晶体振荡器设计报告

合集下载

低噪声集成石英晶体振荡器设计的开题报告

低噪声集成石英晶体振荡器设计的开题报告

低噪声集成石英晶体振荡器设计的开题报告一、选题背景随着现代电子技术的不断发展,时钟信号的稳定性和准确性已经成为各种电子设备中必不可少的关键技术。

石英晶体振荡器作为时钟信号源,其稳定性和准确性直接影响整个电子系统的性能。

近年来,随着无线通信、计算机和移动设备等电子产品的广泛应用,对低噪声、高稳定性、小尺寸、低功耗、长寿命的石英晶体振荡器的需求越来越迫切。

二、选题目的本课题旨在研究设计一种低噪声集成石英晶体振荡器,满足高性能电子设备对时钟信号的需求。

三、选题内容本课题的研究内容包括:1. 石英晶体振荡器的基础知识和原理的掌握;2. 石英晶体振荡器的现状分析及市场需求分析;3. 低噪声集成石英晶体振荡器的电路设计和优化;4. 低噪声集成石英晶体振荡器的PCB布局的设计和优化;5. 低噪声集成石英晶体振荡器的测试验证和性能指标评估。

四、研究意义本课题的研究意义主要体现在以下几个方面:1. 提高石英晶体振荡器的稳定性和准确性,提高整个电子系统的性能;2. 设计出一种低噪声、高稳定性、小尺寸、低功耗、长寿命的石英晶体振荡器,满足高性能电子设备对时钟信号的需求;3. 探索一种新型低噪声集成石英晶体振荡器的设计方法和优化思路,对振荡器的研究和发展具有重要的理论和实践意义。

五、拟采取的方法和步骤1. 研究石英晶体振荡器的基本原理和现状分析;2. 确定低噪声集成石英晶体振荡器设计的指标和要求;3. 根据设计指标,设计并模拟振荡器电路;4. 分析电路的性能指标,进行优化设计;5. 设计PCB布局,进行仿真分析;6. 制作实物样品,进行测试验证;7. 对测试结果进行数据分析和性能指标评估。

六、预期成果1. 设计出高稳定性、低噪声、小尺寸、低功耗、长寿命的石英晶体振荡器;2. 探索出一种新型低噪声集成石英晶体振荡器设计的方法和优化思路;3. 获得一些有关石英晶体振荡器的理论知识和实践经验。

晶体振荡器设计报告

晶体振荡器设计报告

石英晶体振荡器设计报告陈永平09电子C班0915241009一、设计要求A.晶体振荡器的工作频率在10MHZ以下(可为4MHZ、6MHZ、8MHZ)。

B.振荡器工作点可调,反馈元件可更换。

C.具有3组不同的负载阻抗。

D.电源电压为12V。

E.在10K负载上输出目测不失真电压波形Vopp≥4V。

震荡频率读出5位有效数字。

二、设计方案的论证A.电路形式:串联型石英晶体振荡器B.电路参数:1. 电路电阻:47k电位器一个,4.2k,4.7k,1.5k,620电阻各一个;2. 负载电阻:1k,10k,110k电阻各一个;3. 电容:103电容4个,102电容一个,101电容一个,152电容一个,可变电容一个;4. NPN三极管:9018 一个;5. 晶振:6Mhz一个;6. 电感:330uh,3.3uh各一个;C.参数估算:1.负载电阻变小时,输出电压幅度变小;负载电阻变大时,输出电压幅度变大。

2.调节Ct使谐振回路谐振频率与晶振的 fs 相同。

3.Rp减小时,输出电压幅度变大;Rp增大时,输出电压幅度变小。

D.设计内容的实现情况:负载上所测得的电压如下表:RL 1k 10k 110kVo-pp 3.33V 4.19V 4.19V三、电路图的分析和说明A.原理图:PCB图B.元器件功能1. 石英晶体:振荡回路的工作频率等于石英晶体的谐振频率fs时,石英晶体的高的阻抗近似为零;振荡回路的工作频率偏离石英晶体的频率fs时,石英晶体的阻抗骤然增加,近乎开路;综上,电路只能形成f=fs的振荡。

