排队论与服务过程管理39页PPT
合集下载
三、排队论(ppt文档)

12:56:34
系顾
统客
中源
允中
许顾
的客
最数
大,
顾默
客 数
认 无 穷
,
默
认
无
穷
队列长度有限 队列最大长度
C=D 损失制
C<D< 混合制 D= 等待制
3
M/M/…的排队模型
考虑整个排队系统中顾客数的变化
有顾客到达,系统中顾客数加1 有顾客服务完毕,系统中顾客数减1 总之,顾客的到达和离开致使系统顾客数有变化
t 0
jt 0(t)
t
j
j是正在忙的服务窗个数
j=i,im 系统顾客数少于等于服务窗数时,所有顾客都在 接受服务
j=m,i>m 系统顾客数大于 服务窗个数时,所有服务窗都在 服务,正在接受服务的顾客数=服务窗个数
12:56:34
9
第三章 单服务窗排队模型
第一节 损失制M/M/1/1 第二节 等待制M/M/1 第三节 混合制M/M/1/m 第四节 可变服务率的M/M/1 第五节 可变输入率的M/M/1 第六节 具有不耐烦顾客的M/M/1 第七节 单服务窗闭合式M/M/1/m/m 第八节 有差错服务的M/M/1
12:56:34
6
增长率和消亡率的分析
i状态下,i状态代表排队系统中有i个顾客,假定此时有j个 顾客正在接受服务(ji),当i m j=i,当i>m时j=m, m为服务 窗个数 pi,i1(t) P(t内到达了1个,离开了0个)
P(t内到达了k个,离开了k 1个,k 2)
M/M…排队模型综述
12:56:34
1
排队模型回顾
顾客到达排队系统请求服务
服
系顾
统客
中源
允中
许顾
的客
最数
大,
顾默
客 数
认 无 穷
,
默
认
无
穷
队列长度有限 队列最大长度
C=D 损失制
C<D< 混合制 D= 等待制
3
M/M/…的排队模型
考虑整个排队系统中顾客数的变化
有顾客到达,系统中顾客数加1 有顾客服务完毕,系统中顾客数减1 总之,顾客的到达和离开致使系统顾客数有变化
t 0
jt 0(t)
t
j
j是正在忙的服务窗个数
j=i,im 系统顾客数少于等于服务窗数时,所有顾客都在 接受服务
j=m,i>m 系统顾客数大于 服务窗个数时,所有服务窗都在 服务,正在接受服务的顾客数=服务窗个数
12:56:34
9
第三章 单服务窗排队模型
第一节 损失制M/M/1/1 第二节 等待制M/M/1 第三节 混合制M/M/1/m 第四节 可变服务率的M/M/1 第五节 可变输入率的M/M/1 第六节 具有不耐烦顾客的M/M/1 第七节 单服务窗闭合式M/M/1/m/m 第八节 有差错服务的M/M/1
12:56:34
6
增长率和消亡率的分析
i状态下,i状态代表排队系统中有i个顾客,假定此时有j个 顾客正在接受服务(ji),当i m j=i,当i>m时j=m, m为服务 窗个数 pi,i1(t) P(t内到达了1个,离开了0个)
P(t内到达了k个,离开了k 1个,k 2)
M/M…排队模型综述
12:56:34
1
排队模型回顾
顾客到达排队系统请求服务
服
第六章排队论-PPT精选

