1-2.2等差数列前n项和
北师版高中数学选择性必修第二册精品课件 第一章 2.2 第1课时 等差数列的前n项和

3.在等差数列{an}中,有3(a3+a5)+2(a7+a10+a13)=48,则此数列前13项之和
为
.
解析:∵数列{an}是等差数列,
∴3(a3+a5)+2(a7+a10+a13)=6a4+6a10=48.
∴a4+a10=8.∴a1+a13=8.
13(1 +13 )
∴S13=
=52.
2
2
随堂练习
1.已知等差数列{an}的各项都是负数,且 32 + 82 +2a3a8=9,则它的前10项和
S10等于(
A.-11
).
B.-9 C.-15 D.-13
解析:∵32 + 82 +2a3a8=9,
∴(a3+a8)2=(a1+a10)2=9.
∵an<0,∴a1+a10<0.
10(1 +10 )
1, = 1,
故 an=
2 × 3-1 , ≥ 2.
【思想方法】
应用方程思想解决等差数列问题
【典例】 等差数列{an}的前n项和记为Sn,已知a10=30,a20=50.
(1)求{an}的通项公式;
(2)若Sn=242,求n的值.
1 + 9 = 30,
1 = 12,
解:(1)由 an=a1+(n-1)d,a10=30,a20=50,得方程组
2
2
即-512=1+(4-1)d,
解得d=-171.
在等差数列{an}中,S4=20,S6=48,求a1.
4×3
4 = 41 + 2 × = 20,
最新人教版高中数学必修5第二章《等差数列的前n项和》

数学人教B 必修5第二章2.2.2 等差数列的前n 项和1.理解等差数列前n 项和公式的推导过程. 2.掌握等差数列前n 项和公式,并能利用前n 项和公式解决有关等差数列的实际问题. 3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中的三个量求另外的两个量.1.(1)倒序相加法是解决等差数列求和问题的基本方法,利用倒序相加法可以推出等差数列的前n 项和公式.(2)等差数列的前n 项和公式有两个,一共涉及a 1,a n ,S n ,n ,d 五个量,通常已知其中三个量,可求另外两个量,解答方法就是解方程组.(3)当已知首项a 1和末项a n 及项数n 时,用公式S n =n (a 1+a n )2来求和,用此公式时常结合等差数列的性质.(4)当已知首项a 1和公差d 及项数n 时,用公式S n =na 1+n (n -1)2d 来求和.【做一做1-1】已知数列{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ). A .33 B .34 C .35 D .36【做一做1-2】等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为( ). A .55 B .95C .100D .不能确定2.等差数列前n 项和公式与函数的关系 由于S n =na 1+n (n -1)2d =d 2n 2+(a 1-d2)n ,当d ≠0时,此公式可看做二次项系数为d 2,一次项系数为(a 1-d2),常数项为0的________,其图象为抛物线y =d 2x 2+(a 1-d2)x 上的点集,坐标为(n ,S n )(n ∈N +).因此,由二次函数的性质立即可以得出结论:当d >0时,S n 有最____值;当d <0时,S n 有最____值.数列中的最值问题可以根据二次函数的最值加以求解,这也是利用函数解决数列问题的一个重要应用.【做一做2-1】已知等差数列{a n }的通项公式a n =19-2n ,则{a n }的前________项和最大.【做一做2-2】已知数列{a n }的前n 项和S n =n 2-12n ,则当n 等于________时,S n 最小.一、关于等差数列中奇数项和、偶数项和的问题剖析:(1)当等差数列{a n }有偶数项时,设项数为2n , 设S 偶=a 2+a 4+a 6+…+a 2n ,① S 奇=a 1+a 3+a 5+…+a 2n -1,② ①-②,得S 偶-S 奇=nd . ①+②,得S 偶+S 奇=S 2n .①②,得S 偶S 奇=n2(a 2+a 2n )n2(a 1+a 2n -1)=2a n +12a n =a n +1a n .(2)当等差数列{a n }有奇数项时,设项数为2n +1, 设S 奇=a 1+a 3+a 5+…+a 2n +1,③ S 偶=a 2+a 4+a 6+…+a 2n ,④③-④,得S 奇-S 偶=a 1+nd =a n +1.③+④,得S 偶+S 奇=S 2n +1=(2n +1)a n +1. ③④,得S 奇S 偶=n +12(a 1+a 2n +1)n 2(a 2+a 2n )=(n +1)a n +1na n +1=n +1n .综上,等差数列奇数项和、偶数项和有如下性质: (1)项数为2n 时,S 偶-S 奇=nd ,S 偶+S 奇=S 2n ,S 偶S 奇=a n +1a n.(2)项数为2n +1时,S 奇-S 偶=a 1+nd =a n +1,S 偶+S 奇=S 2n +1=(2n +1)a n +1,S 奇S 偶=(n +1)a n +1na n +1=n +1n .熟练运用这些性质,可以提高解题速度.除了上述性质外,与前n 项和有关的性质还有:①等差数列的依次连续每k 项之和S k ,S 2k -S k ,S 3k -S 2k ,…组成公差为k 2d 的等差数列. ②若S n 为数列{a n }的前n 项和,则{a n }为等差数列等价于{S nn }是等差数列.③若{a n },{b n }都为等差数列,S n ,S n ′为它们的前n 项和,则a m b m =S 2m -1S 2m -1′.二、教材中的“?”如果仅利用通项公式,能求出使得S n 最小的序号n 的值吗?剖析:如果仅利用通项公式,也可求出最小序号n 的值.因为该数列的通项公式为a n=4n -32,其各项为-28,-24,…,-4,0,4,…,可以看出,所有负数或非正数的项相加其和最小时,n 的值为7或8.三、教材中的“思考与讨论”1.