初中数学初试试讲题目——学而思

合集下载

学而思初二数学秋季班第4讲.全等三角形的经典模型(二).提高班.教师版

学而思初二数学秋季班第4讲.全等三角形的经典模型(二).提高班.教师版

1初二秋季·第4讲·提高班·教师版等等…腰漫画释义满分晋级阶梯4全等三角形的 经典模型(二)三角形11级特殊三角形之直角三角形 三角形10级 勾股定理与逆定理 三角形9级全等三角形的经典模型(二)2初二秋季·第4讲·提高班·教师版OFEC B A A F COBEDHABCDO EOGFE CBA“手拉手”数学模型:⑴ ⑵ ⑶【引例】 如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,求证:BF =CE 并求出 EOB 的度数. 知识互联网思路导航例题精讲题型一:“手拉手”模型3初二秋季·第4讲·提高班·教师版NMCBABNC【解析】 ∵△ABE 、△AFC 是等边三角形∴AE =AB ,AC =AF ,60∠=∠=︒EAB FAC ∴∠+∠=∠+∠EAB BAC FAC BAC 即∠=∠EAC BAF ∴AEC ABF △≌△∴BF =EC ∠=∠AEC ABF 又∵AGE BGO ∠=∠ ∴60∠=∠=︒BOE EAB ∴60∠=︒EOB【例1】 如图,正方形BAFE 与正方形ACGD 共点于A ,连接BD 、CF ,求证:BD =CF 并求出∠DOH 的度数. 【解析】 同引例,先证明ABD AFC △≌△∴BD =FC ,∠=∠BDA FCA ∵∠=∠DHO CHA ∴90∠=∠=︒DOH CAD【例2】 如图,已知点C 为线段AB 上一点,ACM △、BCN △是等边三角形.⑴ 求证:AN BM =.⑵ 将ACM △绕点C 按逆时针方向旋转180°,使点A 落在CB 上,请你对照原题图在图中画出符合要求的图形;⑶ 在⑵得到的图形中,结论“AN BM =”是否还成立,若成立,请证明;若不成立,请说明理由;⑷ 在⑵所得的图形中,设MA 的延长线交BN 于D ,试判断ABD △的形状,并证明你的结论. 【分析】 这是一个固定后运动变化的探索题,且在一定的条件下,探究原结论的存在性(不变性); 需要画图分析、判断、猜想、推理论证.【解析】 ⑴ ∵ACM △、BCN △是等边三角形∴AC CM =,BC CN =60ACM BCN ∠=∠=°典题精练OHGDF ECBA4初二秋季·第4讲·提高班·教师版ABCMNDNM CBA∴∠=∠ACN MCB 在ACN △和MCB △中 =⎧⎪∠=∠⎨⎪=⎩AC MC ACN MCB CN CB ∴ACN MCB △≌△(SAS ) ∴AN BM =⑵ 将ACM △绕点C 旋转如图:⑶ 在⑵的情况,结论AN BM =仍然成立.证明:∵60BCM NCA ∠=∠=°,CA CM =,CN CB =. ∴CAN CMB △≌△(SAS ),∴AN MB =.⑷ 如图,延长MA 交BN 于D ,则ABD △为等边三角形. 证明:∵60CAM BAD ABD ∠=∠=∠=°. ∴ABD △是等边三角形.【例3】 在ABC △中,90∠=BAC °,⊥AD BC 于D ,BF 平分∠ABC 交AD 于E ,交AC 于F .求证:AE=AF .54321A BCDE F【解析】 90∠=BAC °,390∴∠+∠=DAC °90⊥∴∠=︒AD BC ADC 90∴∠+∠=︒C DAC 3∴∠=∠C43152∠=∠+∠∠=∠+∠C ,BF 是ABC ∠的角平分线 12∴∠=∠典题精练题型二:双垂+角平分线模型5初二秋季·第4讲·提高班·教师版EN MDCBA NMD CBA 45∴∠=∠∴=AE AF【例4】 如图,已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,ABC ∠的角平分线BE 交CD 于G ,交AC 于E ,GF AB ∥交AC 于F . 求证:AF CG =. 【分析】 要证AF CG =,一般想到证明这两条线段所在的三角形全等,由图形可知,不存在直接全等三角形,因此要想到添加辅助线构造全等三角形.【解析】 作EH AB ⊥于H∵12∠=∠,90ACB ∠=° ∴EC EH =(角平分线定理) 又∵CD AB ⊥ ∴3A ∠=∠∵431∠=∠+∠,52A ∠=∠+∠ ∴45∠=∠ ∴CE CG = ∴CG EH =又∵GF AB ∥,90∠=∠=AHE FGC ° ∴A CFG ∠=∠∴CFG EAH △≌△(AAS ) ∴=CF EA ,∴-=-CF EF EA EF , ∴CE AF = ∴AF CG =【例5】 已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.【解析】 延长ND 到E 使DE BM = 典题精练题型三:半角模型54321HG FEDC BA54321GFE DC BA6初二秋季·第4讲·提高班·教师版DHFECBA∵四边形ABCD 是正方形 ∴AD =AB在ADE △和ABM △ =⎧⎪∠=∠⎨⎪=⎩AD AB ADE B DE BM ∴ADE ABM △≌△∴AM =AE ∠=∠BAM DAE∵45MAN ∠=︒ ∴45∠+∠=︒BAM NAD ∴45∠=∠=︒MAN EAN在AMN △和AEN △中 =⎧⎪∠=∠⎨⎪=⎩MA EA MAN EAN AN AN ∴AMN AEN △≌△ ∴MN =EN∴DE +DN =BM +DN=MN【例6】 如图,在四边形ABCD 中,180∠+∠=︒=B D AB AD ,,E 、F 分别是线段BC 、CD 上的点,且BE +FD =EF . 求证:12∠=∠EAF BAD .ABCDEF【解析】 延长FD 到H ,使DH =BE ,易证ABE ADH △≌△, 再证AEF AHF △≌△1122∴∠=∠=∠=∠EAF FAH EAH BAD【例7】 在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为三角形ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC . 探究:当M 、N 分别在直线AB 、AC 上移7初二秋季·第4讲·提高班·教师版动时,BM 、NC 、MN 之间的数量关系.AM N BCDDCBN M A图1 图2⑴如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; ⑵如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想⑴问的结论还成立吗?写 出你的猜想并加以证明.【解析】 ⑴如图1, BM 、NC 、MN 之间的数量关系BM +NC=MN . ⑵猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE .BD=CD 且120BDC ∠=.∴ 30=∠=∠DCB DBC .又△ABC 是等边三角形,∴90MBD NCD ECD ∠=∠=∠=. 