和圆相切时,d=r,即|a5|=10,所以a=50或a=
规律总结:本题求弦长问题时,利用了代数法和几何
法,其中解法一(几何法)较直观,求解过程要构造直角三角
形,利用勾股定理得到(半径)2=(
弦长 2
)2+(弦心距)2这一关系
是求出弦长的关键.
直线l经过点P(5,5)并且与圆C:x2+y2=25相交截得的弦 长为4 5,求l的方程.
[解析] 根据题意知直线l的斜率存在,
思路方法技巧
直线与圆的位置关系
学法指导 判断直线和圆的位置关系的方法 “用方程组解的个数”和“用圆心到直线的距离”,一 般情况下后一种方法相对简单,但如是要判断两圆相交并求 交点坐标时,必须求方程组的解,这样用第一种方法可起到 一举两得的作用.
[例1] 已知直线方程mx-y-m-1=0,圆的方程x2+y2 -4x-2y+1=0.当m为何值时,圆与直线
人教版高中数学必修2第四章《4.2直线、圆的位置关系:4.2.1 直线与圆的位置关系》教学PPT

1)若AB和⊙O相离, 则 d > 5cm ; 2)若AB和⊙O相切, 则 d = 5cm ; 3)若AB和⊙O相交,则 0cm≤ d < 5cm.
例1、如图,已知直线l:3x+y-6=0和圆心为C 的圆x2+y2-2y-4=0,判断直线l与圆的位置关 系;如果相交,求它们的交点坐标。
相交
△>0
r >d
O
x
当-2 2<b<2 2 时,⊿>0, 直线与圆相交;
当b=2 2或 b=-2 2 时, ⊿=0, 直线与圆相切;
当b>2 2或b<-2 2 时,⊿<0,直线与圆相离。
㈠方法探索
y 解法二(利用d与r的关系):圆x2+y2=4的圆心为(0,0),半径为r=2
00b b
圆心到直线的距离为 d
(3)△<0 直线与圆径相r离的. 大小关系 直线与圆没有交点
方法3:代数性质
2、相切 (d=r)
直线与圆有一个交点
3、相交 (d<r)
直线与圆有两个交点
设圆 C∶(x-a)2+(y-b)2=r2, 直线L的方程为 Ax+By+C=0,
(x-a)2+(y-b)2=r2
Ax+By+C=0
练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交, 直线与圆有___2_个公共点. 2)若d=6.5cm ,则直线与圆__相__切__, 直线与圆有___1_个公共点. 3)若d= 8 cm ,则直线与圆__相__离__, 直线与圆有___0_个公共点.
高中数学选择性必修二 4 2 2第1课时等差数列的前n项和-练习

第四章数列4.2 等差数列4.2.2 等差数列的前n 项和公式第1课时 等差数列的前n 项和课后篇巩固提升基础达标练1.已知S n 为等差数列{a n }的前n 项和,a 2+a 5=4,S 7=21,则a 7的值为( )A.6B.7C.8D.9{a n }的公差为d ,则{a 1+d +a 1+4d =4,7a 1+7×62d =21,解得{a 1=-3,d =2,所以a 7=a 1+6d=-3+6×2=9,故选D .2.(多选)(2020山东高三月考)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则下列正确的是( )A.a 1=-2B.a 1=2C.d=4D.d=-4{a 4+a 5=2a 1+7d =24,S 6=6a 1+15d =48,所以{a 1=-2,d =4.故选AC .3.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A.nB.n 2C.2n+1D.2n-1n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,且a 1=1适合上式,故a n =2n-1(n ∈N *).4.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驽马多行( ) A.1 125里 B.920里 C.820里 D.540里{a n },则{a n }是以103为首项,以13为公差的等差数列,其前n 项和为A n ,驽马每天所行路程为{b n },则{b n }是以97为首项,以-12为公差的等差数列,其前n 项和为B n ,设共用n 天二马相逢,则A n +B n =2×1 125,所以103n+n (n -1)2×13+97n+n (n -1)2(-12)=2 250, 化简得n 2+31n-360=0,解得n=9.A 9=103×9+9×82×13=1 395,B 9=2 250-1 395=855,A 9-B 9=1 395-855=540.5.