相变原理(复习题)
固态相变原理习题集答案

14.说明恩金贝氏体的相变假说?
恩金认为贝氏体相变应属于马氏体相变性质,由于随后回火析出碳化物而形成贝氏体,提出了贫富碳理论假说。 该假说认为,在贝氏体相变发生之前奥氏体中已经发生了碳的扩散重新分配,形成了贫碳区和富碳区。在贫碳区发生 马氏体相变而形成低碳马氏体,然后马氏体迅速回火形成过饱和铁素体和渗碳体的机械混合物,即贝氏体。在富碳区 中首先析出渗碳体,使其碳浓度下降成为贫碳区,然后从新的贫碳区通过马氏体相变形成马氏体,尔后又通过回火成 为铁素体加渗碳体的两相机械混合物(贝氏体)。而在相变过程中铁及合金元素的原子是不发生扩散的。 恩金假说解释贝氏体的形成、BS 点的意义和贝氏体中铁素体的碳浓度随等温温度变化等现象,但没有解释贝氏体 的形态变化和组织结构等。
2.说明金属固态相变的主要特点?
⑴相界面:根据界面上新旧两相原子在晶体学上匹配程度的不同,可分为共格界面、半共格界面和非共格界面。 ⑵位向关系与惯习面:在许多情况下,金属固态相变时新相与母相之间往往存在一定的位向关系,而且新相往往在母 相一定的晶面上开始形成,这个晶面称为惯习面通常以母相的晶面指数来表示。 ⑶弹性应变能:金属固态相变时,因新相和母相的比容不同可能发生体积变化。但由于受到周围母相的约束,新相不 能自由膨胀,因此新相与其周围母相之间必将产生弹性应变和应力,使系统额为地增加了一项弹性应变能。 ⑷过渡相的形成:当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是 先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。 ⑸晶体缺陷的影响:固态晶体中存在着晶界、亚晶界、空位及位错等各种晶体缺陷,在其周围点阵发生畸变,储存有 畸变能。一般地说,金属固态相变时新相晶核总是优先在晶体缺陷处形成。 ⑹原子的扩散:在很多情况下,由于新相和母相的成分不同,金属固态相变必须通过某些组织的扩散才能进行,这时 扩散便成为相变的控制因素。
固态相变原理 Ch2-3 概论

G* s G*f()
f() 1 ,所以相依托杂质表面成核总可以降低成核势垒,除非
S s
(2)晶界形核
界面:两个相邻晶粒的边界 界棱:三个晶粒共同交界的一条线 界隅:四个晶粒交于一点处
(a)界面形核 (b)界棱形核
(c)界隅形核
只有晶界两侧界面都不共 格时,晶核才类似球形。 通常新相在大角度晶界形 核时,一侧可能与母相具 有一定的取向关系形成平 直的共格或半共格界面, 以降低界面能、减少形核 功;另一侧必为非共格界 面,为减少相界面面积, 故呈球冠状。
(1) 非匀相等温转变动力学模型
假设:均匀形核和长大、形核率I、长大速度G均为常数;
界面能各向同性,不考虑应变能; 新相为球形 先不考虑碰撞和重叠(虚拟长大模型):
+d
xe
t
d
t
d内形核导致t时刻虚拟转变增量
dxe
V N V0
式中 V —— 时刻形成的一个新相核心长大到t时刻的体积;
N —— d内形核数;
C0exp(KQT)
C0expQ ( KG T*)
形核率随温度的变化 加热相变时形核率随温度的变化趋势?
