2018全国各地模拟选择题精选教师版【1 50】【学生试卷】

合集下载

2018年下半年全国教师资格考试模拟卷一参考答案及解析

2018年下半年全国教师资格考试模拟卷一参考答案及解析

2018年下半年全国教师资格考试模拟卷一参考答案及解析综合素质试题(小学)一、单项选择题1.【答案】B。

解析:这句话强调教育应该以学生做为学习的主体,故选B。

2.【答案】B。

解析:倾听是沟通的基础,教师要用语言和非语言的方式表示关注、接受和鼓励儿童。

该题中,孩子提出问题并不是简单地想知道答案,而是他感到了孤独,教师应理解孩子话语中的孤独感,回答时既切合儿童的需要,又使儿童得到安慰和同情。

故本题答案选B。

3.【答案】D。

解析:自主学习是为了让学生主动的思考,主动地完成学习任务,老师的作用是引导学生,是主导者的角色,所以教师的角色没有淡化。

4.【答案】D。

解析:儿童不是成人,他们正处于身心发展最迅速的时期,具有很大的发展的可能性和可塑性,成人要用发展的眼光看待处于发展中的儿童。

题干中这句话就是没有用发展的眼光看待不断发展的儿童,违反了儿童的发展性。

5.【答案】D。

解析:教师树立正确的职业理念,履行教书育人的职责,与班主任共同合作促进学生的全面发展。

故选D。

6.【答案】B。

解析:学生之间存在巨大的差异,而老师组织绘画兴趣小组规定每个同学都必须参加,忽视个学生的个性差异。

7.【答案】A。

8.【答案】A。

解析:教师在教学过程中起到表率作用,其中最重要的就是言行一致。

9.【答案】B。

解析:均衡发展是我国义务教育的战略性任务10.【答案】B。

解析:《学生伤害事故处理办法》第十条第一款指出,学生违反法律法规的规定,违反社会公共行为准则、学校的规章制度或者纪律,实施按其年龄和认知能力应当知道具有危险或者可能危及他人的行为的,应当依法承担相应的责任。

案例中的小刚年满十一岁,应该对其造成小童受伤的行为承担主要责任。

同时,依据《学生伤害事故处理办法》第二十八条,未成年学生对学生伤害事故负有责任的,由其监护人依法承担相应的赔偿责任。

由于小刚只有十一岁,其造成的责任应由其监护人承担赔偿责任。

此外,《学生伤害事故处理办法》第九条规定因下列情形之一造成的学生伤害事故,学校应当依法承担相应的责任:其中第十款规定,学校教师或者其他工作人员在负有组织、管理未成年学生的职责期间,发现学生行为具有危险性,但未进行必要的管理、告诫或者制止的。

2018年江西省师大附中高考语文三模试卷-教师用卷

2018年江西省师大附中高考语文三模试卷-教师用卷

2018年江西省师大附中高考语文三模试卷副标题一、选择题(本大题共3小题,共9.0分)1.下列各句中加点成语的使用,全都正确的一项是()①中华五千年,兴亡万千事。

每逢光风霁月之....时,诗人们大多吟诵承平盛世的繁华,每逢阴雨晦冥之时,诗人们大多悲唱忧国忧民的挽歌。

②他在自己生活都十分艰难的情况下,依然用微薄的收入资助山区贫困儿童。

此项义举,让人感动,纵使是木人石心....,也忍不住泪流满面。

③成都人一直是“太阳的后裔”,只要一出太阳就倾巢..,或去近郊骑行,或去赏..而出花喝茶,休闲的背后,体现的是生命最本真和舒适的状态。

④我知道这幅画并不值钱,但是敝帚自珍....,一直舍不得丢掉。

每当看到这幅画,我都会想起一起历经磨难的战友,想起那段激情奋进的岁月。

⑤审理此案的法官认为,李某犯罪动机不是出于恶意,后来又有自首行为,考虑到李某认罪态度良好,罪不客诛....,最后仅被判处有期徒刑10年。

⑥十年磨剑,计日程功....。

在黎明的曙光即将到来之时,同学们更应该分清主次,统筹安排,精心规划,把有限的时间用在最有“生产力”的地方。

A. ①③⑥B. ①④⑥C. ②③④D. ②④⑤【答案】B【解析】①光风霁月:形容雨过天晴时万物明净的景象,也比喻政治清明,比喻开阔的胸襟和心地,这里形容政治清明,使用正确;②木人石心:形容意志坚定,任何诱惑都不动心。

这里是说即使很内心很冷的人也被他感动了,语境与成语意思不合;③倾巢而出:比喻敌人出动全部兵力进行侵扰。

这里是说只要一出太阳,大家都出去游玩,不是说敌人,成语意思与语境不合;④敝帚白珍:把自己家里的破扫帚当成宝贝。

比喻东西虽然不好,白己却很珍惜。

⑤罪不容诛:杀了也抵不了所犯的罪恶,形容罪大恶极。

这里说他不是出于恶意,后来又有自首行为,认罪态度良好,所以减轻了处罚,不是说他罪大恶极,使用此成语不合语境;⑥计日程功:工作进度或成效可以按日计算,形容进展快,有把握按时完成,成功指日可待,使用正确;故选:B。