已知数列{a n }的通项公式为a n =2n+1,令b n =1n (a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A.70B.75C.80D.85a n =2n+1, ∴数列{a n }是等差数列,首项a 1=3,其前n 项和S n =n (a 1+a n )2=n (3+2n+1)2=n 2+2n ,∴b n =1n S n =n+2,∴数列{b n }也是等差数列,首项b 1=3,公差为1.∴其前10项和T 10=10×3+10×92×1=75,故选B .6.已知等差数列{a n}中,a10=13,S9=27,则公差d=,a100=.9=9a5=27⇒a5=3,d=a10-a55=13-35=2,∴a100=a10+90d=13+90×2=193.1937.(2019全国Ⅲ,理14)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则S10S5=.{a n}的公差为d.∵a1≠0,a2=3a1,∴a1+d=3a1,即d=2a1.∴S10S5=10a1+10×92d5a1+5×42d=100a125a1=4.8.已知数列{a n}的前n项和为S n=n·2n-1,则a3+a4+a5=.3+a4+a5=S5-S2=(5×25-1)-(2×22-1)=152.9.设数列{a n}的前n项和为S n,点(n,S nn)(n∈N*)均在函数y=3x-2的图象上,求数列{a n}的通项公式.,得S nn=3n-2,即S n=3n2-2n.当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.因为a1=S1=1,满足a n=6n-5,所以a n=6n-5(n∈N*).10.已知数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.∵a n+2=2a n+1-a n+2,∴a n+2-a n+1=a n+1-a n+2,即b n+1=b n+2.又b1=a2-a1=2-1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)可知,a n+1-a n=1+2(n-1)=2n-1,∴a n-a n-1=2(n-1)-1,a n-1-a n-2=2(n-2)-1,……a2-a1=2×1-1,累加,得a n-a1=2×n(n-1)-(n-1)=n2-2n+1,2∴a n=a1+n2-2n+1=n2-2n+2,∴数列{a n}的通项公式为a n=n2-2n+2.能力提升练1.在等差数列{a n}中,2a4+a7=3,则数列{a n}的前9项和S9等于()A.3B.6C.9D.12{a n}的公差为d,因为2a4+a7=3,所以2(a1+3d)+a1+6d=3,整理,得a1+4d=1,即a5=1,所以S 9=9(a 1+a 9)2=9a 5=9.2.若公差不为0的等差数列{a n }的前21项的和等于前8项的和,且a 8+a k =0,则正整数k 的值为( )A.20B.21C.22D.23{a n }的前n 项和为S n ,由题意,得S 21=S 8,即a 9+a 10+…+a 21=0.根据等差数列的性质,得13a 15=0,即a 15=0.故a 8+a 22=2a 15=0,即k=22.故选C .3.已知等差数列{a n },a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( )A .30B .45C .90D .186{a n }易得公差d 1=3.又b n =a 2n ,所以{b n }也是等差数列,公差d 2=6.故S 5=b 1+b 2+b 3+b 4+b 5=a 2+a 4+a 6+a 8+a 10=5×6+5×42×6=90.4.(2020河北正定中学高一月考)设等差数列{a n }的前n 项和是S n ,已知S 14>0,S 15<0,下列选项正确的是( ) A.a 1>0,d<0B.a 7+a 8>0C.S 6与S 7均为S n 的最大值D.a 8<0,有S 14=14×(a 1+a 14)2=7(a 1+a 14)=7(a 7+a 8)>0,即a 7+a 8>0,S 15=15×(a 1+a 15)2=15a 8<0,即a 8<0,则a 7>0;故等差数列{a n }的前7项为正数,从第8项开始为负数,则a 1>0,d<0.则有S7为S n的最大值.故A,B,D正确.