本实验中,采用的是6MHZ的晶振,因此回路输出6MHZ的振荡信号。

2. 9018高频管:9018是一种常用的高频(可到1.1GHz)小功率三极管。

它是一种小电压,小电流,小信号的NPN型硅三极管,常用在AM及FM放大电路,及FM/VHF调频本振电路中。

3. 电位器:调节电位器可改变静态工作点。

电路的直流通路如下图静态工作点的计算:U BQ=R2/(Rp+R1+R2)*VccI EQ=(UBQ-UBEQ)/R4I BQ=IEQ/(1+B)当Rp减小时,U BQ增大,从而I EQ增大,三级管的放大倍数B一般是固定的,所以I BQ遂I EQ的增大而增大;4. 可调电容:调节电路回路的频率与石英晶体振荡器的fs相同。

LC实验报告

LC实验报告

实验一 LC 与晶体振荡器实验报告一、实验目的1、了解三点式振荡器和晶体振荡器的基本电路及工作原理。

2、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3、测量振荡器的反馈系数等参数。

4、比较LC 与晶体振荡器的频率稳定度。

二、实验原理三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)相位平衡条件:Xce 和Xbe 必需为同性质的电抗,Xcb 必需为异性质的电抗,且它们之间满足下列关系:2)幅度起振条件:LCX X X X Xc oC L cebe 1 |||| )(=-=+-=ω,即'ie 1*()AuL m oe q Fu q qq >++式中:qm ——晶体管的跨导, FU ——反馈系数, AU ——放大器的增益,qie ——晶体管的输入电导, qoe ——晶体管的输出电导, q'L ——晶体管的等效负载电导, FU 一般在0.1~0.5之间取值。

2、电容三点式振荡器1)电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容Ci 和输出电容Co 对频率稳定度的影响较大,且频率不可调。

2)串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L 支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由 C3和L 决定。

C1和C2主要起电容分压反馈作用,从而大大减小了Ci 和Co 对频率稳定度的影响,且使频率可调。

L1L13)并联改进型电容反馈三点式电路——西勒振荡器 电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。

西勒电路的优点是进一步提高电路的稳定性,振荡频率可以做得较高,该电路在短波、超短波通信机、电视接收机等高频设备中得到非常广泛的应用。

本实验箱所提供的LC 振荡器就是西勒振荡器。

石英晶体振荡器实验报告

石英晶体振荡器实验报告

石英晶体振荡器一、实验目的1.了解晶体振荡器的工作原理及特点。

2.掌握晶体振荡器的设计方法及参数计算方法。

二、实验主要仪器1.双踪示波器2.频率计3.万用表4.实验板G1三、预习要求:1.查阅晶体振荡器的有关资料。

阐明为什么用石英晶体作为振荡回路元件就能使振荡器的频率稳定度大大提高。

2.试画出并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路,并阐述两者在电路结构及应用方面的区别。

四、实验原理本实验单元模块电路如图4-1所示,其电路为串联型晶体振荡器,R1、R2、R3、R4、为直流偏置电阻,RP为基极可调电阻,改变其值可以改变振荡的幅度,L2为高频扼流圈,EX晶体振荡器,C T为可调电容,C3为反馈电容,C4分压电容,C2为输出耦合电容。

当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体的阻抗增大,使反馈减弱,从而使电路不能满足振幅条件,电路不能工作五、实验内容及步骤实验电路图见图4-1图4-1 晶体振荡器原理图1.测振荡器静态工作点,调图中R P ,测得I Emim I Emax2.测量当工作点在上述范围时的振荡频率及输出电压。

3.负载不同时对频率的影响,R 1分别为110K Ω、10K Ω、1K Ω,测出电路振荡频率填入表4.1, 并与LC 振荡器比较。

R L ~f 表4.1六、实验报告要求1.画出实验电路的交流等效电路 2.整理实验数据。

3.比较晶体振荡器与LC 振荡器带负载能力的差异,并分析原因。

4.你如何肯定电路工作在晶体的频率上。

5.根据电路给出的LC 参数计算回路中心频率,阐述本电路的优点。

OUT+12V。

晶体振荡器设计报告

晶体振荡器设计报告

晶体振荡器设计报告晶体振荡器设计报告班级姓名学号年月日一、设计方案论证振荡器常用于高频发射机和接收机,频率稳定性是衡量振荡器性能的重要参数之一,而石英晶体因其频率的高稳定性得到广泛的应用,依据右图所示的晶体的电抗特性曲线,在串并联谐振频率之间很狭窄的工作频带内,它呈现电感性,因而石英谐振器或者工作在感性区,或者工作于串联谐振频率上,不能工作在容性区,因为此时无法判断晶体是否工作,从而也不能保证频率的稳定度。