2018年普通高等学校招生全国统一考试仿真卷 文科数学(三)教师版

2018年普通高等学校招生全国统一考试仿真卷 文科数学(三)教师版

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试仿真卷文科数学(三)本试题卷共12页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x << D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01A B x x =<<,故答案为:D .2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·来宾调研]若向量()1,1,2=-a ,()2,1,3=-b ,则+=a b ( ) A .7 B .22C .3D .10【答案】D【解析】()3,0,1+=-a b ,故9110+=+=a b ,故选D .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C【解析】由三视图可知该几何体为12个圆柱和14个球的组合体,其表面积为2211141122122244422⨯π⨯+π⨯⨯+⨯π⨯⨯+⨯=π+,故选C . 5.[2018·天津期末]已知双曲线22221x y a b -=()0,0a b >>的一个焦点为()2,0F -,一条渐近线的斜率为3,则该双曲线的方程为( )A .2213x y -=B .2213y x -= C .2213y x -=D .2213x y -=【答案】B【解析】令22220x y a b -=,解得b y x a =±,故双曲线的渐近线方程为by x a=±.由题意得22232 ba c c ab ===+⎧⎪⎪⎨⎪⎪⎩,解得221 3a b ==⎧⎨⎩,∴该双曲线的方程为2213y x -=.选B . 班级 姓名 准考证号 考场号 座位号此卷只装订不密封6.[2018·达州期末]函数()()sin 2f x x θθπ⎛⎫=π+< ⎪⎝⎭的部分图象如图,且()102f =-,则图中m 的值为( )A .1B 43C .2D .43或2 【答案】B【解析】∵()10sin 2f θ==-,且2θπ<,∴6θπ=-.∴()sin 6f x x π⎛⎫=π- ⎪⎝⎭,∴()1sin 62f m m π⎛⎫=π-=- ⎪⎝⎭,∴266m k πππ-=π-或72,66m k k πππ-=π+∈Z ,∴2m k =或42,3m k k =+∈Z , 又周期2T =,∴02m <<,∴43m =.选B .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A .6πB .4πC .3πD .2π【答案】C【解析】()()3222113f x x bx a c ac x =+++-+()2222f x x bx a c ac +++'=-,22222210cos 22a cb b ac ac B ac +-∆=--+⇒=≤≥ ()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦故最大值为:3π.故答案为:C . 8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,333sin 602S ==; 不满足条件 3.10S ≥,12n =,6sin303S =⨯=;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯=; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C . 9.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <解集为,2m π⎛⎫⎪⎝⎭,cos x x <解集为,2n π⎛⎫ ⎪⎝⎭,因为,2m π⎛⎫ ⎪⎝⎭,2n π⎛⎫⊂ ⎪⎝⎭,因此选A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A .14πB.49π C .19D .58π【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆,49S S ∴=π正圆,则油(油滴的大小忽略不计)正好落入孔中的概率为49π,故选B .11.[2018·四川联考]已知点()4,3A 和点()1,2B ,点O 为坐标原点,则()OA tOB t +∈R 的最小值为( ) A .52 B .5 C .3 D .5【答案】D【解析】由题意可得:()4,3OA =,()1,2OB =,则:()()()()()2224,31,24,3243252025OA tOB t t t t t t t +=+=++=+++=++,结合二次函数的性质可得,当2t =-时,min54202255OA tOB +=⨯-⨯+=.本题选择D 选项.12.[2018·郴州中学]已知函数()f x =()2220 1102x xx f x x +--+<⎧⎪⎨⎪⎩≤≤≤,则关于x 的方程()15x f x -=在[]2,2-上的根的个数为( ) A .3B .4C .5D .6【答案】D 【解析】()()1155x f x f x x -=⇔=-. 当01x <≤,110x -<-≤,()()()()22111211f x f x x x x =-+=-+-+=;当12x <≤时,011x <-≤,()()()22111122f x f x x x x =-+=-+=-+.由此画出函数()f x 和15y x =-的图像如下图所示,由图可知交点个数为6个,也即原方程的根有6个.第Ⅱ卷本卷包括必考题和选考题两部分。

(30套)2018年全国各地高考数学 模拟试题附答案 汇总 (2)

(30套)2018年全国各地高考数学 模拟试题附答案 汇总 (2)