在MBD △与ECD △中:BM CEMBD ECD BD CD =⎧⎪∠=∠⎨⎪=⎩∴MBD △≌ECD △(SAS ) . ∴DM=DE , BDM CDE ∠=∠ ∴60EDN BDC MDN ∠=∠-∠=在△MDN 与△EDN 中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ENMDC BA8初二秋季·第4讲·提高班·教师版∴MDN EDN △≌△(SAS) ∴MN NE NC BM ==+第04讲精讲:典型的旋转全等构图:“手拉手”全等模型探究; 【探究一】“手拉手”模型基本构图;如图1,若ABC ∆与ADE ∆旋转全等,则必有ABD ∆与ACE ∆为两个顶角相等的等腰三角形(即相似的等腰三角形);反之,如图2,若有两个顶角相等的等腰三角形ABD ∆与ACE ∆共顶角顶点,则必有ABC ∆与ADE ∆旋转全等;而图2正是“手拉手”模型的基本构图;图1EDC BA图2EDC BA【探究二】将探究一中的普通等腰三角形换成特殊的图形,例如等边三角形、等腰直角三角形、正方形,然后再探究结论如何变化;图3DCB图4E D CB A FG 图5ED CB A如图3、图4、图5,当两个等边三角形、等腰直角三角形、正方形共顶点时,ABC ∆与ADE ∆仍然旋转全等,并且有两个共同的结论; 结论1:ABC ∆≌ADE ∆;DE BC =;结论2:BC 与DE 所夹锐角等于两个等腰三角形的顶角;(倒角方法如下图6、图7、图8的八字模型)9初二秋季·第4讲·提高班·教师版图6图7图8【探究三】将探究二中的特殊图形旋转后结论是否仍然成立; 如下图9、图10、图11易得探究二中的两个结论仍然成立;图9E图10图11【探究四】深化探究二中图3的结论; 如图12,可得结论1:ABC ∆≌ADE ∆;DE BC =;结论2:︒=∠=∠=∠=∠60CAE BAD COE BOD ; 结论3:如图12、图13、图14,可得三对三角形全等(ABC ∆≌ADE ∆;AHD ∆≌AGB ∆;AGC ∆≌AHE ∆)图12图13图14结论4:如图15,连接GH ,可得AGH ∆为等边三角形;(由结论3可得AH AG =)图15NM O 图16EDC BA10 初二秋季·第4讲·提高班·教师版结论5:BE GH ∥;(由结论4可得︒=∠=∠60BAD AGH ) 结论6:连接AO ,可得AO 平分BOE ∠;(如图16,分别作BC AM ⊥、DE AN ⊥,AM 与AN 分别是全等三角形ABC ∆与ADE ∆对应边BC 和DE 上的高,故相等)11初二秋季·第4讲·提高班·教师版SFEDCBA MPNMH GFEDCBANM DCBA题型一 手拉手模型 巩固练习【练习1】 如图,DA ⊥AB ,EA ⊥AC ,AD=AB ,AE=AC ,则下列正确 的是( )A. ABD ACE △≌△B. ADF AES △≌△C. BMF CMS △≌△D. ADC ABE △≌△【解析】 D【练习2】 如图,正五边形ABDEF 与正五边形ACMHG 共点于A ,连接BG 、CF ,则线段BG 、CF 具有什么样的数量关系并求出∠GNC 的度数. 【解析】 先证ABG AFC △≌△可得BG =CF ,∠=∠ACF AGB ∵∠=∠NPG APC∴108∠=∠=︒GNC GAC题型二 双垂+角平分线模型 巩固练习【练习3】 已知AD 平分∠BAC ,⊥DE AB ,垂足为E ,⊥DF AC , 垂足为F ,且DB =DC ,则EB 与FC 的关系( )A. 相等B. EB <FCC. EB >FCD.以上都不对 【解析】 A题型三 半角模型 巩固练习【练习4】 如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 . 【解析】 6【练习5】 如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且复习巩固F E DCBAFEDC BA12 初二秋季·第4讲·提高班·教师版EHGDCBAFDEGCBA12EAF BAD =∠∠,求证:EF BE FD =-【解析】 证明:在BE 上截取BG ,使BG DF =,连接AG .∵180B ADC +=︒∠∠,180ADF ADC +=︒∠∠,∴B ADF =∠∠. ∵AB AD =,∴ABG ADF △≌△.∴BAG DAF =∠∠,AG AF =.∴12BAG EAD DAF EAD EAF BAD +=+==∠∠∠∠∠∠.∴GAE EAF =∠∠. ∵AE AE =, ∴AEG AEF △≌△. ∴EG EF =∵EG BE BG =-,∴EF BE FD =-.训练1. 如图,C 为线段AB 上一点,分别以AC 、CB 为边在AB 同侧作等边ACD △和等边BCE △,AE 交DC 于G 点,DB 交CE 于H 点,求证:GH AB ∥. 思维拓展训练(选讲)13初二秋季·第4讲·提高班·教师版A B C DH QNM【分析】 本题中,ACD △与BCE △是等边三角形,因此AC CD =,BC CE =,60ACD ECB ∠=∠=°,因为A 、C 、B 在同一条直线上,故60DCE ∠=°.这样可以得到ACE DCB △≌△,AEC DBC ∠=∠,故可以得到CEG CBH △≌△,则GC HC =,60CGH CHG ∠=∠=°,所以60ACG CGH ∠=∠=°,故GH AB ∥.【解析】 ∵ACD △和BCE △是等边三角形(已知)∴AC CD =,BC CE =(等边三角形的各边都相等)60ACD BCE ∠=∠=°(等边三角形的每个角都等于60°)∵180ACD DCE BCE ∠+∠+∠=° ∴60DCE ∠=°,120ACE DCB ∠=∠=°. 在ACE △和DCB △中,=⎧⎪∠=∠⎨⎪=⎩AC DCACE DCB CE CB∴ACE DCB △≌△(SAS )∴AEC DBC ∠=∠(全等三角形的对应角相等) 在BCH △和ECG △中,60∠=∠=⎧⎪=⎨⎪∠=∠⎩BCH ECG BC CE CBH CEG °∴BCH ECG △≌△(ASA )∴CH CG =(全等三角形的对应边相等) ∴CGH CHG ∠=∠(等边对等角)∵180GCH GHC CGH ∠+∠+∠=°(三角形内角和定理) ∴60GHC CGH ∠=∠=°.∴60ACG CGH ∠=∠=°(等量代换) ∴GH AB ∥(内错角相等,两直线平行)训练2. 条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.结论:⑴ MN DN BM =-;⑵ AH AB =.A B M C H ND14 初二秋季·第4讲·提高班·教师版【解析】 ⑴在CD 上取一点Q ,使DQ =BM先证AMB AQD △≌△ 可得AM =AQ再证AMN AQN △≌△∴MN =NQ∴DN DQ DN BM NQ MN -=-==⑵可证△ANH ≌△AND ,∴AH=AD=AB训练3. 如图,在Rt ABC △中,锐角ACB ∠的平分线交对边于E ,又交斜边的高AD 于O ,过O引OF BC ∥,交AB 于F ,请问AE 与BF 相等吗?理由是什么?OO 12ABCD E F FEDCBA21543G O54321G FE DC BA【解析】 相等.理由如下:如图,过E 作EG BC ⊥于G ∵EC 平分ACB ∠,∴12∠=∠ ∵90EAC ∠=°,AD BC ⊥ ∴1490∠+∠=°,2390∠+∠=° ∴34∠=∠ ∵35∠=∠, ∴45∠=∠∴AE AO =∵EC 平分ACB ∠,EA AC ⊥,EG BC ⊥ ∴EA EG =,∴AO EG =,∵FO BC ∥∴AFO B ∠=∠,90BDA FOA ∠=∠=° ∴BEG FAO ∠=∠∴AFO EBG △≌△(AAS ) ∴AF BE =∴AF EF BE EF -=- ∴AE BF =.N M DBA15初二秋季·第4讲·提高班·教师版ABCDO E训练4. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形. 【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.测试1. 如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连接BE 、CD ,则线段BE 、CD具有什么样的数量关系和位置关系 【解析】 先证明ABE ADC △≌△∴BE =CD ,再类似例1倒角即可得到BE ⊥CD测试2. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形. 【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.课后测N M DA初二秋季·第4讲·提高班·教师版第十五种品格:创新学会变通,变则通一天早上,一位贫困的牧师,为了转移哭闹不止的儿子的注意力,将一幅色彩缤纷的世界地图,撕成许多细小的碎片,丢在地上,许诺说:“小约翰,你如果能拼起这些碎片,我就给你二角五分钱。