(1)损失制。这是指如果顾客到达排队系
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
②排队等待的顾客数(排队长)的期望值Lq; ③顾客在系统中全部时间(逗留时间)的期望值W;
④顾客排队等待时间的期望值Wq。
第二节 M/N/1模型
模型的条件是: 1、输入过程――顾客源是无限的,顾客到
达完全是随机的,单个到来,到达过程 服从普阿松分布,且是平稳的; 2、排队规则――单队,且队长没有限制, 先到先服务; 3、服务机构――单服务台,服务时间的长 短是随机的,服从相同的指数分布 。
第六章 排 队 论
随机服务系统理论
第六章 排 队 论
排队系统描述 基本概念 M / M / 1 模型 M / M / S 模型
第一节 排队系统描述
顾客---要求服务的对象统称为“顾 客”
服务台---把提供服务的人或机构称 为“服务台”或“服务员”
各种形式的排队系统
各种形式的排队系统
(2)其他常用数量指标
Pn PNn:稳态系统任一 为n时 的刻 概状
特别n= 当0时(系统中0顾 )客 ,数为 P0即稳态系统所 全有 部服 空务 闲台 的概
(2)其他常用数量指标
ρ ——服务强度,即每个服务台单位时间内的平 均服务时间,—般有ρ =λ /(sμ ),这是衡量 排队系统繁忙程度的重要尺度,当ρ 趋近于0时, 表明对期望服务的数量来说,服务能力相对地 说是很大的。这时,等待时间一定很短,服务 台有大量的空闲时间;如服务强度ρ 趋近于1, 那么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
②排队等待的顾客数(排队长)的期望值Lq; ③顾客在系统中全部时间(逗留时间)的期望值W;
④顾客排队等待时间的期望值Wq。
第二节 M/N/1模型
模型的条件是: 1、输入过程――顾客源是无限的,顾客到
达完全是随机的,单个到来,到达过程 服从普阿松分布,且是平稳的; 2、排队规则――单队,且队长没有限制, 先到先服务; 3、服务机构――单服务台,服务时间的长 短是随机的,服从相同的指数分布 。
第六章 排 队 论
随机服务系统理论
第六章 排 队 论
排队系统描述 基本概念 M / M / 1 模型 M / M / S 模型
第一节 排队系统描述
顾客---要求服务的对象统称为“顾 客”
服务台---把提供服务的人或机构称 为“服务台”或“服务员”
各种形式的排队系统
各种形式的排队系统
(2)其他常用数量指标
Pn PNn:稳态系统任一 为n时 的刻 概状
特别n= 当0时(系统中0顾 )客 ,数为 P0即稳态系统所 全有 部服 空务 闲台 的概
(2)其他常用数量指标
ρ ——服务强度,即每个服务台单位时间内的平 均服务时间,—般有ρ =λ /(sμ ),这是衡量 排队系统繁忙程度的重要尺度,当ρ 趋近于0时, 表明对期望服务的数量来说,服务能力相对地 说是很大的。这时,等待时间一定很短,服务 台有大量的空闲时间;如服务强度ρ 趋近于1, 那么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。
运筹学第五章排队论PPT课件

第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),
• 顾客源有限模型[M/M/1][∞/M/ FCFS]
1
2
... n
单队多服务台(串列)
.
1
1
2
3
2
混合形式
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
最优运营(动态优化)。
.
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过
研究排队系统运行的效率指标,估计服务质
量,确定系统的合理结构和系统参数的合理
值,以便实现对计等。
排队问题的一般步骤:
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),
• 顾客源有限模型[M/M/1][∞/M/ FCFS]
1
2
... n
单队多服务台(串列)
.
1
1
2
3
2
混合形式
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
最优运营(动态优化)。
.
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过
研究排队系统运行的效率指标,估计服务质
量,确定系统的合理结构和系统参数的合理
值,以便实现对计等。
排队问题的一般步骤:
运筹08(第10章排队论)精品PPT课件

2020/11/30
7
排队系统类型3:
服务完成后离开
服务台1
顾客到达
服务完成后离开
服务台2
服务完成后离开
服务台s
S个服务台, S个队列的排队系统
2020/11/30
8
排队系统类型4:
顾客到达
服务台1
离开
服务台s
多服务台串联排队系统
2020/11/30
9
排队系统的描述 实际中的排队系统各不相同,但概括 起来都由三个基本部分组成: 1、输入过程; 2、排队及排队规则; 3、服务机构
2020/11/30
21
➢ 定长分布(D):每个顾客接受的服 务时间是一个确定的常数。
➢ 负指数分布(M):每个顾客接受的
服务时间相互独立,具有相同的负指
数分布: e- t t0
f(t)=
0
t<0
其中>0为一常数。
2020/11/30
22
➢ K阶爱尔朗分布(Ek):
f(t)=
k(kt)k-1 · e- kt
2
无形排队现象:如几个旅客同时打电话 订车票;如果有一人正在通话,其他人只 得在各自的电话机前等待,他们分散在不 同的地方,形成一个无形的队列在等待通 电话。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因故 障而停止运行的机器设备在等待修理;码 头上的船只等待装货或卸货;要下降的飞 机因跑道不空而在空中盘旋等。
理;出价高的顾客应优先考虑。
2020/11/30
20
❖ 3、服务机制
包括:服务员的数量及其连接方式(串联还是并联) 顾客是单个还是成批接受服务; 服务时间的分布
记某服务台的服务时间为V,其分布函数 为B(t),密度函数为b(t),则常见的分布 有:定长分布(D)
第六章排队论 ppt课件

