十字相乘法
完整版十字相乘法因式分解

4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 ? x2 ? 6x? 16 分解因式
? x2 ? 6x? 16
? ?? x2 ? 6x ? 16?
? ??x? 8?x?? 2?
+3
=(5x+3)(x-4) x
-4
-20x+3x=-17x
1.十字相乘法分解因式的公式:
x2+(a+b)x+ab=(x+a)(x+b)
2.能用十字相乘法来分解因式的二次三项式的系数的 特点:常数项能分解成两个数的积,且这两个数的和 恰好等于一次项的系数。
3.在用十字相乘法分解因式时,因为常数项的 分解因数有多种情况,所以通常要经过多次的 尝试才能确定采用哪组分解来进行分解因式。
x2 ? 29x ? 138 ? (x? 23)(x? 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x 2 ? 7 x ? 60 ? (x ? 12)(x ? 5) x2 ? 14 x ? 72 ? (x? 4)(x? 18)
当q<0时, q分解的因数a、b(
) 异号
1
–2
5
4
4 – 10 = –6 ∴5x2–6xy–8y2 =(x–2y)(5x+4y)
简记口诀:
首尾分解, 交叉相乘, 求和凑中。
分解因式 3x -102x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x
十字相乘法

十字相乘法利用十字交叉线来分解系数,将二次三项式分解因式的方法叫做十字相乘法,主要分为以下两类:1.二次项系数是1的二次三项式的十字相乘法对首项是1的二次三项式的十字相乘法主要就是要能够运用公式进行因式分解.对于二次三项式,若存在则,即把常数项分解成两个数的积,且其和刚好等于一次项系数.技巧1:在对c的正负入手:若,则、同号,若,则、异号,然后根据一次项系数的正负进一步确定、的符号;技巧2:若中的b、c为整数时,要先将c分解成两个整数的积,然后再考虑这两个整数和能否等于一次项系数(再分解时,要考虑分解的多种可能,直至凑对为止).2.二次项系数不为1的十字相乘在二次三项式a可以分解成两个因数的积,常数项c也可以分解成两个因数的积,即,将、、、按照以下进行排列:按照斜线交叉相乘,再相加,得到若它正好等于二次三项式一次项系数b,即,那么二次三项式就可以分解成两个因式与之积,即.PS:若二次项系数是负数,可以先提个负号,分解括号里面的二次三项式,最后结果不要忘记添上负号.例1:二次项系数为1的二次三项式分解因式:(1)(2)(3)(4)见解析(1);(2)(3);(4)例2:二次项系数不为1的二次三项式分解因式:(1)(2)见解析(1);(2).例3:待定系数法求字母的值若能分解成两个一次因式的积,则的值为()A. 1B.C.D. 2C,,分以下两种情况考虑:由①可得m=1,故选C.例4:解决几何类问题已知长方形的长、宽分别为x、y,周长为16,求此长方形的面积.15或15.75又解得,∴长方形的面积为15或15.75.例5:十字相乘法综合求证:若是7的倍数,其中x、y都是整数,则是49的倍数.见解析证明:∵是7的倍数,设(m为整数),则,∵x、m也是整数,∴49的倍数.巩固练习一.选择题1.把多项式x2+x﹣2分解因式,下列结果正确的是()A.(x+2)(x﹣1)B.(x﹣2)(x+1)C.(x﹣1)2D.(2x﹣1)(x+2)Ax2+x﹣2=(x﹣1)(x+2),故选:A.2.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)DA、4m2﹣4m+1=(2m﹣1)2,故本选项错误;B、a3b2﹣a2b+a2=a2(ab2﹣b+1),故本选项错误;C、(x﹣2)(x﹣5)=x2﹣7x+10,故本选项错误;D、10x2y﹣5xy2=xy(10x﹣5y)=5xy(2x﹣y),故本选项正确;故选:D.3.下列多项式不能分解的是()A.(ab+cd)2+(bc﹣ad)2B.x2﹣y2﹣6x+9C.x2﹣2xy﹣3y2+4x+8y﹣5D.x2+2x+4DA.(ab+cd)2+(bc﹣ad)2=(a2+c2)(b2+d2),故本选项能分解;B.x2﹣y2﹣6x+9=(x﹣3+y)(x﹣3﹣y),故本选项能分解;C.x2﹣2xy﹣3y2+4x+8y﹣5=(x+y﹣1)(x﹣3y+5),故本选项能分解;D.x2+2x+4不能分解,故本选项符合题意;故选:D.4.把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)C(x﹣y)2﹣2(x﹣y)﹣8,=(x﹣y﹣4)(x﹣y+2).故选:C.二.填空题5.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.9由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.6.分解因式:x2﹣3xy﹣4y2=.(x﹣4y)(x+y)x2﹣3xy﹣4y2=(x﹣4y)(x+y),7.若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为.3∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3.8.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.﹣1∵x2+mx+n分解因式的结果是(x+2)(x﹣1),∴x2+mx+n=x2+x﹣2,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1.9.阅读下列文字与例题:将一个型如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).例如(1)x2+3x+2=(x+1)(x+2)(2)x2﹣3x﹣10=(x﹣5)(x+2).要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.﹣5,﹣1,1,5∵﹣6=﹣1×6=﹣2×3=1×(﹣6)=2×(﹣3),∴m=﹣1+6=5或m=﹣2+3=1或m=1+(﹣6)=﹣5或m=2+(﹣3)=﹣1.10.多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k=,m=.9,3∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:.三.解答题11.分解因式:x2+12x﹣189,分析:由于常数项数值较大,则将x2+12x﹣189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.x2+12x﹣189=x2+2*6x+62﹣36﹣189=(x+6)2﹣225=(x+6)2﹣152=(x+6+15)(x+6﹣15)=(x+21)(x﹣9)请按照上面的方法分解因式:x2﹣60x+884.(x﹣26)(x﹣34)x2﹣60x+884=x2﹣2×30x+900﹣900+884=(x﹣30)2﹣16=(x﹣30+4)(x﹣30﹣4)=(x﹣26)(x﹣34).12.李伟课余时间非常喜欢研究数学,在一次课外阅读中遇到一个解一元二次不等式的问题:x2﹣2x﹣3>0.经过思考,他给出了下列解法:左边因式分解可得:(x+1)(x﹣3)>0,或,解得x>3或x<﹣1.聪明的你,请根据上述思想求一元二次不等式的解集:(x﹣1)(x﹣2)(x﹣3)>0.x>3或1<x<2由题意知x﹣1、x﹣2、x﹣3中负数的个数为偶数个,则①,解得:x>3;②,解得:1<x<2;∴x>3或1<x<2.13.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),乙同学因看错常数项而将其分解为2(x﹣2)(x﹣4),请你写出这个二次三项式,并将其进行正确的因式分解.2x2﹣12x+18=2(x﹣3)2甲:2(x﹣1)(x﹣9)=2x2﹣20x+18,乙:2(x﹣2)(x﹣4)=2x2﹣12x+16,∵甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项,但没有看错一次项系数,∴原多项式为2x2﹣12x+18,将其分解因式为:2x2﹣12x+18=2(x﹣3)2.14.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.(1)原式=(x+3)(x﹣9);(2)原式=(x+y)(x﹣3y)(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).15.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.见解析x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).16.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.见解析x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy).。
十字相乘法