学而思初一数学春季班第5讲-目标中考满分班-教师版

学而思初一数学春季班第5讲-目标中考满分班-教师版

不等式1级 不等式的概念和性质 不等式2级 含参不等式 方程6级不等式3级 不等式的应用春季班 第七讲暑期班第七讲天平漫画释义满分晋级阶梯5含参不等式编写思路:题型一:让学生掌握解一元一次不等式及一元一次不等式组的解法,认识解集,理解解与解集的区别和联系;题型二:让学生掌握含参不等式(系数含参和不含参两种类型)的解法. 对系数含参的不等式,让学生理解和掌握参数系数的讨论方法,并与含参方程的讨论方法进行比较、认识. 题型三:对于绝对值不等式,通过两种方法让学生理解(1)代数方法:即讨论、去绝对值,变成一元一次不等式,求解集. (2)几何方法:利用绝对值的几何意义求解.定 义示例剖析一元一次不等式:类似于一元一次方程,含有一个未知数,未知数的最高次数是1的不等式,叫作一元一次不等式.25x >,340m -<,332307≥y y -+-一元一次不等式标准形式:经过去分母、去括号、移项、合并同类项等变形后,能化为ax b<或ax b >的形式(其中0a ≠).563x >,37≤x 等都是一元一次不等式的标准形式 不等式的解:使不等式成立的每一个未知数的值叫作不等式的解.4-,2-,0,1,2都是不等式2x ≤的解,当然它的解还有许多.不等式的解集:能使不等式成立的所有未知思路导航知识互联网题型一:不等式(组)的基本解法数的集合,叫作不等式的解集.一般不等式的解集是一个范围,在这个范围内的每一个值都是不等式的解.不等式的解集可以用数轴来表示.3≥x 是260≥x -的解集; 2x <是2x ->-的解集解一元一次不等式的步骤:去分母→去括号→移项→合并同类项(化成ax b <或ax b >形式)→系数化为1(化成b x a >或bx a<的形式).不等式的解与不等式解集的区别与联系:不等式的解与不等式的解集是两个不同的概念,不等式的解是指使这个不等式成立的未知数的某个值,而不等式的解集,是指使这个不等式成立的未知数的所有的值组成的集合;不等式的所有解组成了解集,解集包括了每一个解.定 义示例剖析一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫作一元一次不等式组.1302841x x x ⎧-⎪⎨⎪+<-⎩≥和26061503≥x x x ⎧⎪-⎪-<⎨⎪⎪->⎩ 都是一元一次不等式组; 24x y >⎧⎨<⎩不是一元一次不等式组 一元一次不等式组的解集:几个一元一次不等式解集的公共部分,叫作由它们所组成的一元一次不等式组的解集,当几个不等式的解集没有公共部分时,称这个不等式组无解(解集为空集).解一元一次不等式组的步骤:⑴ 求出这个不等式组中各个不等式的解集;⑵ 利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集.由两个一元一次不等式组成的不等式组,经过整理可以归结为下述四种基本类型:(表中a b >)不等式 图示解集 x ax b >⎧⎨>⎩ x a >(同大取大)x ax b <⎧⎨<⎩ x b <(同小取小)x ax b <⎧⎨>⎩ b x a <<(大小交叉中间找)x ax b >⎧⎨<⎩无解(大大小小无解了)【例1】 ⑴解不等式31423x x x +--+≤. 典题精练⑵解不等式组12(1)532122x x x --⎧⎪⎨-<+⎪⎩≤,并在数轴上表示出解集.⑶求不等式组2(2)43251x x x x --⎧⎨--⎩≤<的整数解.⑷解不等式组32215x x -<-<⑸解不等式组253473x x -<⎧⎪-⎨>⎪⎩(2012年朝阳一模)【解析】⑴135x -≥; ⑵由①得1x -≥由②得3x <∴原不等式组的解集是13x -<≤.⑶由①得 12x -≥;由②得 2x <.∴此不等式组的解集为122x -<≤.∴此不等式组的整数解为0,1.⑷原不等式组等价于不等式组3221215x x x -<-⎧⎨-<⎩解得:1x < ⑸无解【点评】通过此题告知学生不等式组无解的写法.思路导航题型二:含参数的不等式(组)对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <,分类情况解集情况 0a >时解集为bx a <.0a <时 解集为bx a >.0a =时若0b >,则解集为任意数; 若0b ≤,则这个不等式无解.【引例】⑴关于x 的一次不等式组x ax b >⎧⎨<⎩无解集,则a ,b 的大小关系是 .⑵关于x 的一次不等式组x ax b <⎧⎨<⎩的解集是x b <,则a ,b 的大小关系是 .⑶关于x 的一次不等式组x ax b >⎧⎨<⎩的解集是a x b <<,则a ,b 的大小关系是 .⑷关于x 的一次不等式组x ax b ⎧⎨⎩≥≤的解集是a x b ≤≤,则a ,b 的大小关系是 .【解析】 ⑴a b ≥;⑵b a ≤;⑶a b <;⑷a b ≤.【点评】先根据不等式组解集的情况得到大小关系,再对“是否取等”情况单独分析.【例2】 解关于x 的不等式:⑴+2a x b > ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--⑸()212m x +< ⑹()25n x --<典题精练例题精讲【解析】 ⑴ 2b ax ->⑵移项得:2kx >当0k >时,解集为2x k >当0k <时,解集为2x k<当0k =时,不等式变为02x ⋅>,故不等式无解 ⑶移项,合并同类项得:()33k x ->-当30k ->,即3k >时,不等式解集为33x k ->- 当30k -<,即3k <时,不等式解集为33x k -<-当30k -=时,即3k =时,不等式变为03x ⋅>-,故不等式解集为任意数. ⑷不等式变形得:()9m n x +<-,因不知()m n +的正负性,故分类讨论①当0m n +>,即m n >-时,解集为9x m n <-+ ②当0m n +<,即m n <-时,解集为9x m n>-+③当0m n +=,即m n =-时,不等式无解.⑸∵210m +>,∴不等式解集为221x m <+ ⑹20n --<,∴不等式解集52x n >--【点评】第1小题为系数不含参的,第2至第4为系数含参的需要分类讨论,第5,6题都是系数恒正(恒负)的问题不需要分类讨论.【总结】解决系数含参的一元一次不等式步骤:1. 移项合并同类项后得到最简式ax b >或ax b <;2.对系数a 进行分类讨论;(此时注意分析系数有可能是恒正或恒负) 3.对系数为0的情况单独分析,此时不等式解集为任意数或无解.【例3】 ⑴不等式()123x m m ->-的解集与2x >的解集相同,则m 的值是 .⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 .⑶关于x 的不等式5ax >的解集为52x <-,则参数a 的值 .⑷ ①若不等式组3x x a >⎧⎨>⎩的解集是x a >,则a 的取值范围是 .②若不等式组3x x a >⎧⎨⎩≥的解集是x a ≥,则a 的取值范围是 .A .3a ≤B .3a =C .3a >D .3a ≥(北京二中期中考试)⑸已知关于x 的不等式组232x a x a +⎧⎨-⎩≥≤无解,则a 的取值范围是 .