大学物理教程复习

合集下载

大学物理学(上)复习提纲

大学物理学(上)复习提纲

dp F dt
惯性和力的概念,惯性系的定义 .
p mv
力学基本单位 m、 kg、 s 量纲:表示导出量是如何由基本量组成的关系式 .
牛 顿 第 二 定 律 的 数 学 表 达 式
一般的表达形式
dp F ma d t F Fxi Fy j Ft et Fn en
三、洛伦兹坐标变换式
x' ( x vt )
正 变 换
z' z v t ' (t 2 x)
c
y' y
逆 变 换
y y'
x ( x' vt ' )
z z' v t (t ' 2 x' )
c
v c
1 1 2
伽利略变换
v c 时,洛伦兹变换
(1) 求刚体转动某瞬间的角加速度,一般应用转动 定律求解. 如质点和刚体组成的系统,对质点列牛顿 运动方程,对刚体列转动定律方程,再列角量和线量 的关联方程,联立求解. (2) 刚体与质点的碰撞、打击问题,在有心力场作 用下绕力心转动的质点问题,考虑用角动量守恒定律.
(3) 在刚体所受的合外力矩不等于零时,比如木杆 摆动,受重力矩作用,一般应用刚体的转动动能定理 或机械能守恒定律求解. 另外,实际问题中常常有多个复杂过程,要分成几 个阶段进行分析,分别列出方程,进行求解.
W保 (Ep Ep0 ) Ep

力学中常见的势能
重力势能
1 2 弹性势能 E p kx 2
Ep mgz
六、功能原理、机械能守恒定律
m' m 引力势能 Ep G r

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。

3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。

归纳大学物理复习.ppt

归纳大学物理复习.ppt

U
P
0
E
dl
电势能
P
U P
0
q0
E
dl
q
点电荷电场的电势 U P 40r
电势的叠加原理
UP
优选文档
i
qi
4 0 ri
11
6-17 如图所示,A点有电荷+q,B 点有电荷-q,AB=2l,OCD是以B为 中心、l为半径的半圆。(1)将单位正 电荷从O点沿OCD移到D点,电场力 做功多少?(2)将单位负电荷从D 点沿AB延长线移到无穷远处,电场 力做功多少?
能量增加的 原因是因为人拉优开选文极档板做功,转化为电场能。 18
6-31 在介电常数为ε的无限大均匀电介质中,有一半径为 R的导体球带电荷Q。求电场的能量。
解:
.
优选文档
19
Chapter 7 稳恒磁场
优选文档
20
一.磁感应强度
毕奥-萨伐尔定律
dB
0
4
Idl r
r3
叠加原理
B
Ld
B
B总 Bi
优选文档
15
6-24 在一半径为a的长直导线的外面,套有内半径为b 的同轴导体薄圆筒,它们之间充以相对介电常数为εr 的均匀电介质,设导线和圆筒都均匀带电,且沿轴线单 位长度所带电荷分别为λ和- λ.(1)求空间中各点的场 强大小;(2)求导线和圆筒间的电势差.
解:(1) r a : E 0 ; r b : E 0 ;
6-5 一根玻璃棒被弯成半径为R的半圆形,其上电 荷均匀分布,总电荷量为q.求半圆中心O的场强。
解:在圆环上任取电荷元dq
y
dE
dq
4 0 R2

《大学物理教程》郭振平主编第十一章流体运动基础知识点及答案

《大学物理教程》郭振平主编第十一章流体运动基础知识点及答案

第十一章 流体运动基础一、基本知识点流体的可压缩性:流体的体积会随着压强的不同而改变的性质。

流体的黏性:内摩擦力作用导致相邻流体层速度不同的性质。

理想流体:绝对不可压缩且完全没有黏性的流体。

稳定流动:空间各点的流速不随时间变化的流体流动。

流线:在流体空间设想的一系列曲线,其上任意一点的切线方向都与流体通过该点时速度方向一致。

任何两条流线不能相交。

流管:在稳定流动的流体中的一个由流线围成的管状微元。

稳定流动的连续性方程:单位时间内通过任一截面的流体质量都相等,即S ρυ=恒量也称为质量流量守恒定律。

理想流体稳定流动的连续性方程:单位时间内通过任一截面的流体体积都相等,即S υ=恒量也称为体积流量守恒定律。

理想流体的伯努利方程:理想流体作稳定流动时,单位体积的势能、动能及该点压强之和是一恒量,即212P gh ρρυ++=恒量牛顿黏滞定律:黏性力f 的大小与两速度不同的流体层的接触面积S 及接触处的速度梯度d dxυ成正比,即 d f Sdxυη= 式中比例系数η称为流体的黏滞系数或黏度。

η值的大小取决于流体本身的性质,并和温度有关,单位是2N s m -⋅⋅或Pa s ⋅。

表11-1 几种流体的黏度流体 温度()C ︒η()Pa s ⋅流体 温度()C ︒η()Pa s ⋅水0 20 37 100 31.7910-⨯ 31.00510-⨯ 30.69110-⨯ 30.28410-⨯ 空气0 20 100617.110-⨯ 618.110-⨯ 621.810-⨯蓖麻油7.5 2050 60112.2510-⨯ 19.8610-⨯ 11.2210-⨯ 10.8010-⨯ 氢气-125168.310-⨯ 61310-⨯血液 373(2.5~3.5)10-⨯二氧 化碳0 30061410-⨯ 62710-⨯雷诺数: 判断黏性流体的流动状态的一个无量纲的数e rR ρυη=式中,υ为流速,ρ为流体密度,η为黏度,r 为流管半径。