故选ABD.5.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=.n≥2时,由S n=2a n-1,得S n-1=2a n-1-1.两式相减,得a n=2a n-2a n-1,所以a n=2a n-1.因为a1=2a1-1,所以a1=1,故a5=2a4=22a3=23a2=24a1=16.6.(2019北京,理10)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为.{a n}中,由S5=5a3=-10,得a3=-2,又a2=-3,公差d=a3-a2=1,a5=a3+2d=0,由等差数列{a n}的性质得当n≤5时,a n≤0,当n≥6时,a n大于0,所以S n的最小值为S4或S5,即为-10.-107.已知数列{a n}的前n项和为S n(S n≠0),且满足a n+2S n·S n-1=0(n≥2),a1=12.(1)求证:{1S n}是等差数列;(2)求数列{a n}的通项公式.-a n=2S n S n-1(n≥2),∴-S n+S n-1=2S n S n-1(n≥2).又S n≠0(n=1,2,3,…),∴1S n −1S n-1=2.又1S1=1a1=2,∴{1S n}是以2为首项,2为公差的等差数列.(1)可知1S n =2+(n-1)·2=2n,∴S n=12n.当n ≥2时,a n =S n -S n-1=12n −12(n -1)=-12n (n -1)或当n ≥2时,a n =-2S n S n-1=-12n (n -1);当n=1时,S 1=a 1=12.故a n ={12,n =1,-12n (n -1),n ≥2. 素养培优练设S n 为数列{a n }的前n 项和,S n =λa n -1(λ为常数,n=1,2,3,…).(1)若a 3=a 22,求λ的值.(2)是否存在实数λ,使得数列{a n }是等差数列?若存在,求出λ的值;若不存在,请说明理由.因为S n =λa n -1,所以a 1=λa 1-1,a 2+a 1=λa 2-1,a 3+a 2+a 1=λa 3-1. 由a 1=λa 1-1,可知λ≠1,所以a 1=1λ-1,a 2=λ(λ-1)2,a 3=λ2(λ-1)3. 因为a 3=a 22,所以λ2(λ-1)3=λ2(λ-1)4,解得λ=0或λ=2.(2)假设存在实数λ,使得数列{a n }是等差数列,则2a 2=a 1+a 3,由(1)可得2λ(λ-1)2=1λ-1+λ2(λ-1)3, 所以2λ(λ-1)2=2λ2-2λ+1(λ-1)3=2λ(λ-1)2+1(λ-1)3,即1(λ-1)3=0,显然不成立,所以不存在实数λ,使得数列{a n }是等差数列.。
高中数学人教A版(2019)选择性必修第二册第四章《数列》第二节课4.2.1 等差数列的概念(2)

3
3.如果插入k k N *个数,公差是多少? d=
8 k+1
练典型习题 提数学素养
例2:已知等差数列an的首项a1=2,公差d=8, 在an中每相邻两项之间都插入3个数,使它们和 原数列的数一起构成新的等差数列bn. 1求数列bn的通项公式. bn=2n 2 b29是不是数列an的项?若是,它是an的第几项?
若不是,说明理由.
练典型习题 提数学素养
解:
bn=2n
b
=58
29
又 an=2+(n-1)8=8n-6
令8n-6=58,得n=8
b29是 an 的第8项.
练典型习题 提数学素养
原an :a1
a2
a3
a4
新 bn :b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13
观察:an 中的第几项是 b n 的第几项?
与之对应的项,下标有什么特点?
发现:与之对应的项的下标依次构成了
一个首项为1,公差为4的等差数列cn .
练典型习题 提数学素养
原an :a1
a2
a3
a4
新 bn :b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13
解:an的各项依次是数列bn的第1,5,9,13, 项,
练典型习题 提数学素养
某公司购置了一台价值为220万元的设备, 每经过一年其价值就会减少d(d为正常数)万元.
使用1年后:220-d万元
等差关系
使用2年后:220-d-d=220-2d万元
等差数列模型
练典型习题 提数学素养
例3:某公司购置了一台价值为220万元的设备, 已知这台设备的使用年限为10年,超过10年, 它的价值将低于购进价值的5%,设备将报废.