4. 非均匀形核
系统自由能变化为
缺陷(消失而)提供的能量
G V G V E V A G d
(1)异质界面形核
设晶核为球冠形
表面张力平衡,即
S
c o sS
;cos
s s
V0 —— 系统总体积
dex34G3(t)3Id
xe
t
4G3(t)3Id1IG 3t4
03
3
上式适用于过饱和度不高的固溶体沉淀析出相变
真实转变量x ? 未转变基体形核长大
材料相变原理复习提纲

材料相变原理复习提纲第1章1 分析固态相变的动力与阻力。
相变驱动力是使系统自由焓下降的因素,相变阻力是相变导致系统自由焓升高的因素。
△G = △G 相变+△G界面+△G畸式中△G 相变一项为相变驱动力。
其值是新旧相自由焓之差。
相变阻力包括很多内容:如晶界能、相界面能、位错畸变能、孪晶界面能、层错能、外表能、相变潜热等。
综合为界面能与畸变能。
2 讨论固态相变新相形状的影响因素。
新相的形状决定于长大速率的方向性,它受晶面的界面张力、外表或界面杂质吸附、温度与浓度梯度等影响。
如生铁中石墨沿基面方向长大,成为片状石墨;如沿垂直于基面方向长大,那么成为扇形石墨的复合体,即球状石墨。
3 比拟扩散型相变与非扩散型相变的特点。
第2章1.以共析钢为例,说明奥氏体的形成过程1奥氏体晶核的形成:奥氏体晶核易于在铁素体及渗碳体相界面形成2奥氏体的长大:奥氏体中的碳含量是不均匀的,及铁素体相接处碳含量较低,及渗碳体相接处碳含量较高,引起碳的扩散,破坏了原先碳浓度的平衡,为了恢复碳浓度的平衡,促使铁素体向奥氏体转变以及fe3c 的溶解,直至铁素体全部转变为奥氏体为止。
3剩余渗碳体的溶解:铁素体比奥氏体先消失,因此还残留未溶解的渗碳体,随时间的延长不断融入奥氏体,直至全部消失。
4奥氏体均匀化:剩余渗碳体全部溶解时,奥氏体中的碳浓度依然是不均匀的,继续延长保温时间,通过碳的扩散,可使奥氏体碳含量逐渐趋于均匀。
渗碳体剩余的原因:相界面向铁素体中的推移速度比向渗碳体中推移速度快14.8倍,但是铁素体片厚度仅比渗碳体片大7倍,所以铁素体先消失,还有相当数量的剩余渗碳体未完全溶解。
2.奥氏体的晶粒度由几种表示方法?并讨论影响奥氏体晶粒度的影响因素。
晶粒度是指晶粒大小,晶粒大小可用多种方法表示,晶粒大小及晶粒度级别〔N〕的关系为:n = 2N-1n为放大100倍视野中单位面积内的数。
N一般为1-8,级别越高,晶粒越细。
起始晶粒度;实际晶粒度;本质晶粒度。
2012相变原理习题

相变原理习题一、选择题1、使TTT曲线左移的因素有___________ 。
A 增加亚共析钢中含碳量B 提高钢中含钨量C 增加钢中含铜量D 使奥氏体产生塑性变形2、能使钢中马氏体转变开始温度(Ms)升高的因素有__________ 。
A 降低含Ni钢中的Ni含量B 降低钢中含碳量C 增大冷却速度D 提高加热温度3、高碳马氏体的形貌特征及亚结构是__________ 。
A 板条状及位错B 凸透镜状及位错C 凸透镜状及孪晶4、加热时Fe3C全部溶入A的温度是__________ 。
A A c1B A c3C A ccm5、上贝氏体贝氏体的强度,韧性下贝氏体。
A 高于优于B 高于不如C 低于优于D 低于不如6、中碳钢淬火后高温回火,可获得优良的综合机械性能。
又称为。
A 固溶处理B 调质C 热稳定化D 时效7、出现了高温回火脆性后,如重新加热到650℃以上,然后快冷至室温,消除脆化。
在脆化消除后,再在450 650℃加热快冷再发生脆化。
A 可可B 可不C 不可可D 不可不8、W18Cr4V在560℃回火后,在冷却过程中在250℃稍作停留,残余奥氏体将不再转变为马氏体,这一过程称为。
A 催化B 相变C 逆转变D 稳定化9.奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子 (b)碳原子 (c)铁碳原子 (d)溶质原子10.亚共析钢在A C3下加热后的转变产物为___.(a) F (b) A (c) F+A (d) P+F11.提高钢中马氏体转变开始点(Ms)的因素有__________ 。
