机械优化设计复习题_试题卷

合集下载

《机械优化设计》试卷及答案 新 全

《机械优化设计》试卷及答案  新 全

《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。

A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。

A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。

A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。

A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。

A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。

A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。

A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。

A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。

A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。

2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。

#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。

如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。

2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。

若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。

#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。

《机械优化设计》试卷及答案

《机械优化设计》试卷及答案

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数 C X B HX X T T ++21的梯度为 HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。

8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。

12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。

~机械优化设计复习试题与答案

~机械优化设计复习试题与答案

机械优化设计复习题则目标函数的极小值为(g(X)=c+x 0的最优化设计问题, 用外点罚函0.186 C (X)在区间[X 1,X 3]上为单峰函数,X 2为区间中一点,X 4为利用二次插值法公式求得的近似极值点。

如X 4- X 2>0,且F(X 4)>F(X 2),那么为求F(X)的极小值,X 4点在下一次搜索区间内将作为 ()。

一. 单项选择题 1.一个多元函数 X * 附近偏导数连续, 则该点位极小值点的充要条件为A . FX 0 B. 0, H X * 为正定 C . HX 0 D. 0, H X * 为负定2. 为克服复合形法容易产生退化的缺点,对于 维问题来说, 复合形的顶点数 K应( ) K n 1 B. K 2n C. K 2n D. n K 2n 13.目标函数 F (x )=4x 12 +5x 22 ,具有等式约束, 其等式约束条件为h(x)=2x 1+3x 2-6=0,A .1B . 19.05C . D.数法求解时,其惩罚函数表达式①A. aX+b+MB. aX+b+M (k){min [0,c+X ]}2, (k){min [0,c+X ]}2,C. aX+b+M (k){maX [c+X,0 ] }2, D. aX+b+M(k){maX [c+X,0 ]}2,10C. 13A 16 DM (k)为递增正数序列M 为递减正数序列 M (k) 为递增正数序列 hn M (k) 为递减正数序列(X,M (k))为()。

4. 对于目标函数 F(X)=ax+b 受约束于14.外点罚函数法的罚因子为()。

8.内点罚函数法的罚因子为续占八、、(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的()。

A. 凸函数B. 凹函数C. 严格凸函数D.严格凹函数10C. 13A 16 D11.在单峰搜索区间[X 1 X 3] (X 1<X 3)内,取一点X 2,用二次插值法计算得 X 4(在[X 1X 3]内),若X 2>X 4,并且其函数值F ( X 4) <F(X 2),则取新区间为( B.[X 2 X 3] C . [X1X 2] D. [X 4 X 3]n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为()7.已知二元二次型函数 F(X)= 1X T AX ,其中 A= 12 2 2,则该二次型是()的。

机械优化设计复习题最新版

机械优化设计复习题最新版

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。

机械产品结构优化设计考核试卷

机械产品结构优化设计考核试卷
A.云计算
B.分布式算法
C.超启发式算法
D.线性规划
(以下为空白答题区域,供考生填写答案)
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.在结构优化设计中,设计变量是指那些在优化过程中可以改变的_______。()
2.结构优化设计的目标函数通常用来描述结构的_______。()
C.模态分析
D.线性规划
18.以下哪些软件工具具有结构优化设计功能?()
A. AutoCAD
B. CATIA
C. Abaqus
D. Adobe Illustrator
19.在优化设计中,以下哪些方法可以用来减少计算时间?()
A.简化模型
B.使用近似方法
C.并行计算
D.增加迭代次数
20.以下哪些优化算法适用于大规模优化问题?()
A.静力优化
B.动力优化
C.热力优化
D.流体优化
20.以下哪种优化方法在处理大型优化问题时通常具有较高的计算效率?()
A.粒子群优化
B.遗传算法
C.模拟退火法
D.人工神经网络
(以下为空白答题区域,供考生填写答案)
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
C.结构的应力分布
D.结构的疲劳寿命
7.在进行结构优化设计时,以下哪种方法通常用于提高计算效率?()
A.网格细化法
B.线性化方法
C.非线性化方法
D.增量法
8.关于结构优化设计的说法,以下哪个是错误的?()
A.可以提高产品的性能
B.可以降低产品的成本
C.不会影响产品的生产周期