03-4.2 对数与对数函数-4.2.1 对数运算 4.2.2 对数运算法则高中必修第二册人教B版

(2)[多选题](2024·山东省淄博市期末)若,,都是正数,且 ,则( )
BCD
A. B. C. D.
【解析】设,则,, ,,,,所以 ,A错误,B正确.,因为,所以 ,则等号不成立,所以,则 ,C正确.因为,所以 ,D正确.
(3)已知,,,则 的值为___.
(2)(全国Ⅰ卷)设,则 ( )
B
A. B. C. D.
【解析】 因为,所以 ,
则有,所以 .
因为,所以,所以 ,所以 .
因为,所以,所以 ,两边同时平方得,所以 .
(1) ;
【解析】 .
(2) ;
【解析】 .
(3) .
【解析】 .
例1-3 将下列对数式改写成指数式:
(1) ;
【解析】 .
(2) ;
【解析】 .
(3) .
【解析】 .
例1-4 [多选题](2024·辽宁省大连八中期中)下列式子中正确的是( )
AB
A. B. C.若,则 D.若,则
知识点3 换底公式
例3-6 [教材改编P24 T1] 的值为__.
【解析】 .(【巧解】利用推论三求解: )
例3-7 (2024·河北省唐山市期中)计算: ( )
B
A. B. C.1 D.2
【解析】原式 .
方法帮丨关键能力构建
题型1 对数的简单运算
例8 化简下列各式:
(1) ;
【解析】原式 .
B
A. B. C. D.
【解析】由对数运算法则可得 .
3.(2024·浙江省杭州市期中)若,则 ( )
C
A. B. C.1 D.
【解析】因为,所以,,所以, ,则 .
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案) 第四章 4.2.1

4.2.1 直线与圆的位置关系[学习目标] 1.理解直线和圆的三种位置关系.2.会用代数与几何两种方法判断直线和圆的位置关系.知识点一 直线与圆的位置关系及判断思考 用代数法与几何法判断直线与圆的位置关系时,二者在侧重点上有什么不同? 答 代数法与几何法都能判断直线与圆的位置关系,只是角度不同,代数法侧重于“数”的计算,几何法侧重于“形”的直观. 知识点二 圆的切线问题 1.求圆的切线的方法(1)求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心的连线的斜率k ,则由垂直关系,知切线斜率为-1k ,由点斜式方程可求得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程为y =y 0或x =x 0. (2)求过圆外一点(x 0,y 0)的圆的切线方程:几何法:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0.由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 代数法:设切线方程y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 2.切线段的长度公式(1)从圆外一点P (x 0,y 0)引圆(x -a )2+(y -b )2=r 2的切线,则P 到切点的切线段长为 d =(x 0-a )2+(y 0-b )2-r 2.(2)从圆外一点P (x 0,y 0)引圆x 2+y 2+Dx +Ey +F =0的切线,则P 到切点的切线段长为d =x 20+y 20+Dx 0+Ey 0+F .题型一 直线与圆的位置关系的判断例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点; (2)只有一个公共点; (3)没有公共点.解 方法一 将直线mx -y -m -1=0代入圆的方程化简整理得, (1+m 2)x 2-2(m 2+2m +2)x +m 2+4m +4=0. ∵Δ=4m (3m +4),∴当Δ>0,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当Δ=0,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当Δ<0,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.方法二 已知圆的方程可化为(x -2)2+(y -1)2=4, 即圆心为C (2,1),半径r =2.圆心C (2,1)到直线mx -y -m -1=0的距离 d =|2m -1-m -1|1+m 2=|m -2|1+m 2.当d <2,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当d =2,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当d >2,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.反思与感悟 直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离.试分别求实数a 的取值范围. 解 方法一 (代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0. Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000. ①当直线和圆相交时,Δ>0, 即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0, 即a =50或a =-50; ③当直线和圆相离时,Δ<0, 即a <-50或a >50. 方法二 (几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5, ①当直线和圆相交时,d <r , 即|a |5<10,-50<a <50; ②当直线和圆相切时,d =r , 即|a |5=10,a =50或a =-50; ③当直线和圆相离时,d >r , 即|a |5>10,a <-50或a >50. 