(30套)2018年全国各地高考数学模拟试题附答案汇总(761页)2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3] B.[﹣3,2] C.[2,3] D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,] B.(﹣∞,3] C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=,∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.(5分)已知等比数列{an}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.25【解答】解:根据题意,等比数列{an}中,a5=3,a4a7=45,则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C.D.【解答】解:f(x)=asinx﹣2cosx=sin(x+θ),由于函数f(x)的对称轴为:x=﹣,所以f(﹣)=﹣a﹣3,则|﹣a﹣3|=,解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)•f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣,k∈Z;所以:|x1+x2|的最小值为.故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a×b的方向与向量a,b 的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C. D.【解答】解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.12.(5分)若存在实数x使得关于x的不等式(ex﹣a)2+x2﹣2ax+a2≤成立,则实数a 的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)【解答】解:不等式(ex﹣a)2+x2﹣2ax+a2≤成立,即为(ex﹣a)2+(x﹣a)2≤,表示点(x,ex)与(a,a)的距离的平方不超过,即最大值为.由(a,a)在直线l:y=x上,设与直线l平行且与y=ex相切的直线的切点为(m,n),可得切线的斜率为em=1,解得m=0,n=1,切点为(0,1),由切点到直线l的距离为直线l上的点与曲线y=ex的距离的最小值,可得(0﹣a)2+(1+a)2=,解得a=,则a的取值集合为{}.故选:A.二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{an}前15项的和S15=30,则a2+a9+a13=6.【解答】解:∵设等差数列的等差为d,{an}前15项的和S15=30,∴=30,即a1+7d=2,则a2+a9+a13=(a1+d)+(a1+8d)+(a1+12d)=3(a1+7d)=6.故答案为:6.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为1120.【解答】解:由题意可知,2n=256,解得n=8.∴=,其展开式的通项=,令8﹣2r=0,得r=4.∴该展开式中常数项的值为.故答案为:1120.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是②⑤①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()【解答】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示:f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故答案为:②⑤.16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为2.【解答】解:∵D、E是AB、AC的中点,∴M到BC的距离等于点A到BC的距离的一半,∴S△ABC=2S△MBC,而△ABC的面积2,则△MBC的面积S△MBC=1,S△MBC=丨MB丨•丨MC丨sin∠BMC=1,∴丨MB丨•丨MC丨=.∴•=丨MB丨•丨MC丨cos∠BMC=.由余弦定理,丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨•丨CM丨cos∠BMC,显然,BM、CM都是正数,∴丨BM丨2+丨CM丨2≥2丨BM丨•丨CM丨,∴丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC=2×﹣2×.∴•+2≥+2×﹣2×=2•,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值为2;方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,则•+2的最小值为2;故答案为:2.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.【解答】(本题满分为12分)解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以.…(5分)(2)∵=2,两边平方得:=4,由b=3,||=3,,可得:,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)将90~95分数段内的6名毕业生随机的分配往A、B、C三所学校,每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有:=18不同的分配方法.(Ⅲ)ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,所以ξ的分布列为:ξ0 1 2P所以随机变量ξ数学期望为E(ξ)==.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.【解答】解:(Ⅰ)过F1直线l:x+my+=0,令y=0,解得x=﹣,∴c=,∵e==,∴a=2,∴b2=a2﹣c2=4﹣3=1,∴椭圆C的方程为+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),M(x3,y3),由2=+,得:x3=x1+x2,y3=y1+y2代入椭圆方程可得:(x1+x2)2+(y1+y2)2﹣1=0,∴(x12+y12)+(x22+y22)+(x1x2+4y1y2)=1,∴x1x2+4y1y2=0联立方程消x可得(m2+4)y2+2my﹣1=0,∴y1+y2=,y1y2=,∴x1x2+4y1y2=(my1+)(my2+)+4y1y2=(m2+4)4y1y2+m(y1+y2)+3=0,即m2=2,解得m=±所求直线l的方程:x±y+=0.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.【解答】解:(1)函数f(x)=x2﹣alnx,导数为f′(x)=x﹣,函数f(x)在[,+∞)上单调递增,可得f′(x)=x﹣≥0在[,+∞)恒成立,即为a≤x2的最小值,由x2在[,+∞)的最小值为,可得a≤;(2)证明:由f(x)=x2﹣alnx,a>0,可得f′(x)=x﹣,f″(x)=1+>0,即有f(x)为凹函数,由m1+m2=1,可得对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)由f(x)=x2﹣2lnx,可得导数为f′(x)=x﹣,f″(x)=1+>0,则f(x)为凹函数,有f()≤[f(x1)+f(x2)+f(x3)],即为f(x1)+f(x2)+f(x3)≥3f()=3f(1)=3×=,则f(x1)+f(x2)+f(x3)的最小值为.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.【解答】(本小题满分10分)解:(Ⅰ)∵圆C的极坐标方程为:ρ=2sin(θ﹣)=2(sinθcos﹣cosθsin)=2sinθ﹣2cosθ,∴ρ2=2ρsinθ﹣2ρcosθ,∴圆C的直角坐标方程x2+y2=2y﹣2x,即(x+1)2+(y﹣1)2=2.(Ⅱ)直线l的参数方程为,t为参数,直线l的参数方程可化为,t′为参数,代入(x+1)2+(y﹣1)2=2,得(﹣+1)2+()2=2,化简得:t'2﹣﹣1=0,∴=﹣1,∴|MA|•|MB|=||=1.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(Ⅰ)∵函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).即|x﹣m|﹣3≥0的解集为(﹣∞,﹣2]∪[4,+∞).∴m+3=4,m﹣3=﹣2,解得m=1.(Ⅱ)∵∃x∈R,使得f(x)≥t+|2﹣x|成立,即|x﹣1|﹣3≥t+|2﹣x|,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3,令g(t)=|x﹣1|﹣|x﹣2|=,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3成立,∴t+3≤g(x)max=1,∴t≤﹣2.2018年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且S n=a,则a=.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且S n=a,则a=2.【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且S n=a,可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.2018年安徽省淮北市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.22.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.75.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.258.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.12.(5分)若存在实数x使得关于x的不等式(e x﹣a)2+x2﹣2ax+a2≤成立,则实数a的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c ﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n 名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=,∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.25【解答】解:根据题意,等比数列{a n}中,a5=3,a4a7=45,则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.【解答】解:f(x)=asinx﹣2cosx=sin(x+θ),由于函数f(x)的对称轴为:x=﹣,所以f(﹣)=﹣a﹣3,则|﹣a﹣3|=,解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)•f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣,k∈Z;所以:|x1+x2|的最小值为.故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.【解答】解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.。