如果已知数列{a n }的前n 项和S n 的公式,那么这个数列确定了吗?如果确定了,那么如何求它的通项公式?应注意一些什么问题?剖析:确定了,由公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2来求解,求解时注意要分类讨论,然后对n =1的情况进行验证,能写成统一的形式就将a 1合进来,否则保留分段函数形式.2.如果一个数列的前n 项和的公式是S n =an 2+bn +c (a ,b ,c 为常数),那么这个数列一定是等差数列吗?剖析:等差数列前n 项和公式可以变形为S n =d 2n 2+(a 1-d2)n .当d ≠0时,是关于n 的二次函数,如果一个数列的前n 项和公式是S n =an 2+bn +c (a ,b ,c 为常数),那么这个数列的通项公式是a n =⎩⎪⎨⎪⎧a +b +c ,n =1,2an -a +b ,n ≥2.只有当c =0时,a 1=a +b +c 才满足a n =2an -a +b .因此,当数列的前n 项和公式为S n =an 2+bn 时,所确定的数列才是等差数列,这时,等差数列的公差d =2a .题型一 等差数列的前n 项和公式的直接应用 【例1】在等差数列{a n }中,(1)已知a 10=30,a 20=50,S n =242,求n ; (2)已知S 8=24,S 12=84,求a 1和d ; (3)已知a 6=20,S 5=10,求a 8和S 8; (4)已知a 16=3,求S 31.分析:在等差数列的前n 项和公式中有五个基本量a 1,a n ,d ,n ,S n ,只要已知任意三个量,就可以求出其他两个量.反思:在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,均可化成有关a 1,d 的方程或方程组求解.解题过程中,要注意:(1)选择适当的公式;(2)合理利用等差数列的有关性质.题型二 S n 与a n 的关系问题【例2】已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.分析:由a 1=S 1,求a 1.由a n +1=S n +1-S n 确定a n +1与a n 的关系,再求通项a n .反思:利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求a n 时,切记验证n =1时的情形是否符合n ≥2时a n 的表达式.题型三 等差数列前n 项和性质的应用【例3】项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.分析:已知等差数列的奇、偶数项的和,求特殊项与项数,可从整体上直接考虑奇、偶数项的和与特殊项及项数的关系.反思:在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n+1,S 偶=n ·a n +1;(2)若数列项数为2n (n ∈N +),则S 偶-S 奇=nd .题型四 等差数列前n 项和的最值问题【例4】在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值.分析:本题可用二次函数求最值或由通项公式求n ,使a n ≥0,a n +1<0或利用等差数列的性质求出大于或等于零的项.反思:本例四种解法从四个侧面求解前n 项和最值问题,方法迥异,殊途同归. 解等差数列的前n 项和最大(最小)问题的常用方法有:(1)二次函数法:由于S n =d 2n 2+(a 1-d2)n 是关于n 的二次式,因此可用二次函数的最值来确定S n 的最值,但要注意这里的n ∈N +.(2)图象法:可利用二次函数图象的对称性来确定n 的值,使S n 达到最大(或最小). (3)通项法:由于S n =S n -1+a n ,所以当a n ≥0时,S n ≥S n -1;当a n ≤0时,S n ≤S n -1,因此当a 1>0且d <0时,使a n ≥0的最大的n 的值,使S n 最大;当a 1<0,d >0时,满足a n ≤0的最大的n 的值,使S n 最小.题型 五易错辨析【例5】若数列{a n }的前n 项和为S n =3n 2-2n +1,求数列{a n }的通项公式,并判断它是否为等差数列.错解:∵a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5, ∴a n +1-a n =[6(n +1)-5]-(6n -5)=6(常数). ∴数列{a n }是等差数列.错因分析:本题忽略了a n =S n -S n -1成立的条件“n ≥2”.【例6】已知两个等差数列{a n }与{b n },它们的前n 项和的比S n S n =n +3n +1,求a 10b 10.错解:设S n =k (n +3),S n ′=k (n +1), 则a 10b 10=S 10-S 9S 10′-S 9′=k (10+3)-k (9+3)k (10+1)-k (9+1)=1. 错因分析:本题由于错误地设出了S n =k (n +3),S n ′=k (n +1),从而导致结论错误.1已知在等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( ). A .100 B .210 C .380 D .400 2已知数列{a n }的前n 项和S n =n +1n +2,则a 3等于( ).A .120B .124C .128D .1323等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A .130 B .170 C .210 D .2604设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ). A .S 4<S 5 B .S 4=S 5 C .S 6<S 5 D .S 6=S 5 5设数列{a n }的前n 项和为S n =2-2·3n ,则通项公式a n =________. 