题型二 圆的切线问题例2 过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线的方程. 解 因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).即kx -y -3-4k =0, 因为圆心C (3,1)到切线的距离等于半径1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1, 所以k 2+8k +16=k 2+1.解得k =-158.所以切线方程为y +3=-158(x -4),即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.反思与感悟 1.过一点P (x 0,y 0)求圆的切线方程问题,首先要判断该点与圆的位置关系,若点在圆外,切线有两条,一般设点斜式y -y 0=k (x -x 0)用待定系数法求解,但要注意斜率不存在的情况,若点在圆上,则切线有一条,用切线垂直于过切点的半径求切线的斜率,再由点斜式可直接得切线方程.2.一般地,有关圆的切线问题,若已知切点则用k 1·k 2=-1(k 1,k 2分别为切线和圆心与切点连线的斜率)列式,若未知切点则用d =r (d 为圆心到切线的距离,r 为半径)列式.跟踪训练2 圆C 与直线2x +y -5=0相切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2. 因为两切线2x +y -5=0与2x +y +15=0平行, 所以2r =|15-(-5)|22+12=4 5.所以r =2 5.所以|2a +b +15|22+1=r =25,即|2a +b +15|=10;①|2a +b -5|22+1=r =25,即|2a +b -5|=10.② 又因为过圆心和切点的直线与切线垂直, 所以b -1a -2=12.③联立①②③,解得⎩⎪⎨⎪⎧a =-2,b =-1.故所求圆C 的方程为(x +2)2+(y +1)2=20. 题型三 圆的弦长问题例3 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.解 方法一 直线x -3yy +23=0和圆x 2+y 2=4的公共点坐标就是方程组⎩⎨⎧x -3y +23=0,x 2+y 2=4的解. 解这个方程组,得⎩⎨⎧x 1=-3,y 1=1,⎩⎪⎨⎪⎧x 2=0,y 2=2. 所以公共点的坐标为(-3,1),(0,2),所以直线x -3y +23=0被圆x 2+y 2=4截得的弦长为(-3-0)2+(1-2)2=2. 方法二 如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点), 所以|OM |=|0-0+23|12+(-3)2= 3.所以|AB |=2|AM |=2OA 2-OM 2 =222-(3)2=2. 反思与感悟求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2. 即|AB |=2r 2-d 2.(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2| =1+1k2|y 1-y 2|, 其中k 为直线l 的斜率.跟踪训练3 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A.1 B.2 C.4 D.46 答案 C解析圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径r=5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=r2-d2=2,故直线被圆截得的弦长|AB|=4.数形结合思想例4直线y=x+b与曲线x=1-y2有且只有一个交点,则b的取值范围是()A.|b|= 2B.-1<b≤1或b=-2C.-1≤b<1D.非以上答案分析曲线x=1-y2变形为x2+y2=1(x≥0),表示y轴右侧(含与y轴的交点)的半圆,直线y=x+b表示一系列斜率为1的直线,利用数形结合思想在同一平面直角坐标系内作出两种图形求解.解析曲线x=1-y2含有限制条件,即x≥0,故曲线并非表示整个单位圆,仅仅是单位圆在y轴右侧(含与y轴的交点)的部分.在同一平面直角坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示.相切时,b=-2,其他位置符合条件时需-1<b≤1.故选B.答案B解后反思求解直线与曲线公共点的问题,首先要借助图形进行思考;其次要注意作图的完整准确,使得图形能够反映问题的全部;最后在求解中还要细心缜密,保证计算无误.1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心答案C解析方法一圆心(0,0)到直线kx-y+1=0的距离d=11+k2≤1<2=r,∴直线与圆相交,且圆心(0,0)不在该直线上.方法二 直线kx -y +1=0恒过定点(0,1),而该点在圆内,故直线与圆相交,且圆心不在该直线上.2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 答案 B解析 ∵点M (a ,b )在圆x 2+y 2=1外,∴a 2+b 2>1. ∴圆心(0,0)到直线ax +by =1的距离d =1a 2+b2<1=r ,则直线与圆的位置关系是相交. 3.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=0 答案 D解析 依题意可设所求切线方程为2x +y +c =0,则圆心(0,0)到直线2x +y +c =0的距离为|c |22+12=5,解得c =±5.故所求切线的直线方程为2x +y +5=0或2x +y -5=0. 4.设A 、B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A.1 B. 2 C. 3 D.2 答案 D解析 直线y =x 过圆x 2+y 2=1的圆心C (0,0), 则|AB |=2.5.