(a) 降低含Ni钢中的Ni含量 (b) 降低钢中含碳量 (c) 增加冷却速度 (d) 提高奥氏体化温度12.低碳马氏体的形貌特征及亚结构是__________ 。
(a) 板条状及位错 (b) 凸透镜状及位错 (c) 凸透镜状及孪晶13.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是__________ 。
金属固态相变原理习题及解答

第二章1、钢中奥氏体的点阵结构,碳原子可能存在的部位及其在单胞中的最大含量。
奥氏体是碳在γ-Fe中的固溶体,碳原子在γ-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。
八面体间隙:4个2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解?奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。
按相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。
所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有部分碳化物残留,只有继续加热保温,残留碳化物才能逐渐溶解。
3、合金元素对奥氏体形成的四个阶段有何影响。
钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在奥氏体中的扩散系数。
另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。
①通过对碳扩散速度影响奥氏体的形成速度。
②通过改变碳化物稳定性影响奥氏体的形成速度。
③对临界点的影响:Ni、Mn、Cu等降低A1温度;Cr、Mo、Ti、Si、Al、W、V 等升高A1温度。
④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。
在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度小100-10000倍。
此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。
4、钢在连续加热时珠光体奥氏体转变有何特点。
○1在一定的加热速度围,临界点随加热速度增大而升高。
2012相变原理习题-推荐下载

相变原理习题
A 增加亚共析钢中含碳量 B 提高钢中含钨量 C 增加钢中含铜量 D 使奥氏体产生塑性变形
2、能使钢中马氏体转变开始温度(Ms)升高的因素有__________ 。
A 降低含 Ni 钢中的 Ni 含量 B 降低钢中含碳量 C 增大冷却速度 D 提高加热温度
。
消除脆化。在脆化消除后, 再
15. 球化处理由片状向粒状转变, 可____, 属自发过程。 (a)降低结合能 (b)降低体积 (c)降低表面能 (d)降低碳浓度
16. 马氏体的晶体结构为: (a) 体心立方 (b) 体心四方 (c) 体心正方 (d) 复杂斜方
17. 贝氏体转变时, 由于温度较高, 会存在____的扩散。 (a)铁原子 (b) 碳原子 (c)铁和碳原子 (d) 合金元素
D 先共析线 。
A Ac1 B Ac3 C Accm 24. 奥氏体的形核位置为 F/Fe3C 界面, 珠光体团交界处及________交界处.
A F/F B Fe3C/F C Fe3C/Fe3C D 共析 F/珠光体团 25. 渗碳体转变结束后, 奥氏体中碳浓度不均匀, 要继续保温通过碳扩散可以使奥氏体____.