6设公差不为零的等差数列{a n },S n 是数列{a n }的前n 项和,且S 23=9S 2,S 4=4S 2,则数列{a n }的通项公式为____________.答案: 基础知识·梳理 1.n (a 1+a n )2 na 1+n (n -1)2d【做一做1-1】D 由公式S n =na 1+n (n -1)2d ,得到35n +n (n -1)2(-2)=0,即n 2-36n=0,解得n =36或n =0(舍去).【做一做1-2】B 2.二次函数 小 大 【做一做2-1】9 【做一做2-2】6 典型例题·领悟【例1】解:(1)由⎩⎪⎨⎪⎧ a 10=a 1+9d =30,a 20=a 1+19d =50,得⎩⎪⎨⎪⎧a 1=12,d =2.∵S n =242,∴12n +n (n -1)2×2=242.解得n =11或n =-22(舍去). ∴n =11.(2)由⎩⎪⎨⎪⎧ S 8=8a 1+28d =24,S 12=12a 1+66d =84,得⎩⎪⎨⎪⎧a 1=-4,d =2.∴a 1=-4,d =2.(3)由⎩⎪⎨⎪⎧ a 6=a 1+5d =20,S 5=5a 1+10d =10,得⎩⎪⎨⎪⎧a 1=-10,d =6.∴a 8=a 6+2d =32,S 8=8(a 1+a 8)2=88.(4)S 31=a 1+a 312×31=a 16×31=93.【例2】解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,知a 1=2. 又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n ,因a n >0,故a n +1=-a n 不成立,舍去.因此a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n =3n -1.【例3】解:设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)项,偶数项有n 项,中间项是第(n +1)项,即a n +1.∴S 奇S 偶=12(a 1+a 2n +1)×(n +1)12(a 2+a 2n )×n =(n +1)a n +1na n +1=n +1n =4433=43,得n =3.∴2n +1=7.又∵S 奇=(n +1)·a n +1=44,∴a n +1=11. 故这个数列的中间项为11,共有7项. 【例4】解:解法一:由S 17=S 9,得25×17+172(17-1)d =25×9+92(9-1)d ,解得d =-2,∴S n =25n +n2(n -1)(-2)=-(n -13)2+169,由二次函数的性质得当n =13时,S n 有最大值169. 解法二:先求出d =-2(解法一).∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n <0,得⎩⎨⎧n ≤1312,n >1212.∴当n =13时,S n 有最大值169. 解法三:先求出d =-2(同解法一). 由S 17=S 9,得a 10+a 11+…+a 17=0,而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14, 故a 13+a 14=0.∵d =-2<0,a 1>0, ∴a 13>0,a 14<0.故n =13时,S n 有最大值169.解法四:先求出d =-2(同解法一)得S n 的图象如图所示,由S 17=S 9知图象的对称轴n =9+172=13,∴当n =13时,S n 取得最大值169.【例5】正解:当n ≥2时,a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5. 当n =1时,a 1=S 1=2,∴a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.∴数列{a n }不是等差数列.【例6】正解1:利用等差数列的性质,得a 10b 10=192(a 1+a 19)192(b 1+b 19)=S 19S 19′=19+319+1=1110. 正解2:设S n =kn (n +3),S n ′=kn (n +1),所以a 10b 10=S 10-S 9S 10′-S 9′=k ·10(10+3)-k ·9(9+3)k ·10(10+1)-k ·9(9+1)=1110.随堂练习·巩固1.B d =a 4-a 24-2=15-72=4,a 1=3,所以S 10=210.2.A3.C 令m =1,则S m =S 1=a 1=30,S 2m =S 2=a 1+a 2=100,则有a 1=30,a 2=70,d =40,则a 3=110,故S 3m =S 3=S 2+a 3=100+110=210.4.B 方法一:设该等差数列的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧a 1+d =-6,a 1+7d =6.解得⎩⎪⎨⎪⎧a 1=-8,d =2. 从而有S 4=-20,S 5=-20,S 6=-18.从而有S 4=S 5.方法二:由等差数列的性质知a 5+a 5=a 2+a 8=-6+6=0,所以a 5=0,从而有S 4=S 5.5.-4·3n -1 当n =1时,a 1=S 1=2-2·31=-4.当n ≥2时,a n =S n -S n -1=(2-2·3n )-(2-2·3n -1)=-4·3n -1.此时对n =1,有a 1=-4·31-1=-4,也适合.综上,对n ∈N +,a n =-4·3n -1.6.a n =49(2n -1) 设数列{a n }的公差为d (d ≠0),首项为a 1,由已知得⎩⎪⎨⎪⎧(3a 1+3d )2=9(2a 1+d ),4a 1+6d =4(2a 1+d ).解得a 1=49,d =89或a 1=d =0(舍去).∴a n =a 1+(n -1)d =49+(n -1)×89=49(2n -1).。
第一部分第一章§2第一课时等差数列的前n项和

第一课时 等差数列的前n项和
[思路点拨] 运用方程的思想,根据已知条件建立 方程或方程组求解,另外解题时要注意整体代换.