⑹已知关于x 的不等式组>053x a x -⎧⎨-⎩≥无解,则a 的取值范围是 .【解析】 ⑴由不等式解得62x m >-,即622m -=,则2m =; ⑵由不等式解得12a x -≤,可得112a -=-,1a =-;⑶2a =-⑷ ①D ;②C .⑸当232a a +>-时,不等式组无解,(大于大的,小于小的无解),∴2a <.⑹解不等式组得2x a x >⎧⎨⎩≤,当2a ≥时,不等式组无解(大于大的,小于小的无解),∴2a ≥.【例4】 ⑴ 已知关于x 的不等式组0521≥x a x -⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥(北京五中期中考试)【解析】 ⑴ 32≤a -<-;⑵A .【总结】(供教师参考)对于解决不等式组的整数解个数问题步骤:以例4(1)为例 1.写出不等式组的解集;例如2a x <≤2.根据整数解的个数在数轴上画出简图;可得32a -<<-;3.对于是否取等号单独讨论分析.当3a =-时,解集为32x -<≤此时有五个整数解,不合题意; 当2a =-时,解集为22x -<≤此时有四个整数解,合题意. 综上可得32a -<-≤.【探究对象】以下对于含有字母系数的一元一次不等式组的问题进行变式和拓展,主要针对整数根问题和解含参的不等式组,需要分类讨论.【变式】试确定实数a 的取值范围,使不等式组恰有两个整数解.544(1)331023a x x a x x +⎧+++⎪⎪⎨+⎪+>⎪⎩≥ 【解析】 不等式组的解为225x a -<≤恰有两个整数解,则这两个整数解必为0,1x =则122a <≤,解得112a <≤.【拓展1】如果关于x 不等式组9080.x a x b -⎧⎨-<⎩,≥的整数解仅为1,2,3,则a 的取值范围是 ,b 的取值范围是 . (2011年西城区期末考试) 【解析】 由原不等式组可得98a bx <≤.因不等式组的整数解仅为1,2,3,于是有019a <≤,348b<≤,由019a <≤得09a <≤,由348b<≤得2432b <≤.【拓展2】解关于x 的不等式组:23262(1)11x a x x x +⎧->⎪⎨⎪+>-⎩ 【解析】原不等式组可化为323x a x >+⎧⎨>⎩,当323a +>,即13a >时,不等式组的解集为32x a >+;当323a +≤,即13a ≤时,不等式组的解集为3x >.【拓展3】已知关于x 的不等式组214(1)3x ax x -<+⎧⎨+>⎩⑴若不等式组无正整数解,求a 的取值范围;⑵是否存在实数a ,使得不等式组的解集中恰含了3个正整数解. 若存在请求出a 的取值范围.【解析】 化简不等式组得()1314a x x ->-⎧⎪⎨>-⎪⎩当1a <时,解集为1341x a --<<-;当113a ≤≤时,解集为14x >-;当13a >时,解集为31x a >--⑴若不等式组无正整数解,显然1a ≥时,均不合题意; 当1a <时,应有311a --≤,得2a -≤, 所以原不等式组无正整数解时,a 的取值范围是2a -≤; ⑵当1a ≥时,不等式组的解集中均有无数个正整数解. 当1a <时,依题意得3341a -<-≤,解得104a <≤. 故当104a <≤时,不等式组的解集中恰含了3个正整数解.定义示例剖析绝对值不等式:不等式中未知数含有一个或几个绝对值的不等式.≤x a ,122≥x x -+-对于复杂的不等式可采用整体思想,例如()()22323x x +-+<,此时不必去括号可直接把2x +看成一个整体去解.【例5】 解下列不等式 :⑴ >2x . ⑵ 3x ≤. ⑶ 14≤x -【解析】 ⑴ (法一)零点分类讨论:①02x x ⎧⎨>⎩≥即2x >. ②02x x <⎧⎨->⎩即2x <-.综上得,2x >或2x <-.典题精练思路导航题型三:复杂的不等式(组)(法二 )应用绝对值的几何意义:2x >或2x <-. ⑵(法一)零点分类讨论:① 03x x ⎧⎨⎩≥≤ 即03x ≤≤.② 03x x <⎧⎨-⎩≤即30x -<≤.综上得,33x -≤≤.(法二)应用绝对值的几何意义:33x -≤≤. ⑶ (法一)零点分类讨论:① 1014≥≤x x -⎧⎨-⎩即51≤≤x .② 1014≤x x -<⎧⎨-⎩即31x -<≤综上得,35x -≤≤(法二)应用绝对值的几何意义:35x -≤≤【例6】 解不等式⑴ 123≤≤x + ⑵ 235≥x x -++【解析】 ⑴(法一)零点分类讨论:① 20123x x +⎧⎨+⎩≥≤≤ 即11x -≤≤.② 201(2)3x x +<⎧⎨-+⎩≤≤即53x --≤≤.综上得,11x -≤≤或53x --≤≤.(法二)应用绝对值的几何意义:11x -≤≤或53x --≤≤. ⑵ 应用绝对值的几何意义,易得x 为任意数.【总结】绝对值不等式的解法,通常根据绝对值的意义,用讨论的方法,去掉绝对值的符号,将绝对值不等式化为不等式组进行求解.也可根据数轴,利用绝对值的几何意义进行求解.【例7】 已知2310a x -+=,32160b x --=,且4a b <≤,求x 的取值范围.【解析】题型一 不等式(组)的基本解法 巩固练习【练习1】 不等式组331482x x x +>⎧⎨--⎩≤的最小整数解是( ) A .0 B .1 C .2 D .-1【解析】A题型二 含参数的一元一次不等式(组) 巩固练习【练习2】 、a b 为参数,解不等式153b ax x -<-+ 【解析】 不等式化简为63b a x ⎛⎫+< ⎪⎝⎭ 当03b a +>时,解集为183x a b<+ 当03b a +<时,解集为183x a b>+ 当03b a +=时,解集为任意数. 【练习3】 ⑴若不等式(2)2a x a -<-的解集在数轴上表示如图所示,则a 的取值范围是 .复习巩固真题赏析312310,216232160,3431421624323x a x a x b x b a b x x x --+=∴=+--=∴=<-⎧⎪⎪∴⎨+⎪>⎪⎩∴-<≤≤≤⑵若不等式组213x x a -<⎧⎨<⎩的解集是2x <,则a 的取值范围是 .⑶如果关于x 的不等式组230≥≤x x m -⎧⎨⎩无解,则m 的取值范围是 . 【解析】 ⑴2a <;⑵2a ≥; ⑶32m <.【练习4】 ⑴ 关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是( ). A.1453a --≤≤ B.1453a -<-≤ C.145<3a --≤ D .1453a -<<-⑵已知关于x 的不等式组0321≥x a x -⎧⎨->-⎩的整数解有5个,则a 的取值范围是 . 【解析】 ⑴ C. 不等式组可化得2123x x a <⎧⎨>-⎩∴这四个整数只能是17,18,19,20, 故162317a -<≤,即1453a -<-≤. ⑵43≤a -<-.题型三 复杂的不等式(组) 巩固练习【练习5】 解下列不等式:135x <-<【解析】 22x -<<或48x <<第十四种品格:信念朋友的信任公元前4世纪,在意大利,有一个名叫皮斯阿司的年轻人触犯了国王。