过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为________. 答案 2x -y =0解析 设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-⎝⎛⎭⎫222=0,即圆心(1,2)位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去y ,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l =k 2+1·(x 1+x 2)2-4x 1x 2=k 2+1|x 1-x 2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆外时,切线有两条.一、选择题1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( ) A.相离 B.相切或相交 C.相交 D.相切 答案 C解析 l 过定点A (1,1),∵12+12-2×1=0,∴点A 在圆上,∵直线x =1过点A 且为圆的切线,又l 斜率存在, ∴l 与圆一定相交,故选C.2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0 D.x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 由条件,知x -y =0与x -y -4=0都与圆相切,且平行,所以圆C 的圆心C 在直线x -y -2=0上.由⎩⎪⎨⎪⎧x -y -2=0,x +y =0,得圆心C (1,-1).又因为两平行线间距离d =42=22,所以所求圆的半径长r =2,故圆C 的方程为(x -1)2+(y +1)2=2.4.过点P (-3,-1)的直线l 与圆x 2+y 2=1相切,则直线l 的倾斜角是( ) A.0° B.45° C.0°或45° D.0°或60° 答案 D解析 设过点P 的直线方程为y =k (x +3)-1,则由直线与圆相切知|3k -1|1+k 2=1,解得k =0或k =3,故直线l 的倾斜角为0°或60°.5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于( )A.10-27B.5-7C.10-3 3D.5-322答案 A解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小. 弦心距d =(2+1)2+(-3-0)2=32, 所以最小弦长为2r 2-d 2=225-18=27, 所以m -n =10-27.6.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个 答案 C解析 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.7.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ) A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[0,+∞) C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 答案 A解析 设圆心为C ,弦MN 的中点为A ,当|MN |=23时,|AC |=|MC |2-|MA |2=4-3=1.∴当|MN |≥23时,圆心C 到直线y =kx +3的距离d ≤1. ∴|3k -2+3|k 2+(-1)2≤1,∴(3k +1)2≤k 2+1. 由二次函数的图象可得 -34≤k ≤0. 二、填空题8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则a =________. 答案 0解析 圆心到直线的距离d =|a -2+3|a 2+1=22-(3)2=1,解得a =0. 9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.10.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.11.若直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围是_______. 答案 [1,2)解析 如图所示,y =1-x 2是一个以原点为圆心,长度1为半径的半圆,y =x +b 是一个斜率为1的直线,要使直线与半圆有两个交点,连接A (-1,0)和B (0,1),直线l 必在AB 以上的半圆内平移,直到直线与半圆相切,则可求出两个临界位置直线l 的b 值,当直线l 与AB 重合时,b =1;当直线l 与半圆相切时,b = 2.所以b 的取值范围是[1,2). 三、解答题12.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1, 即l 恒过定点A (3,1).第11页 共11页 因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0.13.已知直线l 过点P (1,1)并与直线l 1:x -y +3=0和l 2:2x +y -6=0分别交于点A ,B ,若线段AB 被点P 平分,求:(1)直线l 的方程;(2)以原点O 为圆心且被l 截得的弦长为855的圆的方程. 解 (1)依题意可设A (m ,n ),B (2-m,2-n ), 则⎩⎪⎨⎪⎧ m -n +3=0,2(2-m )+(2-n )-6=0,即⎩⎪⎨⎪⎧m -n =-3,2m +n =0, 解得A (-1,2).又l 过点P (1,1),易得直线AB 的方程为x +2y -3=0, 即直线l 的方程为x +2y -3=0.(2)设圆的半径长为r ,则r 2=d 2+⎝⎛⎭⎫4552,其中d 为弦心距,d =35,可得r 2=5,故所求圆的方程为x 2+y 2=5.。
人教A版高中数学必修二第4章 4.2 4.2.1 直线与圆的位置关系

(3)当 d>r,即 |k1++5k|2>1⇒k>-152时,直线与圆相离.