2018年普通高等学校招生全国统一考试仿真卷 理综(五)教师版

2018年普通高等学校招生全国统一考试仿真卷 理综(五)教师版

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试仿真卷理科综合能力测试(五)本试卷共30页,38题(含选考题)。

全卷满分300分。

考试用时150分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 V 51 Sn 119第Ⅰ卷一、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要 求的。

1.下列关于生物体内化合物的叙述,正确的是A .生物体内的能源物质中都含有高能磷酸键B .淀粉、纤维素和糖原都是生物大分子,它们的单体相同C .组成酶的基本单位之间都是通过肽键连接的D .腺苷是构成ATP 、RNA 和DNA 的组成成分【解析】生物体内的能源物质糖类、脂肪等不含有高能磷酸键,A 错误;淀粉、纤维素和糖原都是由葡萄糖聚合而成的生物大分子,B 正确;少部分酶是RNA ,不含有肽键,C 错误;ATP 中的A 代表腺苷,是腺嘌呤与核糖结合的产物,DNA 中不含有核糖,D 错误。

【答案】B2.下列关于生物学研究方法的叙述中,正确的是A .用标志重捕法调查种群密度,得到的数据一般要低于实际数值B .调查某种遗传病的发病率和遗传方式都要在人群中进行C .研究暗反应过程、DNA 的半保留复制及噬菌体侵染细菌,均使用同位素标记法D .观察细胞中DNA 和RNA 的分布,甲基绿和吡罗红不可混合使用【解析】用标志重捕法调查种群密度,得到的数据一般要高于实际数值,A 错误;调查某种遗传病的发病率,要在人群中随机调查,调查遗传方式在患者家系中调查,B 错误;利用同位素示踪法研究光合作用暗反应中碳的转移途径;噬菌体侵染细菌实验中用35S 和32P 分别表示噬菌体的蛋白质和DNA ;证明DNA 半保留复制的实验中用15N 标记了亲代DNA 分子的两条链。

2018年高三最新 高三模拟试卷综测一教师版 精品

2018年高三最新 高三模拟试卷综测一教师版 精品

高三数学综合测试一一、选择题:本大题共12小题,每小题5分,共60分。

请将答案填在二卷选择题答案栏内.1.设直线0543=-+y x 的倾斜角为θ ,则该直线关于直线a x =(R a ∈)对称的直线的倾斜角为A.θπ-2B. 2πθ- C. θπ-2 D 。

θπ-2.命题甲:2≠x 或3≠y ;命题乙:5≠+y x ,则A.甲是乙的充分非必要条件;B.甲是乙的必要非充分条件;C. 甲是乙的充要条件;D.甲既不是乙的充分条件,也不是乙的必要条件.3.若直线mx +ny =4和⊙O ∶422=+y x 没有交点,则过(m ,n )的直线与椭圆14922=+y x 的交点个数A .至多一个B .2个C .1个D .0个4.奇函数y =f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为( D )5. 设a >b >c ,且ca nc b b a -≥-+-11,则n 的最大值为 A.2B.3C.4D.56.函数1)42(sin )42(cos )(22-++-=ππx x x f 是A.周期为π的奇函数B. 周期为π的偶函数C.周期为2π的奇函数 D 。

周期为2π的偶函数7.山坡水平面成30 角,坡面上有一条与山底坡脚的水平线成30 角的直线小路,某人沿小路上坡走了一段路后升高了100米,则此人行走的路程为A .300米B .400米C .200米D .3200米8.)(x f 是定义在R 上,以2为周期的偶函数,当]0,1[,)(,]3,2[-∈=∈x x x f x 则当时时, )(x f 的表达式为A .4+xB .x +-2C .2|1|++xD .3|1|++-x9.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与 圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A 221(1)8y x x -=<- B )1(1822>=-x y xC 1822=+y x (x > 0) D 221(1)10y x x -=> 10. 已知函数)(x f y =的定义域为R ,它的反函数为)(1x fy -=,如果)(1a x f y +=-与)(a x f y +=互为反函数且a a f =)(。