学而思初二数学秋季班第1讲.构造轴对称图形.提高班.教师版

学而思初二数学秋季班第1讲.构造轴对称图形.提高班.教师版

1初二秋季·第1讲·提高班·教师版对称的世界图形变换3级中考新题型之折纸与拼图图形变换2级 构造轴对称图形图形变换1级 轴对称初步 满分晋级漫画释义1构造轴对称图形2初二秋季·第1讲·提高班·教师版1 角平分线+垂线,等腰三角形必呈现当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,可利用等腰三角形的三线合一性质证题;2 角分线,分两边;对称全等要记全当题设有角平分线及角平分线一侧的三角形时,可截长补短,利用角平分线,构造轴对称的全等三角形.例题精讲思路导航知识互联网题型一:角平分线的常见辅助线模型(二)3初二秋季·第1讲·提高班·教师版图2N M O B CP A 图1A P CO MN【引例】 如图,在ABC △中,BE 是角平分线,AD BE ⊥,垂足为D .求证:21C ∠=∠+∠.ABCED12F21DECBA【解析】如图,延长AD 交BC 于F 点.∵ABD FBD ∠=∠,BD BD =,90ADB FDB ∠=∠=︒, ∴Rt Rt ABD FBD △≌△. ∴2DFB ∠=∠. ∵1DFB C ∠=∠+∠, ∴21C ∠=∠+∠.【例1】 如图1所示: OP 平分MON ∠,A 为OM 上一点,AC OP ⊥于C 点.则延长AC 与ON交于B 点(如图2所示),易证AC BC OA OB ==,.进而可知点C 是线段AB 的中点.请根据上面的学习材料,解答下列各题:如图,在ABC △中,90BAC ∠=°,AB AC =,BE 平分ABC ∠,CE BE ⊥.求证:12CE BD =.ABCD E123321FED CBA【解析】 延长CE 、BA 相交于F ,典题精练4初二秋季·第1讲·提高班·教师版在BEC △和BEF △中12BE BE BEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC BEF △≌△(ASA )∴12CE EF CF ==∵BE CE ⊥,∴190F ∠=-∠° 同理390F ∠=-∠°,∴13∠=∠在ABD △和ACF △中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD ACF △≌△(ASA ) ∴BD CF =∴12CE BD =【例2】 阅读下面学习材料:如图1所示:ABC △中,取AB AC 、中点D E 、,连接DE ,则DE 叫ABC △的中位线(如图2所示).易证DE BC ∥且12DE BC =.图2图1BCAED C BA我们来一起证明一下:证明:过点C 作CF AB ∥交DE 的延长线于F . ∴ADE CFE △≌△∴DE EF =,FC AD DB ==. ∵,FC BD ∥FC BD =∴四边形DBCF 是平行四边形. ∴1122DE BC DF ==,DF BC ∥.若在ABC △中,MB 、NC 分别是三角形的外角ABP ∠、ACQ ∠的角平分线,AM BM ⊥, AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++AB CMNPQFEQPNMCBA【解析】延长AM 、CB 相交于点E ,延长AN 、BC 相交于点F ,易证()()ASA ASA AMB EMB ANC FNC △≌△,△≌△, FED C BA5初二秋季·第1讲·提高班·教师版∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN EB BC CF AB BC AC =++=++.【例3】 阅读下列学习材料:如图1 所示,OP 平分MON ∠,A 为OM 上一点,C 为OP 上一点.连接AC ,在射线ON 上截取OB OA =,连接BC (如图2),易证AOC BOC △≌△.图1N M OPA C图2CA PBOM N请根据上面的学习材料,解答下列各题: 如图,在四边形ABCD 中,AD BC A ∠∥,的角平分线AE 交DC 于E ,BE 是B ∠的角平分线.求证:⑴AD BC AB +=;⑵AE BE ⊥EDCB AFEDCBA【解析】⑴ 在AB 上截取AF ,使AF AD =,连接EF ,∵在ADE △和AFE △中,DA FA DAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)ADE AFE △≌△ ∴ADE AFE ∠=∠ ∵AD BC ∥∴180ADE C ∠+∠=︒ ∵180EFB AFE ∠+∠=︒ ∴EFB C ∠=∠∵在EFB △和ECB △中,EBF EBC EFB C BE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)EFB ECB △≌△ ∴BF BC =∴AD BC AF BF AB +=+= ⑵ ∵AD BC ∥,∴22180EAB EBA ∠+∠=︒ ∴90EAB EBA ∠+∠=︒ ∴AE BE ⊥.【例4】 已知:如图,在四边形ABCD 中,BC AB >,AD CD =,BD 平 A B CD6初二秋季·第1讲·提高班·教师版分ABC ∠.求证:180A C ∠+∠=°.【分析】 证两个角的和等于180°,使我们联想到证这两角和等于一个平角.由于两个角比较分散,因此根据角的平分线的条件,添加辅助线,把两个角拼成一个平角.【解析】 证法一:(这个模型我们暑期班进行过详细讲解)如图,过点D 作BA 、BC 的垂线,垂足分别为E 、F .则DE DF =. 在Rt ADE △和Rt CDF △中,AD DC DE DF =⎧⎨=⎩,∴()Rt Rt HL ADE CDF △≌△,∴EAD C ∠=∠. ∵180BAD EAD ∠+∠=°,∴180A C ∠+∠=°.FEDCBAA BCDEEDCBA证法二:如图,在BC 上截取BE AB =,连结DE , 在ABD △和EBD △中AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD EBD △≌△,∴A BED ∠=∠,AD ED =. ∵AD CD =,∴ED CD =.∴C DEC ∠=∠. ∴180A C BED DEC ∠+∠=∠+∠=°.证法三:如图,延长BA 到E ,BE BC =,连结ED .在BDE △和BDC △中,BD BD EBD CBD BE BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDE BDC △≌△∴E C ∠=∠,ED CD =.∵AD CD =,∴AD ED =∴E DAE ∠=∠,C DAE ∠=∠.∴BAD C ∠+∠180BAD DAE =∠+∠=°.7初二秋季·第1讲·提高班·教师版探索1:如图,在l 上找一点P ,使PA PB +最小.lBAP′PlBA【解析】直线AB 与l 的交点即为所求点P ,PA PB +最小值为AB .探索2:如图,在l 上找一点P ,使PA PB +最小.ABlPlB'BA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB +最小值为'AB .【备选1】模型应用:⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小; ⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小; ⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.思路导航题型二:将军饮马问题探索8初二秋季·第1讲·提高班·教师版图4图3图2图1P DCAOPCBAP E D CB AP E D CBA【解析】 ⑴作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为223BC BE -=;⑵连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB +PE 的最小值是225AD AE +=;⑶作A 关于OB 的对称点A ′,连接A ′C ,交OB 于P ,P A +PC 的最小值即为A ′C 的长,∵∠AOC =60°,∴∠A ′OC =120°,作OD ⊥A ′C 于D ,则∠A ′OD =60°,∵OA ′=OA =2,A ′D =3,∴A ′C =23⑶如图4,首先过点B 作BB ′⊥AC 于O ,且OB =OB ′,连接DB ′并延长交AC 于P ,由AC 是BB ′的垂直平分线,可得∠APB =∠APD .B'DA'图4图3图2图1P DCB AO P C B AP E DCB AP E D CBA【备注】此题涉及部分勾股定理内容,程度好的班级教师可适当进行拓展,程度一般的班级可跳过计算,会画图即可.探索3:如图,在l 上找一点P ,使PA PB -最大.ABlAPB P′l【解析】直线AB 与l 的交点即为所求点P ,PA PB -最大值为AB ..探索4:如图,在l 上找一点P ,使PA PB -最大.9初二秋季·第1讲·提高班·教师版ABllB'PBA【解析】做点B 关于直线l 的对称点'B ,直线'AB 与l 的交点即为所求点P ,PA PB -最大值为AB '.探索5:如图,在l 上找一点P ,使PA PB -最小.All【解析】直线AB 的中垂线与l 的交点即为所求点P ,PA PB -最小值为0.探索6:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PCD△的周长最小.BOB【分析】做点P 关于直线OA 、OB 的对称点1P 、2P ,12P P 与直线OA 、OB 的交点为所求点C 、D .△PCD 的周长最小值为P 1P 2的长度.【备选2】 已知如图所示,40MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,则当PAB △的周长取最小值时,APB ∠的度数为 .(东城期末)【解析】 分别作点P 关于ON 、OM 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PAB △的周长PA AB PB P B AB P A '''++=++, 由两点间线段最短,故PAB △的最小周长为P P ''',N PB M O AP''P'P B A N OM10 初二秋季·第1讲·提高班·教师版∵40MON =︒∠,OP OP OP '''==,∴P OP '''△是等腰三角形, 此时∠O P 'P ''=∠O P ''P '=50°∴角∠APB =∠O P 'P ''+∠O P ''P '=100°.探索7:如图,点P 在锐角AOB ∠的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PD CD +最小.ABPP′PDC OBA【解析】做点P 关于直线OB 的对称点'P 、过'P 向直线OA 作垂线、与OB 的交点为所求点D ,垂足即为点C .PD +CD 的最小值为P ’C 的长度.【备选3】如图,在锐角三角形ABC 中,BC =42,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,试求CM +MN 的最小值.【解析】 过点C 作CE ⊥AB 于点E ,交BD 于点M ′,过点M ′作M ′N ′⊥BC 于N ′,则CE 即为CM +MN的最小值,∵BC =42,∠ABC =45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE =4,故CM +MN 的最小值为4.EN'M'ABCD NMMNDCBA探索8:如图,点C 、D 在锐角AOB ∠的内部,在OB 边上求作一点F ,在OA 边上求作一点E ,使四边形CEFD 周长最小.ODC BAC′D′FEODC BA111【解析】如图所示,作C 、D 两点分别关于直线OA 、OB 的对称点C D ''、,连接C D ''、分别交OA 、OB 于E F 、,点E 、F 即为所求.【备选4】在∠MON 的两边上分别找两点P 、Q ,使得AP +PQ +QB 最小.