大学物理教程 复习题

大学物理教程 复习题

质点运动学例1.已知运动方程(r,ω为常量)求:1);2)轨迹方程。

例2.练习3.在x轴上作变加速直线运动的质点,已知其初速度为,初始位置为,加速度(其中c为常量),求其速度与时间的关系?运动学方程?例3:一人用绳拉一高台上的小车在地面上跑。

设人跑动的速度不变,绳端与小车的高度差为h,求小车的速度及加速度。

例1.练14.质点M在水平面内的运动轨迹如图,OA段为直线,AB、BC 段分别为不同半径的两个1/4圆周.设t =0时,M在O点,已知运动学方程为求t=2s时刻,质点M 的切向加速度和法向加速度.例2.练习7.在半径为R的圆周上运动的质点,其速率与时间关系为(式中c为常量),则(1)从t = 0到t时刻质点走过的路程s(t)为多少?(2)t时刻质点的切向加速度为多少?(3)t时刻质点的法向加速度为多少?例3.练习15.一质点沿x轴运动,其加速度a与位置坐标x的关系为(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x处的速度为v因x也是t的函数(还有v)。

应该做变换:例4.练习16.一物体悬挂在弹簧上作竖直振动,其加速度为a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标.假定振动的物体在坐标处的速度为,试求速度v与坐标y的函数关系式.例6.一质点作抛体运动(忽略空气阻力),如下图所示。

讨论下列问解:1)为切向加速度的大小,质点作自由抛体运动时加速度为常矢量,不变化。

3)法向加速度描述质点速度方向的改变牛顿运动定律及动量守恒定律例1.练习9.已知一质量为m的质点在x轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x的平方成反比,即,k是比例常数.设质点在x=A时的速度为零,求质点在x=A/4处的速度的大小.例2.如图所示,有一条长为l ,质量为m 的均匀分布的链条成直线状放在摩擦系数为u 的水平桌面上。

链子的一端有一段被推出桌子边缘,在重力作用下从静止开始下落,试求:链条刚离开桌面时的速度。

大学物理总复习PPT课件

大学物理总复习PPT课件


C
P 、 -P、 0
Pn P nˆ
A P nˆ P

B

A
Pp
P
B P nˆ P
C P nˆ 0
20
第20页/共45页
3. 一个电流元位于直角坐标系原点,电流沿z轴方向,点
P (x,y,z)的磁感强度沿x轴的分量是:

(0 / 4)Iy d l /(x 2 y 2 z 2 )3/ 2
(A) 4倍和 1 / 8 ,
(B) 4倍和 1 / 2 , (C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
B 0I
2R
Pm IS
B1
0I
2R
, B2
2
0I
2r
.
R 2r
B2 2 R 4 B1 r
Pm R2I, Pm 2r2I.
Pm Pm
2
r2 R2
1 2
[B ]
6
(A) 25 cm. (B) 50 cm. (C) 250 cm. (D) 500 cm.
p h
p
h
2
p
h
2
6.63 1034 (5 103 1010)2
103
1010
0.2652
1033(kg ms1)
px h
x
h p
6.63 1034 0.2652 1033
2.5(m)
16
第16页/共45页
i(t) 答案:( B )
S D d S q
在任何电场中,通过任意闭合曲面的电位移通量等 于闭合面内自由电荷的代数和。
S B d S 0
在任何磁场中,通过任意闭合曲面的磁通量均等 于零。

大学物理学复习资料

大学物理学复习资料

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

大学物理学复习ppt

大学物理学复习ppt
(1)g 竖直向下; (2)0; (3)g 竖直向下; (4)(v0cosθ)2/g
静止于坐标原点、质量为4kg的物体在合外力F=3x2(N)作用下向x 轴正向运动,物体运动2m的过程中,求(1)合外力做的功;(2) 物体的末动能;(3)物体的末速度。
解:(1) A F dr Fdx 2 3x2dx x3 2 8(J)
U P E dl
• 点电荷 • (5)电势差
U q
4 0 r
b
Uab
E dl
a
• 2.基本规律 • (1)电荷守恒定律
• (2)库仑定律 • (3)高斯定理 • (4)环路定理
F 1 q1q2
40 r2
E dS q
S
0
LE dl 0
均匀带电圆环半径为R,带电量为q,求:圆环轴线上一点的场
I r2dm 质量连续分布的物体
I 1 ml 2 均质细棒对端点垂直轴 3
I 1 mR2 均质圆盘对中心垂直轴 2
2.基本规律
(1)转动定律
M I
(2)转动动能定理
A
1 2
I22
1 2
I12
(3)角动量定理(动量矩定理)
t2
t1
Mdt
L2
L1
(4)角动量守恒定律(动量矩守恒定律)
合外力矩为零时,角动量保持不变。
①× ②× ③× ④× ⑤×
细棒可绕其一端在竖直平面内自由转动,若把 棒拉至水平位置后任其自由摆动,则在向下运动过 程中,它的角速度、角加速度、转动惯量、角动量、 转动动能、动量变不变?
答案:
角速度变
角加速度变
转动惯量不变
mg
角动量变
转动动能变 动量变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档