2018年全国教师资格考试模拟卷

2018年全国教师资格考试模拟卷《高中地理》一、单项选择题(本大题共25题,每题2分,共50分)如图中横线为纬线,竖线为经线。

G、I分别为BH、HD的中点。

读图,回答下列各题。

1.若BAD是晨昏线,且D点正值日出,一架飞机自H点出发,沿赤道向东匀速飞行,12小时后又回到H点,则飞机上的人能观测到( )。

A.两次日出,一次日落B.一次日出,两次日落C.一次日出,一次日落D.两次日出,两次日落2.若CAE是晨昏线,A点不是极点,且此时G点正值日出,则( )。

A.太阳直射点位于C点所在的经线上B.C、E两点经度差是180°C.A点所在的纬线以北地区出现极夜现象D.飞机自C点飞往D点的最短路线是先东南再东北3.若DE是晨线的一段,则下列说法正确的是( )。

A.赤道低气压带位于北半球B.长江口盐度一年中最低C.北京的正午太阳高度约为50°D.南京正午太阳高度比北京小下图为“中纬某区域简图”,读图完成下列各题。

4.下列叙述正确的是( )。

A.该区域位于北半球B.该区域昼长夜短C.图中河段有凌汛现象D.典型植被为亚热带常绿阔叶林5.据图判断,下列现象可能出现的是( )。

A.巴西高原草木一片枯黄B.石家庄多受东南风影响C.长江河口表层海水盐度达到一年中的较大值D.中国长城站可能出现极昼现象人民网报道:据政府间气候变化专业委员会(IPCC)报告中指出,1880年至2012年期间地球表面平均温度上升了0.85摄氏度。

1901年至2010年期间平均海平面升高19厘米,下图为大气受热过程示意图。

据此完成下列各题。

6.根据大气受热过程示意图判断地表平均气温升高的主要原因是( )。

A.B增强B.E增强C.G增强D.K增强7.为解决材料中所述问题,下列措施不可行的是( )。

A.夏季调低空调的温度B.提高能源的利用率C.开发可再生能源D.保护并扩大雨林面积下图中箭头表示洋流,其中①和②分别表示该海域不同季节的洋流。

2018年普通高等学校招生全国统一考试仿真卷 理科数学(三)教师版

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x << D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01A B x x =<<,故答案为:D .2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4C .()3,2-D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( ) A .-160 B .320 C .480 D .640【答案】B【解析】()()6622121x x x +-+,展开通项()666166C 21C 2kk k kk k k T x x ---+==⨯⨯,所以2k =时,2462C 2480⨯⨯=;3k =时,336C 2160⨯=,所以4x 的系数为480160320-=,故选B .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C球的组合体,其表面积为C . 5.[2018·滁州期末]的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N 小值为58,则r =( )A .1B C D .2【答案】B【解析】设1F ,2F 是双曲线的左、右焦点,也是题中圆的圆心,所以显然其最小值为()26254r ⨯⨯+-58=,B .6.[2018·天津期末]内,且()f x 的最小正周期大于π,则ω的取值范围为( )A B .()0,2 C .()1,2 D .[)1,2【答案】C【解析】k ∈Z k ∈Z ,k ∈Z ,∴3162k k ω+<<+,k ∈Z . 又()f x 的最小正周期大于π,∴,解得02ω<<. ∴ω的取值范围为()1,2.选C .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数无极值点,则角B 的最大值是( )C D 【答案】C【解析】()2222f x x bx a c ac +++'=-,()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,333sin 60S == 不满足条件 3.10S ≥,12n =,6sin 303S =⨯=;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯=; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C .9.[2018·昌平期末]“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <,cos x x<A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A B C D 【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆B .11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC =,则ABC △的面积为( )A .2B .C .1D .【答案】D【解析】根据题意,()cos23,cos67AB =,则()cos23,sin23BA =-︒︒,有|AB |=1, 由于,()2cos68,2cos22BC =︒︒()=2cos68,sin 68,则|BC |=2, 则()2cos 23cos 68sin 23sin 682cos 452BA BC ⋅=-⋅+⋅=-⨯=-,可得:cos 2BA BC B BA BC⋅∠==-, 则135B ∠=,则11sin 122222ABC S BA BC B =∠=⨯⨯⨯=△,故选:D . 12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞ B .()e,+∞C .(),1-∞D .()1,+∞【答案】D【解析】()'g x =()g x ∴在R 上是增函数,又()1e y f x =+-是奇函数,()1e f ∴=,()11g ∴=,原不等式为()()1g x g >,∴解集为()1,+∞,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。