(保留画图痕迹,不要求写作法)A'N NO探索9:如图,直线l 外有两点A 、B ,有一定长线段a ,在直线上找到点M 、N ,使得MN 间的距离等于定长a ,使得四边形AMNB 的周长最小.B'A'aNMBAl【解析】 如图所示,将点A 向右平移a 个长度到点'A ,做点B 关于直线l 的对称点'B ,连接''A B 后交直线l 于点N ,过点A 作''AM A B ∥,交直线l 于点M ,四边形AMNB 即为所求.【备选5】⑴如图1,在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC =6,BC 边上的高为4,请你在BC 边上确定一点P ,使得△PDE 的周长最小. ①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法) ②请直接写出△PDE 周长的最小值.⑵如图2在矩形ABCD 中,AB =4,BC =6,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且EF =1,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并求出四边形CGEF 周长的最小值.aBAl图1图2图1BGCB12 初二秋季·第1讲·提高班·教师版【解析】⑴ ①如图1所示:②8;⑵ 如图2,作G 关于AB 的对称点M ,在CD 上截取CH =1,然后连接HM 交AB 于E , 接着在EB 上截取EF =1,那么E 、F 两点即可满足使四边形CGEF 的周长最小. C CGEF GE EF FC GC MH CG EF =+++=++四边形 ∵AB =4,BC =6,G 为边AD 的中点, ∴DG =AG =AM =3,∴MH=2239310+=,CG=22345+= ∴C 6310CGEF =+四边形.探索10:如图,在一组平行线l 1、l 2两侧各有两点A 、B ,在l 1、l 2间找一条线段MN ,使MN ⊥l 1并且使得AM +MN +NB 之和最短.N'M'A'l 2BN MAl 1N MBA l 2l 1【备选6】如图,荆州古城河在CC ′处直角转弯,河宽均为5米,从A 处到达B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A 、B 在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD ′E ′EB 的路程最短,这个最短路程是多少米?CABD D'C'E E'FGE'E C'D'D BA C【解析】 作AF ⊥CD ,且AF =河宽,作BG ⊥CE ,且BG =河宽,连接GF ,与河岸相交于E ′、D ′.作DD ′、EE ′即为桥.13初二秋季·第1讲·提高班·教师版证明:由作图法可知,AF ∥DD ′,AF =DD ′, 则四边形AFD ′D 为平行四边形, 于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF 最小; 即当桥建于如图所示位置时,ADD ′E ′EB 最短. 距离为()()2265-5+85-552110+⨯=米.【例5】 如图,30AOB =︒∠,点P 位于AOB ∠内,3OP =,点M 、N 分别是射线OA 、OB 上的动点,求PMN △的最小周长.NMPBAOP''P'OAB PMN【解析】 分别作点P 关于OA 、OB 的对称点P '、P '',连接OP '、OP ''、P P ''',显然PMN △的周长PM MN PN P M MN P N '''++=++,由两点间线段最短,P M MN P N P P ''''''++≥,故PMN △的最小周长等于P P '''的长, ∵30AOB =︒∠,∴'"60P OP ∠=︒,又∵3OP OP OP '''===, ∴P OP '''△是等边三角形,∴3P P '''=,即PMN △的最小周长为3.【例6】 如图1,OP 是MON ∠的角平分线,请利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考构造全等三角形的方法,解答下列问题:⑴ 如图2,在ABC △中,ACB ∠是直角,60B ∠=︒,AD CE 、分别是BAC BCA ∠∠、的角平分线,AD CE 、相交于点F .请你判断写出FE 与FD 之间的数量关系;⑵ 如图3,在ABC △中,如果ACB ∠不是直角,而⑴中的其他条件不变,请问,你在⑴中所得结论是否依然成立?若成立请证明;若不成立,请说明理由.(北京中考)典题精练图3图2图1P NMOABCDEFFEDC BA14 初二秋季·第1讲·提高班·教师版4321图4G FE D CBA图5HGABCD E F【解析】 图略.⑴ FE 与FD 之间的数量关系为FE FD = ⑵ ⑴中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连接FG . ∵12∠=∠,AF 为公共边,∴AEF AGF △≌△, ∴AFE AFG FE FG ∠=∠=,.∵60B ∠=︒,AD 、CE 分别是BAC BCA ∠∠、的平分线,∴2360∠+∠=︒,∴60AFE CFD AFG ∠=∠=∠=︒,∴60CFG ∠=︒. ∵34∠=∠,且FC 为公共边,可得CFG CFD △≌△, ∴FG FD =,∴FE FD =.证法二:若C A ∠>∠,如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H ∵60B ∠=︒,且AD CE 、分别是BAC BCA ∠∠、的平分线, ∴2360∠+∠=︒,FG FH =, ∴601GEF ∠=︒+∠.∵1HDF B ∠=∠+∠,∴GEF HDF ∠=∠,123 4∴EGF DHF.△≌△,∴FE FD初二秋季·第1讲·提高班·教师版1516 初二秋季·第1讲·提高班·教师版训练1. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MABCE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.训练2. 在ABC △中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-NMC B AFENMCB A【解析】延长AM 、BC 相交于点E ,延长AN 、CB 相交于点F ,易证Rt Rt AMB EMB △≌△,Rt Rt ANC FNC △≌△,∴AM EM =,AN FN =,AB EB =,AC FC =∴MN BC ∥,且()()1122MN FB BC CE AB AC BC =++=+-.训练3. 如图所示,AD 是内角平分线,求证:PC PB AC AB -<-图2CP D BA思维拓展训练(选讲)17初二秋季·第1讲·提高班·教师版【解析】 如图,在AC 上取一点E ,使AE AB =,连接PE ,∵AD 平分ABC ∠,∴CAP BAP ∠=∠.∵AE AB AP AP ==,,∴APE APB △≌△,∴PE PB = 在EPC △中,PC PE EC -<,即PC PB AC AE -<-, ∴PC PB AC AB -<-.训练4. 如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN -的取值范围.NMD CB A【解析】当DN MN =时,DN MN -有最小值为0,此时点N 位于DM 的垂直平分线与AC 的交点处.2DN MN DM -=≤,当点N 与点C 重合时,等号成立,此时有最大值2. ∴02DN MN -≤≤图6EP D CBA18 初二秋季·第1讲·提高班·教师版题型一 角平分线的常见辅助线模型(二) 巩固练习【练习1】 如图所示,在Rt ABC △中,90C ∠=°,BD 是ABC ∠的平分线,交AC 于D 点,若CD n =,AB m =,则ABD △的面积是 .(北京四中期中)【解析】 2mn(提示:过D 作AB 垂线)【练习2】 在ABC △中,AD 平分BAC ∠,CD AD ⊥,D 为垂足,G 为BC 的中点,求证:DGC B ∠=∠.A CDGBACD EGB【解析】延长CD 交AB 于E ,则得ADC ADE △≌△,所以D 为EC 中点,所以DG AB ∥,所以DGC B ∠=∠【练习3】 ⑴ 如图1所示,在ABC △中,AC AB >,M 为BC 的中点,AD 是BAC ∠的角平分线,若CF AD ⊥且交AD 的延长线于F ,求证:1()2MF AC AB =-.⑵ 如图2所示,将⑴中AD 改成BAC ∠的外角平分线,其它条件不变,则⑴中结论是否依然成立?成立请证明;若不成立,请说明理由.图1BM F D CA图2CBM FDA【解析】 ⑴ 如图3所示,延长AB 、CF 相交于点E ,在AFE △和AFC △中,EAF CAF ∠=∠,复习巩固CDBA19初二秋季·第1讲·提高班·教师版AF AF =,AFE AFC ∠=∠,故AFE AFC △≌△,从而AE AC =,EF FC =.而CM MB =,故MF 是CBE △的中位线, 从而()()111222MF BE AE AB AC AB ==-=-.⑵ 不成立.理由如下:如图4所示,延长CF 交BA 延长于E 点易证AEF ACF △≌△,∴EF CF =,即F 点为CE 中点 ∵M 是BC 中点,∴()()111222MF BE BA AE BA AC ==+=+.【练习4】 如图所示,在ABC △中,100A ∠=︒,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD至E ,使DE AD =.求证:BC AB CE =+EDCAF EDCA【解析】 在BC 上取一点F ,使得BF BA =易证得ABD FBD △≌△,∴DF AD =, 又∵DA DE =,∴DF DE =∵100A ∠=︒,40ABC ∠=︒,∴AB AC = ∵BD 平分ABC ∠,∴20ABD ∠=︒ ∴60ADB FDB ∠=∠=︒ ∵60CDE ADB ∠=∠=︒ ∴60FDC EDC ∠=∠=︒, ∴DCF DCE △≌△图3ACD EF M B 图4ADEFM BC20 初二秋季·第1讲·提高班·教师版∴FC EC =,∴BC BF FC AB CE =+=+题型二 将军饮马问题 巩固练习【练习5】 已知ABC △的顶点坐标分别为A (0,2),B (2-,0),C (1,0),O 是坐标原点.试在AB 和AC 边上分别找一点D 、E ,使DOE △的周长最短.画出点D 、E 两点的位置图形,简述作图方法.(清华附中期中考试试题)y C O x B AO 2O 1EDyC O xB A【解析】 作点O 关于线段AB 、AC 的对称点1O 、2O ,连接两点与AB 、AC 的交点为所求点D 、E .21初二秋季·第1讲·提高班·教师版ABOP QR P′P″A B O P Q R P′P″P O B A测试1. 如图AOB ∠内有点P ,试在角的两边上找两点Q 、R (均不同于O 点),使PQR △的周长最小,画出Q 、R 两点的位置图形,保留作图痕迹.【解析】测试2. 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?E DCBAF EDCBA【解析】作CF AD ⊥交AD 的延长线于点F ,可推出DF BE =,易证CEB CFD △≌△,∴ABC ADC ∠+∠180=︒测试3. 如图,已知在ABC △中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA 543MA B CE12【解析】延长BE 交AC 于M .∵AE BE ⊥,12∠=∠∴34∠=∠,AB AM =,BE EM = ∴AC AB AC AM MC -=-=,2BM BE = 又∵345C ∠=∠=∠+∠,353ABC C ∠=∠+∠=∠∴553C C ∠+∠+∠=∠ ∴5C ∠=∠ ∴MB MC = ∴2AC AB BE -=.课后测22 初二秋季·第1讲·提高班·教师版想像力比知识更重要,因为知识是有限的,而想像力概括着世界的一切,推动着进步,并且是知识进化的源泉。