3) 普遍性:在 t 时间内到达一个顾客的概率为 t +o(t ),
到达两个或两个以上顾客的概率为 o(t );即两个顾客不可 能同时到达 • 泊松过程具有可迭加性 – 即独立的泊松分布变量的和仍为泊松分布
21
6.3.2.2 负指数分布
(1)推导
• 泊松过程的到达间隔时间为负指数分布 – 令 h 代表间隔时间,则概率 P{h > t}代表时间区间 △t 内没有顾客来的概率;由泊松分布
第六章 随机服务系统理论
排队论
Queuing Theory
确定型只是随机现象的特例
1
6.1 随机服务系统基础
• 系统的输入与输出是随机变量 • A.k.Erlang 于1909~1920年发表了一系列根据话务量计
算电话机键配置的方法,为随机服务理论奠定了基础 • 又称为排队论(Queuing Theory)或拥塞理论(Congestion
PB3 (1 / 8)PA0 (1 / 8)
(16 1 / 8)3 3!
e 161 / 8
e 81 / 8
0.0664
(2) 3 个顾客全是购买 B 类商品的概率为
Pn ( t ) 0
n2
26
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
6.1.1 基本要素
排队系统的三个基本组成部分. •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务的 方式,服务时间分布等)
到达两个或两个以上顾客的概率为 o(t );即两个顾客不可 能同时到达 • 泊松过程具有可迭加性 – 即独立的泊松分布变量的和仍为泊松分布
21
6.3.2.2 负指数分布
(1)推导
• 泊松过程的到达间隔时间为负指数分布 – 令 h 代表间隔时间,则概率 P{h > t}代表时间区间 △t 内没有顾客来的概率;由泊松分布
第六章 随机服务系统理论
排队论
Queuing Theory
确定型只是随机现象的特例
1
6.1 随机服务系统基础
• 系统的输入与输出是随机变量 • A.k.Erlang 于1909~1920年发表了一系列根据话务量计
算电话机键配置的方法,为随机服务理论奠定了基础 • 又称为排队论(Queuing Theory)或拥塞理论(Congestion
PB3 (1 / 8)PA0 (1 / 8)
(16 1 / 8)3 3!
e 161 / 8
e 81 / 8
0.0664
(2) 3 个顾客全是购买 B 类商品的概率为
Pn ( t ) 0
n2
26
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
6.1.1 基本要素
排队系统的三个基本组成部分. •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务的 方式,服务时间分布等)
第5章 排队论ppt课件

❖ 1、队长——系统中的顾客数量
m
L S Pi i i0
队长
m
m
i P0 i P0 i i 1
i0
i1
P0
m i1
d d
(
i)
P0
d d
m
(
i1
i)
P0
d d
1 m 1
(
)
1
1
P0
1
(m
1) m (1 ) 2
m
m 1
1
LS
m 2
❖ 2、排队长——系统中等待的顾客数量
i-1个细菌
一、生灭过程定义
❖ 研讨系统内部形状变化的过程 形状i+1
一个事件
系统形状i
一个事件
形状i-1
在Δt时辰内发生两个或两个以上 事件的概率为O(Δt)
Δt→0, O(Δt)→0
系统具有0,1,2,……个形状。在任何时辰,假设 系统处于形状i,并且系统形状随时间变化的过 程满足以下条件,称为一个生灭过程:
M/M/1/∞/∞排队系统
系统容量无限、顾客源无限 最根本的排队系统 排队过程为生灭过程过程
λ
λ
λ
λ
λ
λ
λ
S0
S1
S2
…
Si-1
Si
Si+1
…
μ
μ
μ
μ
μ
μ
μ
P0
P1
P2
Pi
列形状转移方程组求各形状概率
P1 P0
P1
P0
P0
Pi ii1Pi1Pi1iP0
Pi 1
i0
( 1 23 i )P 0 1
排队论模型PPT课件