法二:由S5=5a3=40,得a3=8. 所以a2+a5=a3-d+a3+2d=2a3+d=16+d=19. 得d=3. 所以a10=a3+7d=8+7×3=29.
答案:A
5.在项数为2n+1的等差数列{an}中,所有奇数项的 和为165,所有偶数项的和为150,则n= ( )
A.9
B.10
C.11
D.12
答案:B
6.已知数列{an}是等差数列,且a1+a2+…+a10= 10, a11+a12+…+a20=20,求a41+a42+…+a50.
法二:设b1=a1+a2+…+a10,b2=a11+a12+…+a20
(2)“知三求二”型: 在a1,an,Sn,n,d五个量中,已知其中的三个量 ,可以由通项公式和前n项和公式建立方程组,即可以 求出另外的两个. 这两种类型是解决等差数列运算的基本方法.
ห้องสมุดไป่ตู้
2.等差数列前n项和的最值问题: (1)类型.①若d>0,a1<0,则Sn有最小值;②若 d<0,a1>0,则Sn有最大值. (2)主要方法: ①二次函数法.用求二次函数的最值方法(配方法) 来求其前n项和的最值,但要注意的是n∈N+.
,b3=a21+a22+…+a30,b4=a31+a32+…+a40,
b5=a41+a42+…+a50. ∵数列{an}是等差数列, ∴数列{bn}也成等差数列, 其中b1=10,公差D=b2-b1=20-10=10. ∴a41+a42+…+a50=b5=10+4×10=50.
[例3] (12分)等差数列{an}中,Sn为前n项和,且 a1=25,S17=S9,请问数列前多少项和最大?
等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算公式。
3. 能够运用等差数列的前n项和公式解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
三、教学难点1. 等差数列的前n项和的公式的推导过程。
2. 运用等差数列的前n项和公式解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。
2. 通过实例分析,让学生掌握等差数列的前n项和的应用。
3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。
五、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
3. 等差数列的前n项和的性质。
4. 运用等差数列的前n项和公式解决实际问题。
第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。
各有千秋,难分伯仲——等差数列前n项和公式的五种形式及应用

各有千秋,难分伯仲——等差数列前n项和公式的五种
形式及应用
一、定义:
等差数列(Arithmetic Sequence)是指一组数满足相邻两项之差均为常数的数列。
它是有序数列中最为常见的类型,而且它在数学中有着重要的应用。
二、公式:
等差数列的前n项和公式有五种形式,即:
1. 极差法:Sn = n*a + [(n-1)*d]/2;
2. 等比数列的和公式:Sn = a*(1-rn) / (1-r);
3. 通项法:Sn = n/2(a+l);
4. 等差前n项和公式:Sn = n/2(2a+(n-1)d);
5. 首项和末项乘积法:Sn = n/2(a×l)。
三、应用:
1. 等差数列可以用于说明几何形体的对称性,如三角形、正方形和正多边形。
2. 等差数列可以用于推断和解决实际问题,如求解时间与距离的关系等。
3. 等差数列可以用于衡量某一事物的递增规律或趋势,如检测股价的波动趋势、记账的收入支出趋势等。
4. 等差数列可以用于估算一组数据的平均值,如计算某一时间段内股票的平均价格、计算某一地区的平均气温等。
5. 等差数列可以用于表达函数的性质,如线性函数y=ax+b、抛物线函数y=ax2+bx+c等。
高中数学同步学习 等差数列的前n项和学案含解析

2.2 等差数列的前n 项和第1课时 等差数列的前n 项和内 容 标 准学 科 素 养 1.理解等差数列的前n 项和公式的推导方法.2.掌握等差数列的前n 项和公式,会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.强化图形应用 严格公式代换 抽象数学模型授课提示:对应学生用书第11页[基础认识]知识点一 等差数列的前n 项和公式 预习教材P 15-18,思考并完成以下问题1.你知道高斯求和的故事吗?请同学们交流一下,高斯是怎样求1+2+3+…+100的结果的? 提示:对于这个问题,著名数学家高斯十岁时就能很快求出它的结果,当时他的思路和解答方法是:S =1+2+3+…+99+100,把加数倒序写一遍S =100+99+98+…+2+1.所以有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S=50×101=5 050. 2.你能用高斯的计算方法求1+2+3…+n 的值吗? 提示:设S n =1+2+3+…+(n -1)+n,① 又S n =n +(n -1)+(n -2)+…+2+1,②两式相加得2S n =(1+n)+(2+n -1)+…+(n +1)=n(n +1), ∴S n =n (n +1)2.3.我们把高斯的这种计算方法称为倒序求和法.你能用这种方法推得等差数列{a n }的前n 项和S n 吗? 