2018年普通高等学校招生全国统一考试仿真卷 理科数学(一)教师版

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(一)本试题卷共14页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( ) A .{}0,2 B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .2.[2018·台州期末](i 为虚数单位))A .2B .1C D【答案】C【解析】2 i1iz⎛⎫= ⎪-⎝⎭11i2i2-==--,11i22z∴=-=,选C.3.[2018·德州期末]如图所示的阴影部分是由x轴及曲线siny x=围成,在矩形区域OABC 内随机取一点,则该点取自阴影部分的概率是()A.2πB12C.1πD.3π【答案】A【解析】由题意,得矩形区域OABC的面积为1π1πS=⨯=,阴影部分的面积为()20sin d cos2S x x xππ==-=⎰,由几何概型的概率公式,得在矩形区域OABC内随机取一点,则该点取自阴影部分的概率为212πSPS==.故选A.4.[2018·滁州期末]已知()cos2cos2ααπ⎛⎫+=π-⎪⎝⎭,则tan4απ⎛⎫-=⎪⎝⎭()A.4-B.4C.13-D.13【答案】C【解析】因为()cos2cos2ααπ⎛⎫+=π-⎪⎝⎭,所以sin2cos tan2ααα-=-⇒=,所以1tan1tan41tan3αααπ-⎛⎫-==-⎪+⎝⎭,故选C.5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B 422+C .442+D .462+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是2、斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的侧面积22222442S =⨯+⨯⨯=+,故选:C .6.[2018·天津期末]已知实数x ,y 满足2210x y x y +-⎧⎪⎨⎪⎩≥≤≥,若z x my =+的最大值为10,则m =( ) A .1 B .2C .3D .4【答案】B【解析】作出可行域,如图ABC △内部(含边界),其中()2,4A ,()2,1B ,()1,1C -,若A 是最优解,则2410m +=,2m =,检验符合题意;若B 是最优解,则210m +=,8m =,检验不符合题意,若8m =,则z 最大值为34;若C 是最优解,则110m -+=,11m =,检验不符合题意;所以2m =,故选B .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-. 8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 距离之比为2,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A .22 B .2 C .223D .23【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,2PA PB=;()()2222121x y x y++∴-+=,两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是1222222⨯⨯=,选A .10.[2018·郴州一中]双曲线2222:1(0,0)x y C a b a b-=>>的离心率233e =,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOF OAF ∠=∠,AOF △的面积为33,则双曲线C 的方程为( )A B C D 【答案】C【解析】由点A 所在的渐近线为0,bx ay -=三个该渐近线的倾斜角为α,则AOF OAF ∠=∠,所以直线AF 的倾斜角为2α,2222tan 2tan21tan aba bααα==--, 与0bx ay -=联立解得122AOFab S c ab c∴=⨯⨯==△,因为双曲线的离心率,,b a ∴=联立得3a =,b =C . 11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( )A B C D 【答案】C【解析】因为ABC △为锐角三角形,;又因为2A C =, 所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由,所以24cos 2cos a b c C C ++=+,令cos t C =,242y t t =+C .12.[2018·济南期末]若关于x 的方程有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,e 2.71828=为自然对数的底数,则) A .1 B .eC .1m -D .1m +【答案】A【解析】化可原式可化为,()()2110t m t m ∴++++=,由韦达定理可得()1a b t t m +=-+,1a b t t m ⋅=+,的值为1,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。

2018年全国各省市教师招聘考试模拟试卷(四)

2018年全国各省市教师招聘考试模拟试卷(四)小学语文(满分150分)第一部分语文教育教学理论与实践(60分)一、填空题(每空1分,共10分)1.语文实践活动要有___________、有___________、有___________。

2.阅读是搜集处理信息、___________、发展思维、___________的重要途径,阅读教学是学生、教师、文本之间对话的过程。

3.小学3~4年级课内习作每学年___________次左右。

4.我国古代对儿童进行启蒙教育所使用的识字读本是___________《百家姓》和___________。

5.从小学语文教学的实际出发,以辩证唯物主义为指导应该具有___________的观点、自觉能动性的观点和___________的观点。

二、单项选择题(每题3分,共15分)6.《全日制义务教育语文课程标准(实验稿)》中的总目标指出:“具有日常口语交际的基本能力,在各种交际活动中,学会(),初步学会文明地进行人际沟通和社会交往,发展合作精神。

”A.感受、理解与欣赏 B.认识世界、认识自我与创造性表达C.倾听、表达与交流 D.倾听与交流7.下列属于语文课程资源的一组是()①工具书及报刊②电影、电视、广播及网络③报告会、演讲会、辩论会及研讨会④图书馆、博物馆、纪念馆及展览馆⑤布告栏、报廊及各种标牌广告⑥自然风光、文物古迹、风俗民情及国内外的重要事件A.①②③④ B.①②③④⑤C.①②③④⑤⑥ D.①②③④⑥8.新课标对第三学段的作文提出的要求:“练习写1篇400字以上的作文,不能超过()分钟。