学而思2015年试讲题目(初中数学竞赛)

学而思2015年试讲题目(初中数学竞赛)

8.设n是整数,如果存在整数x,y,z满足n= + + −3,则
称n具有性质P.
(1)试判断1,2,3是否具有性质P;
(2)在1,2,3,… ,2013,2014这2014个连续整数中,不具有性质
P的数有多少个?
1
2
3
4
5
6
7
8
9
10
11
12
13 14

y 2 x 1 3x 2 4 x 1 5 x 2
初中数学竞赛题目
1
2
3
4
5
6
7
8
9
10
11
12
13 14



1.已知,为整数,且满足
+ 的可能的值有(
+




+


=−
2 1
3 4

1
4
,则

A.1个
B.2个
C.3个
D.4个
1 1 1
1
2 1
1
2 2 4 4
13 14

3.∆ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,
使得∆ADE为等腰直角三角形,∠ADE=90°,则BE的长为( )
A.4-2
B. 2-

C.


D.
-1
1
2
3
4
5
6
7
8
9
10
11
12
13 14

4.使得不等式

学而思初一数学秋季班第3讲.绝对值.尖子班.教师版

学而思初一数学秋季班第3讲.绝对值.尖子班.教师版

1初一秋季·第3讲·尖子班·教师版饕餮盛宴实数7级 实数初步实数6级 绝对值实数5级 有理数综合运算满分晋级阶梯漫画释义3绝对值2初一秋季·第3讲·尖子班·教师版题型切片(5个)对应题目 题型目标 aa的化简例1;练习1 无条件的绝对值的化简例2;练习2 零点分段法例3;练习3 用绝对值的几何意义求两点间的距离例4;练习4 用绝对值的几何意义求代数式的最值 例5,例6;练习51.绝对值:在数轴上,一个数a 所对应的点与原点的距离称为该数的绝对值,记作a . 2.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质; ⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =- . ⑹当0a >时,1a aa a==; 当0a <时,1a aa a==-.(主要考察分类讨论)【例1】 ⑴若a b ,均为非零的有理数,求a ba b-的值. ⑵若a b c ,,均为非零的有理数,求a b ca b c++的值. 【解析】 ⑴①当a b ,都是正数时,原式=0a ba b=-. ②当a b ,一个是正数,一个是负数时,原式=2±.∴原式的值为202-、、.⑵①当a b c ,,都是正数时,原式3a b ca b c=++=. ②当a b c ,,都是负数时,原式3=-.③当a b c ,,有两个正数一个负数时,原式1=. ④当a b c ,,有两个负数一个正数时,原式1=-.aa的化简3初一秋季·第3讲·尖子班·教师版∴原式的值为3113--、、、.针对例1进行拓展1.已知a b c abcx a b c abc=+++,且a b c ,,都不等于0,求x 的所有可能值【解析】 4或0或4-2.已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc +++的值. 【解析】 因为a b c ,,是非零有理数,且0a b c ++=,若a b c ,,中有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abc a b c abc =+++=+-+-+=--. 若a b c ,,中有二正一负,同理原式=0 综上,原式=03. 若a b c ,,均为非零的有理数,求a b c d a b c d+++的值.【解析】 420±±、、.老师可以继续下去,给学生们总结一下到n 的规律.【例2】 化简下列各式⑴1x -; ⑵3x -. 【解析】 ⑴当x ≥1时,则11x x -=-;当1x <时,则11x x -=-+,∴()()111=11x x x x x ⎧-⎪-⎨-+<⎪⎩≥.⑵当3x ≥时,则33x x -=-;当3x <时,则33x x -=-,∴()()333=33x x x x x ⎧-⎪-⎨-<⎪⎩≥.【例3】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下三种情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+.零点分段法无条件的绝对值化简4初一秋季·第3讲·尖子班·教师版⑵当12x -<≤时,原式()123x x =+--=. ⑶当2x ≥时,原式1221x x x =++-=-.综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.通过阅读上面的文字,请你解决下列的问题:. ⑴分别求出2x +和4x -的零点值; ⑵化简代数式24x x ++-.【解析】⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式()246x x =+--=;当4x ≥时,原式2422x x x =++-=-. 所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.针对例3进行拓展1.求12m m m +-+-的值.【解析】先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+; 当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.2.化简:121x x --++.【解析】先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.5初一秋季·第3讲·尖子班·教师版a b -表示数轴上数a 与数b 两点之间的距离. 且a b b a -=-.【例4】 ⑴ m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.① x 的几何意义是数轴上表示 的点与 之间的距离;x 0x -② 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;③ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .④ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑤ 当1x =-时,则22x x -++= .⑵ 如图表示数轴上四个点的位置关系,且它们表示的数分别 为p ,q ,r ,s .若10p r -=,12p s -=,9q s -=, 则q r -= .⑶ 不相等的有理数,,a b c 在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么点A ,B ,C 在数轴上的位置关系是( )A .点A 在点B ,C 之间 B .点B 在点A ,C 之间 C .点C 在点A ,B 之间D .以上三种情况均有可能【解析】 ⑴ ①x ,原点;=;② 1;③x ,3,2或4;④x ,2-,0或4-;⑤4;⑵ 7;⑶ B. 【点评】此题是对绝对值几何意义的考察.【例5】 利用绝对值的几何意义完成下题:已知2x =,利用绝对值的几何意义可得2x =±;若21x +=,利用绝对值的几何意义可得1x =-或3-.已知125x x -++=,利用绝对值在数轴上的几何意义得x = . 利用绝对值的几何意义求12x x -++的最小值 .52x x ++-的最小值为 . 214x x x ++-+-的最小值 . 7326x x x x ++++-+-的最小值 . 归纳: 若1221n a a a +<<<,当x 时,1221n x a x a x a +-+-++-取得最 小值. 若122n a a a <<<,当x 满足 时,122n x a x a x a -+-++-取得最小值.【解析】 2x =或3x =-;3;7; 6;18;1n x a +=;1n n a x a +≤≤. 用绝对值的几何意义求代数式的最值用绝对值的几何意义求两点间的距离sr q p6初一秋季·第3讲·尖子班·教师版【点评】 若1221n a a a +<<<,当1n x a +=时,1221n x a x a x a +-+-++-取得最小值.若122n a a a <<<,当x 满足1n n a x a +≤≤时,122n x a x a x a -+-++-取得最小值.【例6】 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市G【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.【选讲题】【例7】 有理数a 、b 、c 在数轴上的位置如图所示:若11m a b b a c c =+------,则1000m = .【解析】 由图可知,01b a c <<<<,∴()a b a b +=-+,11b b -=-,a c c a -=-,11c c -=-10001000(11)1000(2)2000m a b b c a c =⨯---+-+-+=⨯-=-.【例8】 ①化简:124x x x -+++-②求15y x x =--+的最大值和最小值. 【解析】 ①当4x >时,则12433x x x x -+++-=-当14x <≤时,则1245x x x x -+++-=+ 当21x -<≤时,则1247x x x x -+++-=-+ 当2x -≤时,则12433x x x x -+++-=-+ ②法一:根据几何意义可以得答案;法二:找到零点5-,1,可以分为以下三段进行讨论:当5x -≤时,15156y x x x x =--+=-++=; 当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-; 综上所得最小值为6-,最大值为6.c ba初一秋季·第3讲·尖子班·教师版78初一秋季·第3讲·尖子班·教师版训练1. 若a 、b 互为相反数,b 、c 互为倒数,并且m 的立方等于它本身.⑴ 试求223a bbc ++的值;⑵ 若1a >,且0m <,12322S a b b m b =----+.试求()()()42222a S a S a S -+---的值.⑶ 若0m ≠,试讨论:x 为有理数时,x m x m +--是否存在最大值,若存在,求出这个最大值,并写出解答过程;若不存在,也请你说明理由. (八一中学期中)【解析】 ⑴ 1⑵ 1a > 1b <- ∵0m <, ∴1m =-∴1232(1)()2S a b b b =-++++=522a +∴原式=105a S -=5105(2)2a a -+=252-⑶ ∵0m ≠ ∴1m =或者1m =-当1m =时,||||x m x m +--=|1||1|x x +--最大值为2; 当1m =-时,|||||1||1|x m x m x x +--=--+最大值为2 ∴当x 为有理数时,||||x m x m +--的最大值为2训练2. a b c ,,为非零有理数,且0a b c ++=,则a b b c c a a bb cc a++的值等于多少?【解析】 由0a b c ++=可知,,a b c 里存在两正一负或者一正两负;a b b c c a b c aa b c a bb cc aa b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-.9初一秋季·第3讲·尖子班·教师版综上所得1a b b c c a a bb cc a++=-.训练3. 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.训练4. 有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是12-=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.⑴若小明依次输入3,4,5,则最后输出的结果是_______; ⑵若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m ,则m 的最大值为_______;⑶若小明将1到n (n ≥3)这n 个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m . 探究m 的最小值和最大值. (海淀期末)【解析】 ⑴4;⑵2010;⑶对于任意两个正整数1x ,2x ,21x x -一定不超过1x 和2x 中较大的一个,对于任意三个正整数1x ,2x ,3x ,123x x x --一定不超过1x ,2x 和3x 中最大的一个,以此类推,设小明输入的n个数的顺序为,,,n x x x 21则,||||||||321n x x x x m ----= m 一定不超过,,,n x x x 21中的最大数,所以0m n ≤≤,易知m 与12n +++的奇偶性相同;1,2,3可以通过这种方式得到0:3210--=; 任意四个连续的正整数可以通过这种方式得到0: |||(1)|(3)|(2)|0a a a a -+-+-+=①;下面根据前面分析的奇偶性进行构造,其中k 为非负整数,连续四个正整数结合指的是按①式结构计算. 当4n k =时,12n +++为偶数,则m 为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n ,则最大值为n ; 当41n k =+时,12n +++为奇数,则m 为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n ,则最大值为n ;10 初一秋季·第3讲·尖子班·教师版当42n k =+时,12n +++为奇数,则m 为奇数,从1开始连续四个正整数结合得到0,仅剩下n 和1n -,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n ,最大值为1n -; 当43n k =+时,12n +++为偶数,则m 为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n ,则最大值为1n -.初一秋季·第3讲·尖子班·教师版a a 的化简 【练习1】 若a 、b 、c 都不为0,求c a b a b c ++的值. 【解析】 3±或1±. 无条件的绝对值的化简 【练习2】 化简:23x -. 【解析】 当23x ≥时,则2332x x -=-; 当23x <时,则2323x x -=-, 零点分段法【练习3】 化简:212x x ---.【解析】 由题意可知:零点为122x x ==,. 当12x <时,原式1x =--. 当122x <≤时,原式33x =-. 当2x ≥时,原式1x =+用绝对值的几何意义求两点间的距离【练习4】 (1)阅读下面材料:点A 、B 在数轴上分别表示的数是a 、b ,A 、B 两点之间的距离表示为AB ,特别地,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,则0AB OB b a b ==-=-;当A 、B 两点都不在原点时:如图2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-.如图4,点A 、B 在原点的两边,AB OA OB a b a b a b =+=+=-=-。