提示:S n =a 1+a 2+a 3+…+a n -1+a n =a 1+(a 1+d)+(a 1+2d)+…+[a 1+(n -2)d]+[a 1+(n -1)d], S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d)+(a n -2d)+…+[a n -(n -2)d]+[a n -(n -1)d], ∴2S n =(a 1+a n )×n , ∴S n =n (a 1+a n )2.③4.问题(2)中求出的S n 是已知等差数列首项、末项与项数时求前n 项和S n 的公式,如果用a n =a 1+(n -1)d 替换末项,问题3中求出的S n 会变形为怎样的形式呢? 提示:S n =na 1+12n(n -1)d.知识点二 a 1n n 思考并完成以下问题(1)两个公式共涉及a 1,d,n,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,通项和前n 项和.(2)依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”. 知识点三 等差数列前n 项和的最值 思考并完成以下问题等差数列前n 项和的最值与{S n }的单调性有关.(1)若a 1>0,d <0,则数列的前面若干项为正项(或0),所以将这些项相加即得{S n }的最大值. (2)若a 1<0,d >0,则数列的前面若干项为负项(或0),所以将这些项相加即得{S n }的最小值.(3)若a 1>0,d >0,则{S n }是递增数列,S 1是{S n }的最小值;若a 1<0,d <0,则{S n }是递减数列,S 1是{S n }的最大值.[自我检测]1.在等差数列{a n }中,若其前13项的和S 13=52,则a 7为( ) A .4 B .3 C .6D .12解析:∵在等差数列{a n }中,其前13项的和S 13=52, ∴S 13=132(a 1+a 13)=13a 7=52,解得a 7=4.故选A.答案:A2.已知等差数列{a n }的前n 项和为S n ,若7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( ) A .5 B .6 C .7D .8解析:由7a 5+5a 9=0得a 1d =-173,又a 9>a 5,所以d >0,a 1<0,因为函数y =d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x 的图像的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取最小值时n 的值为6.答案:B3.在等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =________.解析:设等差数列的公差为d,则a 3+a 5=2a 1+6d =2+6d =14,∴d=2.则S n =n +n (n -1)2×2=n 2.令S n =100,即n 2=100. 解得n =10或n =-10(舍). 答案:10授课提示:对应学生用书第12页 探究一 等差数列前n 项和公式的基本应用[P17练习1第3题]在等差数列{a n }中, (1)已知S 8=48,S 12=168,求a 1和d ; (2)已知a 6=10,S 5=5,求a 8和S 8. (3)已知a 3+a 15=40,求S 17. 解析:设{a n }中首项为a 1,公差为d,(1)⎩⎪⎨⎪⎧S 8=8a 1+28d =48S 12=12a 1+66d =168,解得⎩⎪⎨⎪⎧a 1=-8,d =4. (2)⎩⎪⎨⎪⎧a 6=a 1+5d =10S 5=5a 1+10d =5,解得⎩⎪⎨⎪⎧a 1=-5d =3. ∴a 8=a 1+7d =-5+21=16, S 8=8a 1+28d =-40+84=44.(3)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.[例1] 已知一个等差数列{a n }的前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n 项和的公式吗?[解析] 法一:由题意知,S 10=310, S 20=1 220,将它们代入公式S n =na 1+n (n -1)2d,得到⎩⎪⎨⎪⎧10a 1+45d =310,20a 1+190d =1 220,解方程组得⎩⎪⎨⎪⎧a 1=4,d =6.∴S n =n×4+n (n -1)2×6=3n 2+n.法二:∵S 10=10(a 1+a 10)2=310,∴a 1+a 10=62,①∵S 20=20(a 1+a 20)2=1 220,∴a 1+a 20=122,② ②-①,得,a 20-a 10=60, ∴10d=60,∴d=6,a 1=4. ∴S n =na 1+n (n -1)2d =3n 2+n.方法技巧 两种思想方法在等差数列前n 项和公式中的应用(1)方程思想:等差数列的通项公式及前n 项和公式中“知三求二”的问题,一般是由通项公式和前n 项和公式联立方程(组)求解.(2)整体代换:在具体求解过程中应注意已知与未知的联系及整体代换思想的运用. 跟踪探究 1.(2019·珠海市模拟)已知{a n }为等差数列,前n 项和为S n ,若a 2+a 5+a 8=π4,则sin S 9=( ) A.12 B.22 C .-12D .