”A.30 B.50 C.40 D.60 9.《全日制义务教育语文课程标准(实验稿)》指出:阅读教学的重点是()A.培养学生自读能力B.归纳段落大意和中心思想C.理解课文D.培养学生具有感受、理解、欣赏和评价的能力10.小学语文教师上好语文课的根本前提和提高教学质量的保证是他们的()A.课堂应变能力 B.分析教材的能力C.语言表达能力 D.设计教学的能力三、简答题(15分)11.谈谈新课改下的阅读及阅读教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018全国各地模拟选择题精选教师版2019备考可以先研究这些题目1.(2018·石家庄二中模拟)已知集合P={x∈R|0≤x≤4},Q={x∈R||x|<3},则P∪Q=() A.[3,4] B.(-3,4]C.(-∞,4] D.(-3,+∞) 2.(2018·湖北四校联考)已知集合A={x∈N|πx<16},B={x|x2-5x+4<0},则A∩(∁RB)的真子集的个数为()A.1 B.3C.4 D.7 3.(2018·人大附中月考)已知集合A={x|y=-x2+x+6,x∈Z},B={y|y=5sin(x+φ)},则A∩B 中元素的个数为()A.3 B.4C.5 D.6 4.(2018·湖南长郡中学模拟)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)5.(2018·浙江温州一中模拟)若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为() A.1 B.2C.3 D.4 6.(2018·启东中学模拟)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m 的取值范围是()A.[3,6) B.[1,2)C.[2,4) D.(2,4]7.(2018·杭州学军中学月考)若集合A={2,3,4},B ={x|x=n·m,m,n∈A,m≠n},则集合B中元素个数为()A.2 B.3C.4 D.5 8.(2018·济宁模拟)设全集U=A∪B,定义:A-B={x|x∈A,且x∉B},集合A,B分别用圆表示,则下列图中阴影部分表示A-B的是()9.(2018·衡水中学调研)已知全集U=R,集合A={x|0<x<9,x∈R}和B={x|-4<x<4,x∈Z}关系的Venn 图如图所示,则阴影部分所示的集合中的元素共有()A.3个B.4个C.5个D.无穷多个10.(2018·河北唐山一中月考)A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C 都没有及格.在下列四个命题中,为p的逆否命题的是()A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分11.(2018·皖南八校联考)“1x>1”是“ex-1<1”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(2018·衡水中学调研卷)在△ABC中,“sinB=1”是“△ABC为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.(2018·浙江宁波一模)若“x>1”是“不等式2x>a-x 成立”的必要而不充分条件,则实数a的取值范围是()A.a>3 B.a<3C.a>4 D.a<4 14.(2018·《高考调研》原创题)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.(2018·山东师大附中模拟)已知函数f(x)=x2-2x +3,g(x)=kx-1,则“|k|≤1”是“f(x)≥g(x)在R 上恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(2018·安徽毛坦厂中学月考)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件12D .既不充分也不必要条件17.(2018·广东梅州联考)已知命题p :∀x 1,x 2∈R ,[f (x 1)-f (x 2)](x 1-x 2)≥0,则綈p 是( ) A .∃x 1,x 2∉R ,[f (x 1)-f (x 2)](x 1-x 2)<0 B .∃x 1,x 2∈R ,[f (x 1)-f (x 2)](x 1-x 2)<0 C .∀x 1,x 2∉R ,[f (x 1)-f (x 2)](x 1-x 2)<0 D .∀x 1,x 2∈R ,[f (x 1)-f (x 2)](x 1-x 2)<018.(2018·浙江临安一中模拟)命题“∃x 0∈R ,2x 0<12或x 02>x 0”的否定是( ) A .∃x 0∈R ,2x 0≥12或x 02≤x 0B .∀x ∈R ,2x ≥12或x 2≤xC .∀x ∈R ,2x ≥12且x 2≤xD .∃x 0∈R ,2x 0≥12且x 02≤x 019.(2018·河北保定模拟)命题“∀x >0,xx -1>0”的否定是( )A .∃x 0<0,x 0x 0-1≤0B .∃x 0>0,0≤x 0≤1C .∀x >0,xx -1≤0D .∀x <0,0≤x ≤120.(2018·山东潍坊一模)已知p :函数f (x )=(x -a )2在(-∞,-1)上是减函数,q :∀x >0,a ≤x 2+1x 恒成立,则綈p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件21.(2018·衡中调研卷)已知命题p :方程x 2-2ax -1=0有两个实数根;命题q :函数f (x )=x +4x 的最小值为4.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨(綈q ).则其中真命题的个数为( ) A .1B .2C .3D .422.(2018·重庆一中检测)设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f (1f (2))的值为( )A .-1B .34C .1516D .423.(2018·广东梅州市联考)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=a 2+1,则实数a =( ) A .-1 B .2 C .3 D .-1或324.(2018·唐山模拟)下列函数中,不满足f (2 017x )=2 017f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x25.(2018·江西上饶一中模拟)设函数f (x )=⎩⎪⎨⎪⎧log 2x 2,x <0,-e x ,x ≥0,若f (f (t ))≤2,则实数t 的取值范围是( )A .(-∞,-12]∪[0,ln 2]B .[ln 2,+∞)C .(-∞,-12]D .[2,+∞)26.