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目,例子中的²是平方的意思例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。
当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳ -4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程 6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
十字相乘法

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。
3.因式分解的一般步骤(1)如果多项式的各项有公因式时,应先提取公因式;(2)如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3)对于二次三项式的因式分解,可考虑用十字相乘法分解;(4)对于多于三项的多项式,一般应考虑使用分组分解法进行。
在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。
以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。
在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法完整版

XX,a click to unlimited possibilities
十字相乘法完整版
目录
01
添加目录标题
02
十字相乘法的基本原理
03
十字相乘法的应用
04十字相乘法ຫໍສະໝຸດ 注意事项05十字相乘法的扩展应用
01
添加章节标题
02
十字相乘法的基本原理
定义与公式
定义:十字相乘法是一种解一元二次方程的方法,通过将方程的系数分解为两个因数的乘积,从而找到方程的解。
分解因式时,要注意符号的变化,特别是当多项式中含有括号时。
分解因式时,要注意符号的变化,特别是当多项式中含有分数时。
分解因式时要注意完全平方数的问题
分解因式时要注意完全平方数的问题,避免出现错误的结果。
分解因式时要注意符号问题,确保结果的正确性。
分解因式时要注意因式的分解是否彻底,避免出现不必要的错误。
应用场景:求解一元二次不等式时,当不等式的系数较大或较为复杂时,使用十字相乘法可以简化计算过程
注意事项:在使用十字相乘法时,需要确保分解后的两个一次项的乘积为正,否则会导致不等号方向错误
举例说明:通过具体的一元二次不等式实例,展示十字相乘法的应用和求解过程
求解一元二次函数极值
定义:一元二次函数极值是指函数在某点的导数为零,且该点两侧的函数值异号
代数方程:十字相乘法可用于解二次方程和一元高次方程
矩阵运算:十字相乘法在矩阵的乘法中也有应用
分式化简:十字相乘法可以用于化简分式,简化计算过程
在物理和工程领域的应用
线性代数方程组的求解
工程中的结构分析、流体动力学等领域
物理中的动力学方程求解
矩阵运算中的分块矩阵相乘
完整版)十字相乘法