因此,根据晶体在电路中的作用原理,振荡器可分为两类:一类是石英晶体在振荡器线路中作为等效电感元件使用,称为并联谐振型晶体振荡器;另一类是把石英晶体作为串联谐振元件使用,使它工作于串联谐振频率上,串联谐振型晶体振荡器。

1. 晶体振荡器连接方式的选取并联谐振c-b型晶体振荡器的典型电路如右图所示。

振荡管的基极对高频接地,晶体管接在集电极和基极之间,C2与C5为回路的另外两个电抗元件,它类似于克拉泼振荡器,晶体振荡器的谐振回路与振荡管之间的耦合电容非常弱,从而使频率稳定性大大提高,因此本设计实验采用这种连接方案。

2. 输出缓冲级设计输出缓冲级主要完成对所产生的振荡信号进行输出,不管是并联谐振晶振电路还是串联谐振晶振电路,它们的带负载能力都不是很强,负载值改变时可能造成振荡器的输出频率变化,也可能影响振荡器的输出幅度,输出缓冲级的作用就是提高整个振荡器的带负载能力,即使得振荡器的输出特性不受负载影响,或影响较小。

常用的输出缓冲级是在电路的输出端加一射极跟随器,从而提高回路的带负载能力。

设计跟随器的特点是输入阻抗高,输出阻抗低,电压放大倍数略低于1,带负载能力强,具有较高的电流放大能力,它可以起到阻抗变换和级间隔离的作用,因而可以减小负载对于振荡回路的影响,射极跟随器的典型电路如右图所示。

3. 系统原理图设计依据各部分的方案设计并结合设计要求,综合考虑各种影响因素,设计系统原理图如下图所示。

图中R1和R2分压为三极管T1提供偏置电压,通过改变Rp1阻值的大小可以改变T1的静态工作点,C1用于在振荡器起振时将R1短路从而可以使振荡器正常振荡,C2、C5组成反馈分压,用于为振荡器提供反馈信号,它们与石英晶振共同构成了电容三点式振荡器电路,此时晶体相当于一等效电感,T2连接成射极跟随器,用于提高系统的带负载能力,RL1、RL2、RL3为三组负载。

石英晶体振荡器设计报告

石英晶体振荡器设计报告

石英晶体振荡器设计报告张炳炎09微电03 目录1 设计要求2 设计方案论证a.电路形式的选取b.参数的设计、估算c. 设计内容的实现3 电路的工作原理4 晶体振荡器的特点5 电路设计制作过程中遇到的主要问题及解决方法、心得和建议6 参考文献7 附录1设计要求(1)晶体振荡器的工作频率在100MHZ以下(2)振荡器工作可调,反馈元件可更换(3)具有三组不同的负载阻抗(4)电源电压为12V(5)在10K负载上输出目测不失真电压波形Vopp>=4V,振荡器频率读出5为有效数字2设计方案论证a.电路形式的选取: 串联型石英晶体振荡器串联型石英晶体振荡器交流等效电路石英晶体的物理和化学性能都十分稳定,等效谐振回路具有很高的标准性,Q值很高,对频率变化具有极灵敏的补偿能力具有.利用石英晶体作为串联谐振元件,在谐振时阻抗接近于零,此时正反馈最强,满足振荡条件.因此,电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率.b.参数的设计、估算选用石英晶体(6M)作为串联谐振元件,提高振荡器的标准性,三极管为高频中常用的小功率管9018,作为放大电路的主要器件,选用阻值较大的可调电阻Rp(50k)来调节电路的静态工作点,使输出幅值达到最大而不失真,在LC 组成的谐振回路加可变电容(100p)调节谐振频率。

三组负载分别为1k、10k、110k,用来比较对振荡器频率及幅值的影响。

c. 设计内容的实现○1输入电源电压12V,测试电路的静态工作点, 三极管Vbe>0.7v,Vc>Vb>Ve,三极管工作在放大区。

○2输出端接上示波器,观察到正弦波,通过改电位器、可变电容使输出的幅值达到最大。

○3改变负载值,测量不同负载下电路输出的频率及幅值大小。

可知,负载几乎对频率没有影响,因为输出的频率主要由石英晶体决定,而幅值随着负载的减小而略微下降,当空载时幅值最大。

3 电路的工作原理石英晶体振荡器总原理图如上图,C6,C7和L2组成π型滤波器,对外部直流电源进行滤波而只通过直流量,防止其对电路产生干扰。

晶体振荡器课程设计报告.doc

晶体振荡器课程设计报告.doc

晶体振荡器课程设计报告1应时晶体及其特性11.1应时晶体简介11.2应时晶体的阻抗频率特性12晶体管33的内部工作原理。

晶体振荡器电路的类型和工作原理43.1串联谐振晶体振荡器43.2并联谐振晶体振荡器63.3谐振晶体振荡器84工作点和环路参数的确定(以皮尔斯电路为例)94.1主要技术点标准94.2工作点的确定104.3交流参数的确定105提高振荡器116的频率稳定性。