1-1.求实数 b 的范围,使直线 y=x+b 和圆 x2+y2=2: (1)相交;(2)相切;(3)相离. 解法一:由圆 x2+y2=2 得圆心为(0,0),半径为 2. (1)相交⇔d=0+10++1b=b2<r= 2, 解得-2<b<2. (2)相切⇔d=0+10++1b=b2=r= 2, 解得 b=-2 或 b=2. (3)相离⇔d=0+10++1b=b2>r= 2, 综上得 b<-2 或 b>2.
x1-x22+y1-y22= 1+k2· x1+x22-4x1x2.
3-1.(2010 年四川)直线 x-2y+5=0 与圆 x2+y2=8 相交于 A、B 两点,则|AB|=_2____3.
解析:圆心为(0,0),半径为 2 2,圆心到直线 x-2y+5= 0 的距离为 d= |102++0+-52|2= 5,由|A2B|2+( 5)2=(2 2)2,得 |AB|=2 3.
重点 直线与圆的位置关系 直线与圆的位置关系有三种,即相交、相切和相离,判定 的方法有两种: (1)代数法:通过直线方程与圆的方程所组成的方程组,根 据解的个数来研究,若有两组不同的实数解,即Δ>0,则相交; 若有两组相同的实数解,即Δ=0,则相切;若无实数解,即Δ <0,则相离; (2)几何法:由圆心到直线的距离 d 与半径 r 的大小来判断, 若 d<r,直线与圆相交;若d=r,直线与圆相切;若 d>r,直 线与圆相离.
解法三:设切点为(x0,y0),则所求切线方程为 x0x+y0y= 25,将坐标(1,-7)代入后得 x0-7y0=25,
由xx002- +7y20y=0=2525 ,解得xy00= =- 4 3 或xy00= =- -34 . 故所求切线方程为 4x-3y-25=0 或 3x+4y+25=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.2 直线、圆的位置关系
4.2.1直线与圆的位置关系
【课时目标】1.能根据给定直线和圆的方程,判断直线和圆的位置关系.2.能根据直线与圆的位置关系解决有关问题.
222
位置关系相交相切相离
公共点个数____个____个____个
判
定
方
法
几何法:设圆心到直线的距离
d=
|Aa+Bb+C|
A2+B2
d____r d____r d____r 代数法:由
⎩⎪
⎨
⎪⎧Ax+By+C=0
(x-a)2+(y-b)2=r2
消元得到一元二次方程的判别式Δ
Δ____0 Δ____0 Δ____0
一、选择题
1.直线3x+4y+12=0与⊙C:(x-1)2+(y-1)2=9的位置关系是()
A.相交并且过圆心B.相交不过圆心
C.相切D.相离
2.已知圆x2+y2+Dx+Ey+F=0与y轴切于原点,那么()
A.D=0,E=0,F≠0 B.D=0,E≠0,F=0
C.D≠0,E=0,F=0 D.D≠0,E≠0,F=0
3.圆x2+y2-4x+4y+6=0截直线x-y-5=0所得弦长等于()
A. 6 B.
52
2C.1 D.5
4.圆x2+y2+2x+4y-3=0上到直线l:x+y+1=0的距离为2的点有()
A.1个B.2个C.3个D.4个
5.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|,|b|,|c|的三角形是()
A.锐角三角形B.直角三角形
C.钝角三角形D.不存在
6.与圆x2+y2-4x+2=0相切,在x,y轴上的截距相等的直线共有()
A.1条B.2条C.3条D.4条
二、填空题
7.已知P={(x,y)|x+y=2},Q={(x,y)|x2+y2=2},那么P∩Q为________.