-22解析:∵a 2+a 5+a 8=π4,a 2+a 8=2a 5=a 1+a 9,∴3a 5=π4,a 5=π12,∴a 1+a 9=π6,∴S 9=9(a 1+a 9)2=92×π6=3π4,sin S 9=22.故选B.答案:B探究二 等差数列前n 项和的最值问题[P18练习2第1题]已知数列{2n -11},那么S n 的最小值是( ) A .S 1 B .S 5 C .S 6D .S 11解析:由a n =2n -11,令a n ≤0,得n≤5.5,又∵n∈N +, 所以该数列前5项均为负数,从第6项开始为正数, 故S n 的最小值为S 5. 答案:B[例2] 在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n 的最小值,并指出何时取最小值. [解题指南] (1)根据题意列关于a 1和d 的方程(组)→解出a 1和d →写出a n 的表达式(2)法一:写出S n 的表达式→分析S n 的最值 法二:分析{a n }中项的变化规律→确定S n 最小时n 的值→求S n[解析] (1)设公差为d,则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d=-15, 解得⎩⎪⎨⎪⎧a 1=-9,d =3,则a n =3n -12.(2)法一:S n =n (a 1+a n )2=12(3n 2-21n)=32⎝ ⎛⎭⎪⎫n -722-1478,所以n =3或4时,前n 项的和S n 取得最小值为-18. 法二:要使数列{a n }前n 项的和取得最小值,则⎩⎪⎨⎪⎧a n =3n -12≤0,a n +1=3(n +1)-12≥0,得3≤n≤4,又n∈N +,所以n =3或4,S 3=S 4=-18.所以数列{a n }前n 项的和取得最小值为-18.方法技巧 求等差数列前n 项和的最值问题的两种方法(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0确定.当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0确定.(2)因为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n,若d≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值;且n 取最接近对称轴的正整数时,S n 取到最值.跟踪探究 2.在等差数列{a n }中,若a 1=25,且S 9=S 17,求S n 的最大值. 解析:法一:∵S 9=S 17,a 1=25,∴9×25+9(9-1)2d =17×25+17(17-1)2d,解得d =-2.由⎩⎪⎨⎪⎧a n =-2n +27≥0,a n +1=-2(n +1)+27≤0,得⎩⎪⎨⎪⎧n≤1312,n≥1212,又∵n∈N +,∴当n =13时,S n 有最大值169. 法二:同方法一,求出公差d =-2. 设S n =An 2+Bn. ∵S 9=S 17,∴二次函数对称轴为x =9+172=13,且开口方向向下,∴当n =13时,S n 取得最大值169. 探究三 等差数列前n 项和的实际应用[阅读教材P18例11及解答]九江抗洪指挥部接到预报,24 h 后有一洪峰到达,为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第二道防线.经计算,除现有的部队指战员和九江干群连续奋战外,还需调用20台同型号翻斗车,平均每辆工作24 h,但目前只有一辆车投入施工,其余的需从昌九高速公路沿线抽调.每隔20 min 能有一辆车到达,指挥部最多可调集25辆车,那么在24 h 内能否构筑成第二道防线? 题型:等差数列前n 项和的实际应用. 方法步骤:①从实际问题中抽象出等差数列. ②确定数列首项a 1及公差d. ③求出等差数列的前n 项和. ④判断并得出结论.[例3] 从4月1日开始,有一新款服装投入某商场销售.4月1日该款服装售出20件,第二天售出35件,第三天售出50件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天售出的件数分别递减10件.(1)记从4月1日起该款服装日销售量为a n ,销售天数为n,1≤n≤30,求a n 与n 的关系; (2)求4月份该款服装的总销售量.[解题指南] 解答本题可先确定a n 与n 的关系,然后用等差数列的前n 项和公式求总销量.[解析] (1)设从4月1日起该款服装的日销售量构成数列{a n }.由题意知,数列a 1,a 2,…,a 10是首项为20,公差为15的等差数列,所以a 9=15n +5(1≤n≤12且n∈N +). 而a 13,a 14,a 15,…a 30是首项为a 13=a 12-10=175, 公差为-10的等差数列.所以a n =175+(n -13)×(-10)=-10n +305(13≤n≤30且n∈N +).所以a n =⎩⎪⎨⎪⎧15n +5,1≤n≤12且n∈N +,-10n +305,13≤n≤30且n∈N +.(2)4月份该款服装的总销售量为12(a 1+a 12)2+18a 13+(30-12)×(30-12-1)×(-10)2=12×(20+185)2+18×175+18×17×(-10)2=2 850(件).延伸探究 本例中,条件不变,求“按规律,当该商场销售此服装超过1 300件时,社会上就开始流行,当此服装的销售量连续下降,且日销售量低于110件时,则此服装在社会上不再流行.