完整版)十字相乘法在进行因式分解时,首先要考虑能否提取公因式,然后再考虑运用公式或十字相乘法,最后考虑分组分解法。
对于还能继续分解的多项式因式,仍然要用这一步骤反复进行。
以上步骤可以用口诀来概括:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”。
二次三项式是指多项式ax+bx+c,其中a为二次项,b为一次项,c为常数项。
例如,x-2x-3和x+5x+6都是关于x的二次三项式。
在多项式x-6xy+8y中,如果把x看作常数,它就是关于y的二次三项式;如果把y看作常数,它就是关于x 的二次三项式。
同样地,在多项式2ab-7ab+3中,如果把ab 看作一个整体,它就是关于ab的二次三项式。
还有多项式(x+y)+7(x+y)+12,把x+y看作一个整体,就是关于x+y的二次三项式。
十字相乘法是一种分解二次三项式的方法。
对于二次项系数为1的二次三项式x+(a+b)x+ab=(x+a)(x+b),方法的特征是“拆常数项,凑一次项”。
当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同。
例如,对于7x+(-8x),我们可以得到原式=(x+7)(x-8)。
另外,对于x^2-10x+16,我们可以将其分解为(x-2)(x-8)。
对于二次项系数不是1的二次三项式ax^2+bx+c=a1x^2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),它的特征是“拆两头,凑中间”。
当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同。
例如,对于-2x+(-8x),我们可以得到原式=-10x,而对于2x^2-11x-6,我们可以将其分解为(2x+1)(x-6)。
十字相乘法

十字相乘法,顾名思义,就是利用十字交叉线来分解系数,从而把二次三项式分解因式的方法,就叫做十字相乘法。
二次三项式就是我们经常接触到的ax²+bx+c,这种形式的方程式
那么十字相乘法,就是把这个式子中的
二次项系数a,分解为a1,a2 在这里,a等于a1乘以a2
常数项c分解为c1和c2 同样的,在这里c等于c1乘以c2
我们把这几个分解开的式子按照十字排列
a1 c1
a2 c2
按照交叉线来相乘,然后再加起来,就得到a1c2+a2c1
如果这个式子刚好等于二次三项式中的b
那么ax²+bx+c就可以分解为(a1x+c1)(a2x+c2)
其实这么一大堆话,看起来可能很难理解,但是事实上,他是很简单的,只要你做的题多了,对于十字相乘法就能形成一种灵感。
看到那个题,可能就可以想象的到它该怎么分解。
好了,下边儿给大家出个例题
比如6x²+7x-5这个式子,我们该怎么分解呢?
这就需要用到我们第一印象,一看到6,我们能想到它能怎样分解呢?
对,分成2,3
然后常数项c,就是-5,该怎么分解呢?
很明显,它可以分解成为-1,5
也可以分解成为5,-1
这时候就需要我们去实验哪种分解方法是我们需要的,怎么实验呢?就是把我们分解的这几个数字,按照十字排列好。
然后交叉相乘再相加。
看一下哪个能够得到我们想要的数字b=7,那么那就是我们想要的分解方法
最终得到结果,大家可以试一下
然后我们给大家出一道例题,大家来练习一下
6x²-x-15=0
大家用十字相乘法,解一下这个方程~加油,。
十字相乘法

例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多 项式再因式分解。 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作 一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字分解法分解因式了。 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 = 2 ( x - y ) ²- 3 ( x - y ) - 2 1 -2 ╳ 21
十字相乘法
因式分解方法
01 原理
03 运算举例
目录
02 判定 04 分解因式
05 例题解析
07 注意事项
பைடு நூலகம்目录
06 重难点
基本信息
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等 于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。
例题解析
例3 例1
例2
例4
例1
把 2 x ²- 7 x + 3 分 解 因 式 . 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数,因为取负因数的结果与正因数结果相同。): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 13 ╳ 21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:原式 (x 1)(x 2)
利用十字交叉线来分解系数,把二次三项 式分解因式的方法叫做十字相乘法。
请大家记住公式
十字相乘法公式:
x2 (a b)x ab (x a)(x b)
将下列各数表示成两个整数的积的形式
(1)6= 2×3 或 (-2)×(-3)或1×6 或(-1) ×(-6)
(2)-6= 1× (-6)或-1×6
或2× (-3)或3× (-2)
(3)12= 1× 12或(-1)×(-12)
或2× 6或(-2)× (-6) 或
3×4或(-3)× (-4)
将下列各式用十字相乘法进行因式分解
(1)X2-7x+12 (2)x2-4x-12 (3)x2+8x+12
将下列多项式因式分解
十字相乘法
1、口答计算结果
(1)(x+3)(x+4)x+4)
(4)(x-3)(x-4)
2、提问:你有什么快速计算类似以上多项 式的方法吗?
试一试:把x2+3x+2分解因式
分析∵ (+1) ×(+2)=+2
常数项
(+1)+(+2)=+3
x
1
∴x
2
一次项系数
(1)x2+3x-4
(2)x2-3x-4 (3)x2+6xy-16y2 (4)x2-11xy+24y2
1.十字相乘法分解因式的公式:
x2+(a+b)x+ab=(x+a)(x+b)
2.能用十字相乘法来分解因式的二次三项式的系数的 特点:常数项能分解成两个数的积,且这两个数的和 恰好等于一次项的系数。
3.在用十字相乘法分解因式时,因为常数项的 分解因数有多种情况,所以通常要经过多次的 尝试才能确定采用哪组分解来进行分解因式。