8.圆x2+y2-4x=0在点P(1,3)处的切线方程为______________.
9.P(3,0)为圆C:x2+y2-8x-2y+12=0内一点,过P点的最短弦所在的直线方程是______________.
三、解答题
10.求过点P(-1,5)的圆(x-1)2+(y-2)2=4的切线方程.
11.直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得的弦长为45,求l的方程.
能力提升
12.已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线g是以M为中点的弦所在直线,直线l的方程为ax+by+r2=0,则()
A.l∥g且与圆相离B.l⊥g且与圆相切
C.l∥g且与圆相交D.l⊥g且与圆相离
13.已知直线x+2y-3=0与圆x2+y2+x-2cy+c=0的两个交点为A、B,O为坐标原点,且OA⊥OB,求实数c的值.
1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去x或y,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l=k2+1·(x1+x2)2-4x1x2=k2+1|x1-x2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上,切线只有一条;当点在圆外时,切线有两条.
§4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系
答案
知识梳理
2 1 0 < = > > = < 作业设计
1.D [圆心到直线距离d >r .]
2.C [与y 轴切于原点,则圆心⎝⎛⎭⎫-D
2,0,得E =0,圆过原点得F =0,故选C .] 3.A [分别求出半径r 及弦心距d (圆心到直线距离)再由弦长为2r 2-d 2,求得.]
4.C [通过画图可知有三个点到直线x +y +1=0距离为2.]
5.B [由题意|c |
a 2+b
2=1⇒|c |=a 2+b 2⇒c 2=a 2+b 2,故为直角三角形.]
6.C [需画图探索,注意直线经过原点的情形.设y =kx 或x a +y
a
=1,由d =r 求得k
=±1,a =4.]
7.{(1,1)}
解析 解方程组⎩
⎪⎨⎪
⎧
x 2+y 2=2,x +y =2,
得x =y =1. 8.x -3y +2=0
解析 先由半径与切线的垂直关系求得切线斜率为3
3
,则过(1,3)切线方程为x -3y
+2=0.
9.x +y -3=0
解析 过P 点最短的弦,应为与PC 垂直的弦,先求斜率为-1,则可得直线方程为 x +y -3=0.
10.解 ①当斜率k 存在时, 设切线方程为y -5=k (x +1), 即kx -y +k +5=0.
由圆心到切线的距离等于半径得|k -2+k +5|
k 2
+1
=2, 解得k =-5
12
,∴切线方程为5x +12y -55=0.
②当斜率k 不存在时,切线方程为x =-1,此时与圆正好相切. 综上,所求圆的切线方程为x =-1或5x +12y -55=0.
11.解 圆心到l 的距离d =
r 2-⎝⎛⎭
⎫4522
=5,显然l 存在斜率.
设l :y -5=k (x -5),即kx -y +5-5k =0,d =|5-5k |
k 2+1
.
∴|5-5k |k 2+1=5,∴k =1
2或2.
∴l 的方程为x -2y +5=0或2x -y -5=0. 12.A [∵M
在圆内,∴a 2+b 2<r 2.∴(0,0)到
l 的距离d =r 2
a 2+b
2>r 即直线l 与圆相离,
又直线g 的方程为y -b =-a
b
(x -a ),即ax +by -a 2-b 2=0,∴l ∥g .]
13.解 设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2). 由OA ⊥OB ,知k OA ·k OB =-1, 即y 1x 1·y 2
x 2
=-1,∴x 1x 2+y 1y 2=0 ① 由⎩
⎪⎨⎪
⎧
x +2y -3=0x 2+y 2+x -2cy +c =0, 得5y 2-(2c +14)y +c +12=0,
则y 1+y 2=15(2c +14),y 1y 2=1
5
(c +12) ②
又x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2,代入①得9-6(y 1+y 2)+5y 1y 2=0③ 由②、③得,c =3.。