12参考文献摘要:131应时晶体及其特性1.1应时晶体简介应时是一种矿物二氧化硅,其化学组成为二氧化硅,其形状为角锥形六方晶体,具有各向异性的物理特性。

根据其自然形状,它有三个对称轴,即电轴x、机械轴y和光轴z。

石英谐振器中的各种晶片从每个轴以不同的角度被切成正方形、矩形、圆形或棒状薄片,例如at、BT、CT、DT等。

在图1中。

不同的芯片类型具有不同的振动类型和不同的性能。

1.2应时晶体的阻抗频率特性石英谐振器的电路符号和等效电路如图 1.2.1所示。

C0被称为静态电容,即当晶体不振动时,两个极板之间的等效电容,它与晶片尺寸有关,通常约为几十pF至几十pF。

机械振动中晶体的惯性相当于Lq,Cq振动中摩擦引起的损耗相当于Rq。

它们的值与晶片切割方向、形状和尺寸有关。

一般来说,Lq是H,Cq是pF,Rq在几百到几百欧姆之间。

它的Lq很大,而Cq和Rq很小,有一个品质因数,所以Q值很高。

在这两者之间,因为应时晶体振荡器的存取系数P=Cq/(C0 Cq)很小,所以外部元件参数对应时晶体振荡器的影响很小。

忽略等效电路中的Rq,完整的等效电路图阻抗符号基频等效电路1.2.1晶体振荡器等效电路应时晶体振荡器可以等效为串联谐振电路和并联谐振电路。

如果忽略gq,晶体振荡器两端会出现纯电抗。

串联谐振频率:并联谐振频率可由上述公式获得,其阻抗频率特性曲线如图1.2.2和图1.2.2所示。

当使用f fp时,X为0,环路为容性。

当fq f 0时,环路是电感性的,发生串联谐振或并联谐振。

石英晶体振荡器实验报告

石英晶体振荡器实验报告

石英晶体振荡器实验报告
石英晶体振荡器实验报告
一、实验目的
1.了解晶体振荡器的工作原理及特点;
2.掌握晶体振荡器的设计方法及参数计算方法。

二、实验电路说明
本实验电路采用并联谐振型晶体振荡器,如图
XT、C2、C3、C4组成振荡回路。

Q1的集电极直流负载为R3,偏置电路由R1、R2、W和R4构成,改变W可改变Q1的静态工作点。

静态电流的选择既要保证振荡器处于截止平衡状态也要兼顾开始建立振荡时有足够大的电压增益。

振荡器的交流负载实验电阻为R5。

三、实验内容及步骤
1.接通电源;
2.测量振荡器的静态工作点:
调整图中W,测得Iemin和Iemax(可测量R4两端的电压来计算相应的Ie值);经计算可得:Iemin=0.704mA , Iemax=4.920mA 3.测量当工作点在上述范围时的振荡器频率及输出电压。

振荡器的频率为10MHz,输出电压的范围是0.37V~2.50V
4.研究有无负载对频率的影响:先将K1拨至OFF,测出电路振荡频率,再将K1拨至R5,测出电路振荡频率。

四、实验结果实验波形和频率
五、实验心得
通过动手做实验,我了解了石英晶体振荡器的工作原理,及其特点例如十分稳定。

但是实验中我们发现的问题例如开始时测量Ve 过大,虽然我们经过了改正,但是还是提醒我们在以后的实验中的一些必须注意的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体振荡器设计报告
班级姓名学号年月日
一、设计方案论证
振荡器常用于高频发射机和接收机,频
率稳定性是衡量振荡器性能的重要参数之
一,而石英晶体因其频率的高稳定性得到广
泛的应用,依据右图所示的晶体的电抗特性
曲线,在串并联谐振频率之间很狭窄的工作
频带内,它呈现电感性,因而石英谐振器或
者工作在感性区,或者工作于串联谐振频率
上,不能工作在容性区,因为此时无法判断晶体是否工作,从而也不能保证频率的稳定度。