试问:该款服装在社会上流行是否超过10天?说明理由.” 解析:4月1日至4月12日的销售总量为 12(a 1+a 12)2=12×(20+185)2=1 230<1 300,所以4月12日前该款服装在社会上还没有流行.4月1日至4月13日的销售总量为1 230+a 13=1 230+175=1 405>1 300, 故4月13日该款服装在社会上已开始流行. 由-10n +305<110,得n >392,所以第20天该款服装在社会上不再流行. 所以该款服装在社会上流行没有超过10天. 方法技巧 解应用题的基本程序跟踪探究 3.一名技术人员计划用下面的办法测试一种赛车:从时速10 km/h 开始,每隔2 s 速度提高20 km/h.如果测试时间是30 s,测试距离是________km. 解析:由于每隔2 s 速度提高20 km/h,所以该赛车在每个2 s 内的速度构成等差数列{a n },且a 1=10,d =20. 测试时间是30 s,则最后一个2 s 内的速度是a 15,测试距离S =(a 1+a 2+…+a 15)×23 600=(15×10+15×142×20)×23 600=1.25(km).答案:1.25授课提示:对应学生用书第14页[课后小结](1)推导等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.(2)等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用: 若m +n =p +q,则a n +a m =a p +a q (n,m,p,q∈N +); 若m +n =2p,则a n +a m =2a p .(3)求等差数列前n 项和S n 的最值的常用方法有两种: ①用二次函数的性质求解;②明确数列中的正项与负项,用负项之和最小,正项之和最大来解决. (4)解决数列应用题时应分清: ①是否为等差数列问题; ②是通项问题还是求和问题.[素养培优]忽略数列中为零的项致错设等差数列{a n }的前n 项和为S n ,且满足a 1>0,S 11=S 18,则当n 为何值时S n 最大?易错分析 在求解等差数列前n 项和S n 的最值时,容易忽略数列中为零的项而致错.利用不等式组⎩⎪⎨⎪⎧a n ≥0a n +1≤0(或⎩⎪⎨⎪⎧a n ≤0a n +1≥0)求n 的范围或利用二次函数的图像求解均可避免出错,考查图形应用的学科素养. 自我纠正 法一:由S 11=S 18 将11a 1+55d =18a 1+153d. 即a 1=-14d >0,所以d <0,构建不等式组⎩⎪⎨⎪⎧a n =a 1+(n -1)d≥0a n +1=a 1+nd≤0.即⎩⎪⎨⎪⎧-14d +(n -1)d≥0,-14d +nd≤0 解得14≤n≤15.故当n =14或n =15时,S n 最大.法二:由S 11=S 18知a 1=-14d.所以S n =na 1+n (n -1)2d =-14dn +n (n -1)2 d=d 2⎝ ⎛⎭⎪⎫n -2922-8418d,由于n∈N +,结合S n 对应的二次函数的图像知, 当n =14或n =15时S n 最大.法三:由S 11=S 18知,a 12+a 13+a 14+a 15+a 16+a 17+a 18=0,即7a 15=0, 所以a 15=0,又a 1>0,所以d <0. 故当n =14或n =15时,S n 最大.。
1.2.2等差数列的前n项和课件高二下学期数学北师大版选择性

实例分析
如图,有200根相同的圆木料,要把它们堆放成正三角形垛, 并使剩余的圆木料尽可能的少,那么将剩余多少根圆木料?
根据题意,各层圆木料数比上一层多一根,故其构成等差数放了n层,能构成正三角形垛的圆木料数为
则
Sn 1 2 3 n,
Sn
这是一个等差数列的求和问题,如何计算该 等差数列的和呢?
注:这里的项数是我们解题时容易忽略
2 2 100
30603.
3
(2 2
200
3)101
的问题.本题也可由S S200 S99得出.
S200
S99
(5
403) 2
200
(5
201) 2
99
4080010197 30603.
课堂练习
2甲 、乙两物体分别从相距70m的两处相向运动,甲第一分钟 走 2m,以后每分比前一分多走1m,乙每分走5m,问:甲、乙开始 运 动后多长时间相遇?
(2)当A 0,B 0时,d 0, a1 0, Sn Bn是关于n的正比例函数
(3)当A 0时,d 由上分析可知,Sn不一定是关于n的二次函数. 0, Sn是关于n的不含常数项的二次函数.
例题讲解
例1等差数列an的前n项和为Sn ,若S12 84, S20 460,
求 S28.
解设n分钟相遇,每分甲所走路程依次成公差为1的等差数列,共n项.
又 a1
2(m), d
1.70
5n
na1
n(n 1) 2
d,
代 入数据得70 5n 2n n(n 1) 2
解 得n 7(分).
课堂小结
1.等差数列中涉及五个量a1, d, n, an , Sn , 可“知三求二”,而a1和d是等差数列 的两个基本量,用它们表示已知量和 未知量是常用方法.
等差数列的前n项和公式说课

教材分析
教学方法
2.学法
教学过程
板书设计
在教学中,让学生在问题情境中,经历知识的形 成和发展,通过观察、操作、归纳、思考、探索、 交流、反思参与学习,认识和理解数学知识,学
会学习,发展能力.
教材分析
教学方法
3.教学手段
教学过程
板书设计
在教学中,使用了多媒体辅助教学,充 分发挥其快捷、清晰、形象的特点.