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。

A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。

A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。

A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。

A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。

A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一多选题
1. 迭代过程是否结束通常的判断方法有()
A. 设计变量在相邻两点之间的移动距离充分小
B. 相邻两点目标函数值之差充分小
C. 目标函数的导数等于零
D. 目标函数梯度充分小
E. 目标函数值等于零
2. 能处理含等式约束条件的有约束设计优化方法有( )。

A. Powell法
B. 变尺度法
C. 内点罚函数法
D. 外点罚函数法
E. 混合罚函数法
3. 组成优化设计数学模型基本要素是()
A. 设计变量
B. 目标函数
C. 极值
D. 设计空间
E. 约束条件
4. 根据无约束多元函数极值点的充分条件,已知驻点X*,下列判别正确的是( )
A. 若Hessian矩阵H(X*)正定,则X*是极大值点
B. 若Hessian矩阵H(X*)正定,则X*是极小值点
C. 若Hessian矩阵H(X*)负定,则X*是极大值点
D. 若Hessian矩阵H(X*)负定,则X*是极小值点
E. 若Hessian矩阵H(X*)不定,则X*是鞍点
5. 对于所有非零向量X,若X T MX>0,则二次型矩阵M是()
A. 三角矩阵
B. 负定矩阵
C. 正定矩阵
D. 非对称矩阵
E. 对称矩阵
6. 下面关于梯度法的一些说法,正确的是( )。

A. 只需求一阶偏导数
B. 在接近极小点位置时收敛速度很快
C. 在接近极小点位置时收敛速度很慢
D. 梯度法开始时的步长很小,接近极小点时的步长很大
E. 当目标函数的等值线为同心圆,任一点处的负梯度才是全域的最速下降方向
二填空题
1. 判断是否终止迭代的准则通常有______________、______________ 和______________三种形式。

2. 在一般的非线性规划问题中,kuhn-tucker点虽是约束的极值点,但______________是全域的最优点。

3. Powell法是以________________________方向作为搜索方向。

4. 罚函数法中能处理等式约束和不等式约束的方法是_________________________ 罚函数法。

5. 阻尼牛顿法的构造的迭代格式为_______________________________________________________________________________ ______ 。

6. 用二次插值法缩小区间时,如果,,则新的区间(a,b)应取作_____________,用以判断是否达到计算精度的准则是_____________________________________。

7. 外点惩罚函数法的极小点是从可行域之________________________向最优点逼近,内点惩罚函数法的极小点是从可行域之_____________向最优点逼近。

8. 多元函数F(x)在点x*处的梯度▽F(x*)=0是极值存在的__________________________________________________条件。

9. 函数在不同的点的最大变化率是______________。

10. 优化计算所采用的基本的迭代公式为__________________________________________________。

11. 当有两个设计变量时,目标函数与设计变量关系是______________中一个曲面。

12. 函数,在点处的梯度为______________。

13. 当有n个设计变量时,目标函数与n个设计变量间呈__________________________维空间超曲面关系。

14. 函数F(x)=3x+x-2x1x2+2在点(1,0)处的梯度为______________。

三问答题
1. 满足什么条件的方向是可行方向满足什么条件的方向是下降方向作图表示。

2. 分析比较牛顿法、阻尼牛顿法和共轭梯度法的特点
3. 为何说梯度是函数在一点上变化率的综合描述
4. 黄金分割法缩小区间时的选点原则是什么为何要这样选点
四计算题
1. 已知约束优化问题:
试求在点的梯度投影方向。

2. 使用黄金分割法确定函数的极值点。

初始点。

(使用进退法先确定初始区间)
3. 用外点法求下面问题的最优解
提示:可构造惩罚函数用解析法求解。

4. 用内点法求下面问题的最优解
5. 用阻尼牛顿法求函数的极小点。

6. 用牛顿法求函数的极小点(迭代两次)。

五综合分析题
1. 证明为凸函数
2. 用进退法确定的一维优化初始搜索区间,设初始点,步长。

3. 用梯度法对函数作二次迭代,初始点,并验证相邻两次迭代的搜索方向是互相垂直的。

相关文档
最新文档