11. 提高钢中马氏体转变开始点(Ms)的因素有__________ 。 (a) 降低含 Ni 钢中的 Ni 含量 (b) 降低钢中含碳量 (c) 增加冷却速度 (d) 提高奥氏体化温度
12. 低碳马氏体的形貌特征及亚结构是__________ 。 (a) 板条状及位错 (b) 凸透镜状及位错 (c) 凸透镜状及孪晶
称为
。
A 催化 B 相变 C 逆转变 D 稳定化
9. 奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的. (a)铁原子 (b)碳原子 (c)铁碳原子 (d)溶质原子
固态相变原理

固态相变原理1、相变的基础理论涉及三个方面的共性问题:1)相变能否进行,相变的方向2)相变进行的途径及速度3)相变的结果,即相变时结构转变的特征。
分别对应相变热力学、相变动力学和相变晶体学。
相变是朝着能量降低的方向进行;相变是选择阻力最小、速度最快的途径进行;相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。
2、固态相变的特殊性(相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷)。
固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。
相变势垒由激活能决定,也与是否有外加机械应力有关。
3、相变驱动力和相变阻力驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷)的储存能。
储存能由大到小的排序:界面能,线缺陷,点缺陷。
界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。
相变阻力是界面能和弹性应变能。
弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。
从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。
球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。
4、长大方式新相晶核的长大分为协同(共格或半共格,切变)和非协同(非共格或扩散)两种,前者速度快,后者速度慢。
原子只能短程扩散时,长大速度与过冷度(温度)存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。
5、相变速率相变速率满足Johnson-Mehl方程或Avrami经验方程。
相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。
扩散型相变的动力学曲线呈“C”形。
是由驱动力和扩散两个矛盾因素共同决定的。
6、C曲线“C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等),确定该条件下这种变化与新相转变量的关系。
相变进行的难以程度决定“C”曲线的位置。
(完整版)固态相变原理考试试题+答案

固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④ 在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ MG α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,r t ∂∂<0小粒子溶解;③当时,r>r ,r t ∂∂>0粒子长大;④当时,r=2r ,r t ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0exp()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变原理复习习题第一章固态相变概论相变:指在外界条件(如温度、压力等)发生变化时,体系发生的从一相到另一相的变化过程。
固态相变:金属或陶瓷等固态材料在温度和/或压力改变时,其内部组织或结构会发生变化,即发生从一种相状态到另一种相状态的改变。
共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。
此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。
当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。
半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。
在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。