(2018·东北三校联考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2,(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( ) A .(1,2] B .(0,2] C .[2,+∞)D .(1,22]27.(2018·河北衡水武邑中学月考)若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则实数m 的取值范围是( ) A .(0,4] B .[-254,-4]C .[32,3]D .[32,+∞)28.(2018·人大附中月考)下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0).其中定义域与值域相同的函数的个数为( ) A .1B .2C .3D .429.(2018·湖南长沙一中)设函数f (x )的定义域为D ,若f (x )满足条件;存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域是[a 2,b2],则称f (x )为“倍缩函数”.若函数f (x )=log 2(2x +t )为“倍缩函数”,则实数t 的取值范围是( )3A .(0,14)B .(0,1)C .(0,12)D .(14,+∞)30.(2017·衡水中学调研卷)函数y =x +1-x -1的值域为( ) A .(-∞,2] B .(0,2] C .[2,+∞)D .[0,+∞)31.(2018·衡水中学调研卷)设函数f (x )定义在实数集上,它的图像关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( ) A .f (13)<f (32)<f (23)B .f (23)<f (32)<f (13)C .f (23)<f (13)<f (32)D .f (32)<f (23)<f (13)32.(2018·西安五校联考)已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -lnx ,x >1,对于任意的x 1≠x 2,都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( ) A .(-∞,3] B .(-∞,3) C .(3,+∞)D .[1,3)33.(2018·广东梅州市模拟)设函数f (x )=2xx -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( )A .23B .38C .32D .8334.(2018·杭州模拟)已知减函数f (x )的定义域是实数集R ,m ,n 都是实数.如果不等式f (m )-f (n )>f (-m )-f (-n )成立,那么下列不等式成立的是( ) A .m -n <0 B .m -n >0 C .m +n <0D .m +n >035.(2018·黑龙江大庆模拟)下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( ) A .y =x 2 B .y =-x 3 C .y =-ln |x |D .y =2x36.(2018·山东临沭一中月考)已知定义在R 上的函数f (x )的满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 019)=( ) A .-3B .0C .1D .337.(2018·安徽合肥一模)已知函数f (x )=(x 2-2x )·sin (x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( ) A .4B .2C .1D .038.(2018·杭州学军中学模拟)已知函数f (x )=x 2+ax +b 的图像过坐标原点,且满足f (-x )=f (-1+x ),则函数f (x )在[-1,3]上的值域为( ) A .[0,12] B .[-14,12]C .[-12,12]D .[34,12]39.(2018·山东济宁模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,(x ≤0),2,(x >0), 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ) A .4 B .2 C .1 D .340.(2018·郑州质检)若二次函数y =x 2+ax +1对于一切x ∈(0,12]恒有y ≥0成立,则a 的最小值是( )A .0B .2C .-52D .-341.(2018·湖北黄冈中学模拟)若函数f (x )=dax 2+bx +c(a ,b ,c ,d ∈R )的图像如图所示,则a ∶b ∶c ∶d =( ) A .1∶6∶5∶8 B .1∶6∶5∶(-8) C .1∶(-6)∶5∶8 D .1∶(-6)∶5∶(-8)42.(2018·北京大兴区期末)下列函数中值域为正实数的是( ) A .y =-5x B .y =(13)1-xC .y =(12)x -1 D .y =3|x |43.(2018·东北三校联考)设函数y =f (x )的图像与y =2x+a的图像关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A .-1B .1C .2D .444.(2018·河北保定模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <cD .a >b >c45.(2018·南京金陵中学模拟)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值4范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)46.(2018·河北邯郸一中模拟)已知实数a ,b ∈(0,+∞),a +b =1,M =2a +2b ,则M 的整数部分是( ) A .1B .2C .3D .447.(2018·陕西宝鸡质检)函数f (x )=lnx -12x 2的图像大致是( )48.(2018·衡水中学调研卷)为了得到函数y =lg x +310的图像,只需把函数y =lgx 的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度49.(2018·《高考调研》原创题)已知函数y =f (x )(x ∈R )的图像如图所示,给出下列四个命题: p 1:函数y =f (x )满足f (-x )=-f (x ); p 2:函数y =f (x )满足f (x +2)=f (-x ); p 3:函数y =f (x )满足f (x )=f (-x ); p 4:函数y =f (x )满足f (x +2)=f (x ), 其中的真命题是( ) A .p 1,p 3 B .p 2,p 4 C .p 1,p 2D .p 3,p 450.(2018·黄冈调研)在同一坐标系中画出函数y =log a x ,y =a x ,y =x +a 的图像,可能正确的是( )。

相关文档
最新文档