2. 学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析 问题和解决问题的能力,逻辑思维能力也初步形成, 但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷 静、深刻,因此片面、不严谨.
教材分析
教学方法
教学过程
板书设计
2.教学目标
King 设计工作室ppt模版发布供大家免费下载使用。版权为King设计工作室所有。
学生对高斯的算法是熟悉的,知道采用首 尾配对的方法来求和,但是他们对这种方法 的认识可能处于模仿、记忆的阶段 。
问题2: 求和:Sn=1+2+3+4+…+n=?
1.当n为偶数时:
Sn
(1
n) [2 (n 1)] [ n 2
(n 2
1)]
n (n 1) 2
综上所述:
2.当n为奇数时:
知识目标:理解等差数列前n项和公式的推导过程; 1
您可以自行使用、修改、复制本模版。转载、发表或以其它方式利用本模版上 内容,如果您需更公
式;了解倒序相加法的原理;
2 能力目标:通过公式的推导过程,体验从特殊到一般
的研究方法,渗透函数思想与方程(组) 思想,培养学生观察、归纳、反思的能 力;通过小组讨论学习,培养学生合作 交流、独立思考等良好的个性品质;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
122等差数列前n项和
教学目标
1.掌握等差数列前《项和的公式,并能运用公式解决简单的问题
(1)了解等差数列前《项和的定义,了解逆项相加的原理,理解等差数列前?!项和公式推导的过程,记忆公式的两种形式;
(2)用方程思想认识等差数列前《项和的公式,利用公式求儿卫1/卫;
等差数列通项公式与前«项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;
(3)会利用等差数列通项公式与前《项和的公式研究q的最值.
2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特
殊的思维规律,初步形成认识问题,解决问题的一般思路和方法
3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.
4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中
的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学重点:等差数列的前n项和公式的推导和应用,
难点:获得推导公式的思路.
教学方法:讲授法.
教学建议
(1)知识结构
本节内容是等差数列前《项和公式的推导和应用,首先通过具体的例子给出了求等差数列前《项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.
(2)重点、难点分析
高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.
(3)教法建议
①本节内容分为两课时,一节为公式推导及简单应用, 一节侧重于通项公式与前《项
和公式综合运用.
②前《项和公式的推导,建议由具体问题引入,使学生体会问题源于生活
③强调从特殊到一般,再从一般到特殊的思考方法与研究方法
④补充等差数列前《项和的最大值、最小值问题.
⑤用梯形面积公式记忆等差数列前«项和公式.
教学过程:一.新课引入
提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?
问题就是(板书)“ 1 + 2 + 3 + 4 +…+100 = ? ”
这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的
(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,
50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.
我们希望求一般的等差数列的和,高斯算法对我们有何启发?
.讲解新课:(板书)等差数列前《项和公式
1.公式推导(板书)问题:设等差数列{%}的首项为"1,公差为d,
E广勺+勺+偽+…+ a广?由学生讨论,研究高斯算法对一般等差数列求和的
指导意义.
思路一:运用基本量思想,将各项用衍和d表示,得
儿 + 十d)+ (a] + 2d)+(逐 +〃)+ ・♦ +仙+0-2同|+国+(旷1)引,有以下等式冷+d)+M +(旷2)d] = @1 +2d)+国+伙-加]二…,问题是一共有多少个
+国+也~1同,似乎与n的奇偶有关.这个思路似乎进行不下去了.
思路二:上面的等式其实就是坷5 5巾『^3 5•厂…,为回避个数问
题,做一个改写心=珂+勺+陽+…+迄“+抵]+必菱, 心=尬」抵1+也+…地+勾+如,两式左右分别相加, 得:2$厂何5)+佃+如)+ (西巾』+
…+ (也+曲)+ (也5)+仇+卯,2S,=呛1 +叮
g _总⑷+石
于是有:" 2 .这就是倒序相加法.
思路三:受思路二的启发,重新调整思路一,可得
2S'=加]+坷+ (用T )d ], 于是5咛d
g _ 验 1 + Q
于是得到了两个公式: 槪 —厂
2. 公式记忆:用梯形面积公式记忆等差数列前 «项和公式,这里对图形进行了割、
补两种处理,对应着等差数列前 《项和的两个公式.
3. 公式的应用:公式中含有四个量,运用方程的思想,知三求一
例 1.求和:(1)101 + 100 + 99 + 98 + 97 + …+ 64 ;
(2)2+4 + 6 + 8 +…+ (2时+4)(结果用《表示)
解题的关键是数清项数,小结数项数的方法
例2.等差数列2,4,6,,…中前多少项的和是9900?
本题实质是反用公式,解一个关于《的一元二次函数,注意得到的项数 《必 须是正整数.
三.小结:1.推导等差数列前«项和公式的思路;
2.公式的应用中的数学思想. o 严世2 和k 1
2 7 1
r = - til f
Uh ■*。