非共格界面:当两相界面处的原子排列差异很大,即错配度δ很大时,两相原子之间的匹配关系便不在维持,这种界面称为非共格界面;一般认为,错配度小于0.05时两相可以构成完全的共格界面;错配度大于0.25时易形成非共格界面;错配度介于0.05~0.25之间,则易形成半共格界面。
一级相变:相变前后若两相的自由能相等,但自由能的一级偏微商(一阶导数)不等的相变。
特征:相变时:体积V,熵S,热焓H发生突变,即为不连续变化。
晶体的熔化、升华,液体的凝固、气化,气体的凝聚,晶体中大多数晶型转变等。
二级相变:相变时两相的自由能及一级偏微商相等,二级偏微商不等。
特征:在临界点处,这时两相的化学位、熵S和体积V相同;但等压热容量Cp、等温压缩系数β、等压热膨胀系数α突变。
例如:合金的有序-无序转变、铁磁性-顺磁性转变、超导态转变等。
均匀相变:没有明显的相界面,相变是在整体中均匀进行的,相变过程中的涨落程度很小而空间范围很大。
特点:A: 无需形核;B: 无明确相界面;非均匀相变:是通过新相的成核生长来实现的,相变过程中母相与新相共存,涨落的程度很大而空间范围很小。
特点:A:即为形核-长大型相变;B: 新旧相差别较大(结构或成分);C: 相变过程中母相与新相共存形核功:晶核长大到r* 所需克服的能垒,或所做的功。
晶核长大的两个伴随过程:即为界面过程(满足结构);传质过程(满足成分)相变动力学:研究新相形成量(体积分数)与时间、温度关系的学科称为相变动力学。
新相颗粒的粗化:粗化是指在相变过程中所形成的新相颗粒平均尺寸增大的动力学过程什么是扩散型相变?如温度足够高,原子活动能力足够强,新相的形核和长大主要依靠原子进行长距离的扩散,即相变是依靠相界面的扩散移动而进行的。
因而扩散便成了这类相变中起控制作用的因素之一。
其特点如下:A: 相变过程有原子扩散,相变速率受原子扩散速度控制;B: 新、旧相成分不同;C:新、旧相比容不同引起体积变化,但宏观形状不变。
D:相界面是非共格的。
什么是非扩散型相变?相变过程中原子不发生扩散,低温下发生。
参与转变的所有原子运动是协调一致的,原子只作有规则的迁移以使晶体点阵重组,原子迁移范围有限不超过一个原子间距。
其特点如下:1)存在均匀切变引起宏观变形;2)相变无扩散,新、旧相化学成分相同;3)新、旧相之间存在一定晶体学取向关系;4)相界面是共格的;5)相变速度快;相变过程的推动力有哪些?相变过程的推动力应为过冷度、过饱和浓度、过饱和蒸汽压。
固态相变的阻力有哪些?金属固态相变时的相变阻力应包括界面能和弹性应变能两项。
当界面共格时,可以降低界面能,但使弹性应变能增大。
当界面不共格时,盘(片)状新相的弹性应变能最低,但界面能较高;而球状新相的界面能最低,但弹性应变能却最大。
物相的突变体现在那些方面?(1)从一种结构变化为另一种结构:结构变化(2)化学成分的不连续变化(3)某种物理性质的跃变以上三种情况可以单独出现,也可以同时出现。
试总结固态相变的特征?1、相界面特殊(不同类型,具有不同界面能和应变能)2、新旧相之间存在一定位向关系与惯习面3、相变阻力大(弹性应变能作用)4、易产生过渡相(降低形核功)5、晶体缺陷的影响(提供驱动力)为什么固态相变中出现过渡相?当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近、自由能比母相稍低些的亚稳定的过渡相。
此时,过渡相往往具有界面能较低的共格界面或半共格界面,以降低形核功,使形核容易进行。
晶体缺陷对固态相变形核有什么影响?晶体缺陷是能量起伏、结构起伏和成分起伏最大的区域,在这些区域形核时,原子扩散激活能低,扩散速度快,相变应力容易被松弛。
在固态相变中,从能量的观点来看,均匀形核的形核功最大,空位形核次之,位错形核更次之,晶界非均匀形核的形核功最小。
试对固态相变的相变阻力进行分析?固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。
(1)界面能:是指形成单位面积的界面时,系统吉布斯自由能的变化值。
其大小和化学键的数目、强度有关。
共格界面的化学键数目、强度没有发生大的变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大。
(2)应变能①错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。
②比容差引起的应变能(体积应变能):和新相的形状有关,球状由于比容差引起的应变能最大,针状次之,片状最小。
分析晶体缺陷对固态相变中新相形核的作用。
固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出以供形核的需要,使临界形核功下降,故缺陷促进形核。
(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。