因此,根据晶体在电路中的作用原理,振荡器可分为两类:一类是石英晶体在振荡器线路中作为等效电感元件使用,称为并联谐振型晶体振荡器;另一类是把石英晶体作为串联谐振元件使用,使它工作于串联谐振频率上,串联谐振型晶体振荡器。

1. 晶体振荡器连接方式的选取
并联谐振c-b型晶体振荡器的典型电路
如右图所示。

振荡管的基极对高频接地,晶
体管接在集电极和基极之间,C2与C5为回路
的另外两个电抗元件,它类似于克拉泼振荡
器,晶体振荡器的谐振回路与振荡管之间的
耦合电容非常弱,从而使频率稳定性大大提
高,因此本设计实验采用这种连接方案。

2. 输出缓冲级设计
输出缓冲级主要完成对所产生的振荡信
号进行输出,不管是并联谐振晶振电路还是
串联谐振晶振电路,它们的带负载能力都不
是很强,负载值改变时可能造成振荡器的输
出频率变化,也可能影响振荡器的输出幅度,输出缓冲级的作用就是提高整个振荡器的带负载能力,即使得振荡器的输出特性不受负载影响,或影响较小。

常用的输出缓冲级是在电路的输出端加
一射极跟随器,从而提高回路的带负载能力。

设计跟随器的特点是输入阻抗高,输出阻抗
低,电压放大倍数略低于1,带负载能力强,
具有较高的电流放大能力,它可以起到阻抗变
换和级间隔离的作用,因而可以减小负载对于
振荡回路的影响,射极跟随器的典型电路如右
图所示。

3. 系统原理图设计
依据各部分的方案设计并结合设计要求,综合考虑各种影响因素,设计系统原理图如下图所示。

图中R1和R2分压为三极管T1提供偏置电压,通过改变Rp1阻值的大小可以改变T1的静态工作点,C1用于在振荡器起振时将R1短路从而可以使振荡器正常振荡,C2、C5组成反馈分压,用于为振荡器提供反馈信号,它们与石英晶振共同构成了电容三点式振荡器电路,此时晶体相当于一等效电感,T2连接成射极跟随器,用于提高系统的带负载能力,RL1、RL2、RL3为三组负载。

二、参数计算
为使所设计的振荡器能够正常的工作,必须
对所选电路中的元件参数进行计算,使其满足振
荡器正常工作的条件,下面叙述第一级放大管偏
置电路元件参数的计算。

正确的静态工作点是振荡器能够正常工作的关
键因素,静态工作点主要影响晶体管的工作状
态,若静态工作点的设置不当则晶体管无法进行
正常的放大,振荡器在没有对反馈信号进行放大
时是无法工作的。

振荡器主电路的静态工作点主要由R1、R2、R4、
R5和Rp1决定,将电容断路,得到电路的直流通
路如右图所示。

三极管正常工作是时射极电流一般为mA级,基级电流一般为uA级,计算时取射极电流为mA,此时,若三极管的电流放大倍数为100,则基极电流为uA,可以认为基极电流很小,R4上的压降为:
三极管基极和射极之间的压降U be=0.7V,从而可以得到三极管的基极电压为:
R1、R2主要为三极管提供基极偏置电压,从而有
U b=Vcc〃R1/(R1+R2)
若取R1=5.6k,则可求得R2=12k,为方便调节,将R2用一12k的电阻和一47k的电位器串联组成。

三、电路调试
振荡条件。

从输出的测试结果看,晶体振荡器已经正常起振,输出为一频率为的稳定正弦波。

但由于射极跟随器电路的电阻参数设置过于固定,未连接电位器进行调节,使输出幅度达不到设计所要求的4V。

四、心得体会
本次高频课程设计旨在设计一晶体振荡器,但其原理仍然是三点式振荡器的原理,设计的关键在于电路中元件参数的计算,元件的选择是振荡器能否正常工作的关键,且高频电路的性能受环境的影响因素较大。

通过本次高频电路的课程设计,我有很大的收获,耐性和细致能力得到了提升。

在电路板刚刚制作完成时,无法测试出正弦波形,但两级三极管都已正常工作,经过不断地检查校验,终于查出来问题所在——原理图上有一节点未连接,导致印制出来的电路板上亦没有接通,用导线将亮点连接后,便观察到了稳定的正弦波形。

虽然本次设计大家都基本采用同一原理图,但生成的PCB图却各有不同,由于我是单独一人采用一种PCB图,没有与同学共用,在电路出现问题时也只能自己独立解决,但这恰恰使我发现和解决问题的能力得到了锻炼。

相关文档
最新文档