0 0 0
顾客离去
10%
(
调试 0 检验
)
90
%
第8页/共40页
(5)匹配排队模型
煤矿 火车 煤仓
汽车(或火车)
港口
轮船
另外还有
(6)优先权的排队系统 (7)成批排队模型 (8)有限源排队模型
我们讨论(1)(2)两种
第9页/共40页
(三)、建立排队模型步骤 1.确定表达排队问题各个变量并建立它们之间的相互
时解,一般这种瞬时解是难以求得的
第14页/共40页
3.统计平衡下的极限解
实际应用中,关心的是t 时,方程的解称
为
生
灭
lim t
过程微
pn(t) pn
分由p差n' (t)分 0方
程
组
的
极
限
解
。
令
及(9.1)(9.2)式得当S
为有n1限pn状1 态(n集 时n ),pn (9.n11)p式n1 变 0为
2.几种重要的排队模型 (1)单服务台系统
顾客到达
排队
00…00
服务台
(2)多服务台的平衡系统
顾客离去
顾客到达 排队 服务台
00…00
顾客离去
顾客离去 服务台
服务机构
第7页/共40页
(3)串联排队系统
顾客到达 排队 00…00
0
0
顾客离去
M1
M2
…
Mn
0
(4)排队网络模型
顾客到达 排队 00…00
第2页/共40页
输入过程一样,服务时间都是随机的,且我们假设,设
n表示服务员为n个顾客提供服务所需的时间,则服务
排队论(讲稿)PPT课件

概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
(1) 队长:系统中的顾客数,期望值记作Ls; 排队长:系统中排队等待服务的顾客数,期望值记作Lq;
系统 中 在队列中正 等在 待服务 顾客 数 服务的顾 的 客顾 数客数
(2) 逗留时间:顾客在系统中的停留时间,期望值记作Ws; 等待时间:顾客在系统中排队等待的时间,期望值记作Wq, [逗留时间]=[等待时间]+[服务时间]
在实际应用中,大多数系统会很快趋于稳态,而无需等到t→∞以 后。
❖ 求稳态概率Pn时,不需要求t→∞时Pn(t)的极限, 而只需令导数dPn(t)/dt=0即可。
19
清华大学出版社
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
服务机构
修理技工 发放修配零件的管理员 医生(或包括手术台) 交换台 打字员 仓库管理员 跑道 货码头(泊位) 水闸管理员 我方高射炮
6
清华大学出版社
1.2 排队系统的组成和特征
❖ 排队系统由三个基本部分组成:
①输入过程 ②排队规则 ③服务机构
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
(1) 队长:系统中的顾客数,期望值记作Ls; 排队长:系统中排队等待服务的顾客数,期望值记作Lq;
系统 中 在队列中正 等在 待服务 顾客 数 服务的顾 的 客顾 数客数
(2) 逗留时间:顾客在系统中的停留时间,期望值记作Ws; 等待时间:顾客在系统中排队等待的时间,期望值记作Wq, [逗留时间]=[等待时间]+[服务时间]
在实际应用中,大多数系统会很快趋于稳态,而无需等到t→∞以 后。
❖ 求稳态概率Pn时,不需要求t→∞时Pn(t)的极限, 而只需令导数dPn(t)/dt=0即可。
19
清华大学出版社
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
服务机构
修理技工 发放修配零件的管理员 医生(或包括手术台) 交换台 打字员 仓库管理员 跑道 货码头(泊位) 水闸管理员 我方高射炮
6
清华大学出版社
1.2 排队系统的组成和特征
❖ 排队系统由三个基本部分组成:
①输入过程 ②排队规则 ③服务机构