(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。
③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。
④位错是快速扩散的通道。
⑤位错分解为不全位错和层错,有利于形核。
请对液固界面的类型进行阐述。
从原子尺度看液固界面的微观结构可分为两大类:(1)粗糙界面:界面固相一侧的点阵位置只有约50%被固相原子所占据,形成坑坑洼洼、凹凸不平的界面结构。
粗糙界面也称“非小晶面”或“非小平面”。
(2)光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。
从相界面的迁移角度出发,请对界面进行阐述?从相界面的迁移看,界面可分为滑动型界面和非滑动型界面。
①滑动型界面:是依靠界面上位错的运动而促使界面向母相中移动。
滑动型界面迁移的特点为:a: 滑动界面的移动与温度无关;b:是非热激活的;c: 包括共格和半共格界面;故界面移动速度不随温度降低而下降,在很低的温度下仍能以很高的速度移动。
②非滑动型界面:单个原子随机地从一相跳跃过界面而黏附在另一相。
非滑动型界面迁移的特点为:a: 非滑动界面的移动对温度非常敏感;b:是热激活的;c: 包括共格、半共格、非共格、固液、固气界面;固态相变的长大类型?按照长大是涉及滑动还是非滑动界面将相变分为两大类。
(1)协同型长大:又称队列型转变(或军队式转变,或无扩散转变),转变时,每个原子相对于其相邻原子都以同一矢量运动,运动距离不超过原子间距,运动的结果不改变原有的邻居关系。
特点:①队列型转变时,任一原子的最近邻在转变前后基本不变;②母相与新相成分必须相同;③转变不涉及扩散;④界面迁移是通过点阵切变完成的,故其长大激活能为零,因此新相长大速度很高。
(2)非协同型长大:又称非队列型转变,或平民式转变,原子越过非滑动界面的非协调运动称为非协同型长大。
特点:①非协同型转变为扩散型转变;②转变时原子通过近距离扩散自母相转移到新相而使界面向母相移动。
③与协同型转变不同,转变的结果破坏了原有的邻居关系;④母相与新相成分可以相同,也可以不同。
成分相同时,只有原子的近程扩散(界面控制长大);成分不同时,新相长大需要通过母相原子的长程扩散(扩散控制长大)。
液固相变长大的机制?(1)连续生长机制(2 )侧向长大机制(光滑界面)①二维台阶式长大;②螺旋长大;③孪晶生长机制;固态相变长大机制?跃迁于新相上原子的有两种情况:A:新相和母相有相同的化学组成,那么控制生长速率的过程将是原子由母相穿过界面跃迁于新相上的短扩散过程。
属于界面控制长大机制。
B:新相和母相具有不同的化学组成,则新相生长不仅需要原子穿越相界面这一环节,同时还涉及有关组分在母相中的长程扩散。
此时新相的生长速度将取决于两者中较慢的环节,而多数情况为受控于长程扩散。
属于扩散控制机制。
试述扩散的台阶机制?在固态相变中,新相母相两相结构不同,但存在某些匹配良好的晶面,那么这些共格界面的生长就会出现类似光滑界面生长的情况,需要借助于台阶的机制。
图台阶生长机制如上图,AB、CD和EF是不易迁移的共格界面,BC、DE面是非共格的长大台阶,台阶面上接纳原子比共格宽面上容易。
原子加入台阶使台阶侧向移动。
界面覆盖后,沿法线方向推移了1个台阶厚度。
继续长大需要出现新的台阶。
新台阶靠在宽面上以非均匀形核方式形成。
台阶机制长大由共格宽面上形核产生新台阶的过程所控制,这就是台阶生长机制,当然这种生长方式要慢得多。
固态相变速率与哪些因素有关?固态相变速率取决于新相的形核率和长大速率。
如何建立TTT曲线?将不同温度下的等温转变开始时间和终了时间以及某些特定的转变量所对应的时间绘制在温度—时间半对数坐标系中,并将不同温度下的转变开始点和转变终了点以及转变50%点分别连接成曲线,则可得到过冷奥氏体等温转变图,即TTT 曲线。
TTT 图的有何作用?TTT 图反映了在临界点以下温度等温或以一定冷却速度冷却时过冷奥氏体的转变规律,综合显示了合金元素等对转变动力学的影响以及等温温度或冷却速度对转变产物和性能的影响。
可清楚的看出:①某相过冷到临界点以下某一温度保温时,相变何时开始,何时转变能量达50%,何时转变终止 ②相变速率最初是随温度下降而逐渐增大,达到一最大值后又逐渐减小。
TTT 图可以为正确选择钢的热处理工艺、分析热处理后的组织和性能以及合理选用钢材等提供依据。
TTT 图与平衡相图的区别?平衡相图是热力学相图,反映的是物质的相态随T 、p 及浓度变化而变化的信息。
TTT 图是描述某种材料在不同T 、不同t 相变产物结构及其数量的图,是一种动力学相图。
什么是Gibbs-Thomson 效应?写出其表达式。
在第二相析出量基本达到平衡态后,将发生第二相的长大粗化和释放过剩界面能的物理过程,该过程是由于小质点具有较高溶解度引起的。
小质点的表面积与体积之比较大,相对来说是不稳定的,有溶解的趋势,而系统中的大质点则会长大。