学而思培优数学试讲题库

学而思培优数学试讲题库
关键词:求导法则、导数、构造
0 U 1 B. 1 ,, 1 U 1 D. 0 ,,
34.已知椭圆 C :
x2 y 2 2 2 1a b 0 的离心率为 ,点 2 , 2 在 C 上. 2 a b 2


(Ⅰ)求 C 的方程; (Ⅱ)直线 l 不经过原点 O,且不平行于坐标轴,l 与 C 有两个交点 A,B,线段 AB 中点 为 M,证明:直线 OM 的斜率与直线 l 的斜率乘积为定值.
2 1 ,第二次吃了余下的 ,第三天吃了又余了的 5 3
3 ,这时还剩下 15 千克.那么食堂运来大米共多少千克? 4 关键词:还原问题,转换单位“1” 1 2 14. 园里的荔枝获得丰收,第一天摘了全部荔枝的 又 10 筐,第二天摘了余下的 又 3 筐, 3 5
这样还剩下 63 筐荔枝没有摘,则共有荔枝多少筐? 关键词:还原问题,转换单位“1”
学而思培优西安分校师资选聘部
关键词:二次函数中的相似三角形 30. 如图,菱形 OABC 的顶点 C 的坐标为(3,4),顶点 A 在 x 轴的正半轴上.反比例函 k 数 y x 0 的图象经过顶点 B,则 k 的值为 . x
关键词:反比例函数的几何意义应用。 31.若 a , b 是函数 f x x 2 px q p 0 ,q 0 的两个不同的零点,且 a , b , 2 这 三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p q 的值等于( ) A.6 B.7 C.8 D.9
1 1 1 1 1 1 11. 3 5 5 7 7 9 9 11 11 13 13 15 关键词:裂项
12. 甲、乙两车分别同时从 A,B 两地相对开出,第一次在离 A 地 80 千米处相遇.相遇后继 续前进到达目的地后又立刻返回,第二次在离 B 地 20 千米处相遇.求 A,B 两地间的距离? 关键词:二次相遇 13. 食堂运来一批大米,第一天吃了全部的

学而思三讲——精选推荐

学而思三讲——精选推荐

学⽽思三讲例 1 在+、-、×、÷、()中,挑出合适的符号,填⼊下⾯的数字之间,使等式成⽴。

9 8 7 6 5 4 3 2 1 = 19 8 7 6 5 4 3 2 1 = 19 8 7 6 5 4 3 2 1 = 19 8 7 6 5 4 3 2 1 = 1例2在⼋个8之间的适当地⽅,填上运算符号+、-、×、÷,使等式成⽴。

8 8 8 8 8 8 8 8 =10004例3在下列等式中,填上+、-、×、÷、(),分别填出⼋个不同的等式,使结果成⽴。

(1)4 4 4 4 = 0(2)4 4 4 4 = 1(3)4 4 4 4 = 2(4)4 4 4 4 = 3(5)4 4 4 4 = 4练⼀练在五个4之间,填上适当的运算符号+、-、×、÷和(),使得下⾯的等式成⽴。

4 4 4 4 4 = 85例4在每两个数字之间填上运算符号,使等式成⽴8 2 4 6 = 4 2练⼀练在下式的每两数中间填上四则运算符号,使等式成⽴:8 2 3 = 3 38 2 3 = 3 36本讲作业1.在下⾯题中填上适当的运算符号和括号,使等式成⽴。

1 2 3 4 5 = 202.在下式的相邻两数之间填上四则运算符号,使等式成⽴。

9 2 3 = 3 33.从+、-、×、÷、()中,挑选出合适的符号,填⼊下列等式合适的地⽅,使等式成⽴。

5 5 5 5 5 = 44.从+、-、×、÷、()中,挑选出合适的符号,填⼊下列等式合适的地⽅,使等式成⽴。

9 9 9 9 9 9 = 1009 9 9 9 9 9 = 1005.⽤2、3、5、6四个数字,在它们之间填上+、-、×、÷、(),使得结果等于24(每个数字只能⽤⼀次)。

复习作业1、三堆糖果共有105颗,其中第⼀堆糖果的数量是第⼆堆的3倍,⽽第三堆的数量⼜⽐第⼆堆的2倍少3颗,第三堆糖果有多少颗?2、⼀群蚂蚁搬家,原存⼀堆⾷物,第⼀天运出总数的⼀半少12克,第⼆天运出剩下的⼀半少12克,结果窝⾥还剩下43克,问蚂蚁家原有⾷物多少克?3、某校五年级学⽣排成⼀个⽅阵,最外⼀层的⼈数为48⼈,问⽅阵外层每边有多少⼈?这个⽅阵共有五年级学⽣多少⼈?例1(1)看图先写出分数,再写出⼩数。

学而思初中数学试讲题

学而思初中数学试讲题

T omorrow Advancing Life
学而思培优教师应聘材料
试讲题(初数)
教师姓名:_____________
应聘日期:_____________
好未来教育学而思培优
师资选聘学院
初中数学试讲试题
命题人:朱海龙
1、因式分解:①

(应用知识点:换元法,十字相乘,平方差公式,添项法)
2、已知方程的两个根是,那,,请根据以上结论,解决下列问题:①已知关于的方程,求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;
②已知满足,,求的值;
③已知均为实数,且,求正数的最小值.
(应用知识点:韦达定理,含参一元二次方程,一元二次方程判别式)
3、已知为的中线,、的平分线分别交于、交于

求证:(应用知识点:倍长中线,中垂线定理,三边关系定理)
4、已知关于的一元二次方程的两个根分别在和之间以及和之间,若为整数,试求的值.(应用知识点:一元二次方程和二次函数的转化,二次函数的图像,不等式的应用)
5、已知:为外一点,分别切于两点,点为上一点.
(1)如图1,若为直径,求证:;
(2)如图2,若,求的值.(应用知识点:三线合一,切线定理,平行线,解直角三角形)
6、
证明:为无理数.(应用知识点:有理数定义,无理数)
7、
已知抛物线顶点为且过原点.过抛物线上一点
向直线作垂线,垂足为,连结(如图).
⑴求字母的值;
⑵在直线上有一点,求以为底边的等腰三角形
的点的坐标,并证明此时为正三角形;
⑶对抛物线上任意一点,是否总存在一点
,使
恒成立,若存在请求出值,若不存在请说明理由.
(应用知识点:待定系数,证等边三角形,二次函数图像)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档