低硬度高撕裂强度的乙丙橡胶制备研究

合集下载

乙丙橡胶配方设计及其性能研究

乙丙橡胶配方设计及其性能研究

第一章综述1.1概述三元乙丙橡胶(EPDM)是以乙烯和丙烯为主要原料,并用少量的非共轭二烯烃在Zeigler-Netta催化剂作用下聚合而成的一种通用合成橡胶。

目前世界上约有20多个公司生产,共有100多个牌号[1]。

EPDM具有优异的耐热、耐臭氧、耐老化和电绝缘性,且易与聚烯烃塑料共混,已广泛用于汽车配件、防水卷材、电线电缆及塑料改性等众多领域。

EPDM与丁基橡胶并用制造汽车内胎,可延长内胎使用寿命。

由于用途广泛,在世界合成橡胶消费总量中,EPDM约占7%,其产耗量在合成橡胶中位居第三[2]。

在汽车用橡胶中,EPDM是耗用量最大的胶种,主要是制造门窗密封胶条、散热器胶管及其他零件。

1.1.1 EPDM的结构EPDM也称为饱和橡胶,与不饱和橡胶如NR(天然橡胶)、NBR(丁睛橡胶) 等相比,其主链完全饱和,不饱和的第三单体为侧挂基团作为其硫化的活性点而存在;故其化学稳定性和热稳定性较高。

EPDM分子主链和侧基上均无极性基团存在,因此,它也是非极性橡胶。

乙烯和丙烯的组成比例对EPDM的性能有着决定性的影响。

一般丙烯用量在30%-40 % (mol)之间,丙烯用量增加,EPDM的玻璃化温度(Tg)升高。

丙烯用量低于27%时,其硫化胶及生胶强度均增加,但永久变形会增大,弹性会下降[1]。

根据第三单体加入的种类不同,EPDM分为E, D和H型,即加入的第三单体分别为亚乙基降冰片烯(ENB)、双环戊二烯( DCPD)和1- 4己二烯(HD),第三单体用量高,EPDM不饱和度高,硫化速度快,但其耐热性能变差。

第三单体种类对EPDM性能影响见表1-1。

表1-1 第三单体品种对EPDM性能的影响续表 1-11.1.2 EPDM的性能总的来说,EPDM具有高度的化学稳定性、卓越的耐天候性,其耐臭氧、耐热性能及耐水蒸气性能优异,同时也具有良好的电绝缘及耐磨性能,与硅橡胶、氟橡胶相比,其物理机械性能和综合性能比较均衡。

不同硬度三元乙丙橡胶配方

不同硬度三元乙丙橡胶配方

不同硬度三元乙丙橡胶配方硬度57三元乙丙橡胶配方原材料名称基本配置物理机械性能标准实测三元乙丙胶 100拉伸强度(Mpa) 13硫磺 0.5扯断伸长率(%) 520过氧化二异丙苯(DCP) 6.5永久变形(%) 7硬脂酸 1.5硬度(邵氏) 57高耐磨碳黑 20撕裂强度(KN/m)半补强碳黑 20脆性温度凡士林/防老剂D 5/1.5合计 155硫化条件:158℃×40′混炼工艺:生胶→碳黑→软化剂→硫磺→防老剂。

用途和性能:该胶料制成胶管、密封件、垫片。

耐中等浓酸、有机酸、无机酸、80%H2SO4.硬度65三元乙丙橡胶配方原材料名称基本配置物理机械性能标准实测三元乙丙胶 100拉伸强度(Mpa) 8.8促进剂M 0.5扯断伸长率(%) 478促进剂TMTM 1.5永久变形(%) 22硫磺 1.5硬度(邵氏) 65氧化锌 5撕裂强度(KN/m) 28硬脂酸 1脆性温度℃ -70高耐磨碳黑 8050#机油 50合计 239.5硫化条件:160℃×60′混炼工艺:生胶→填料、软化剂→ZnO→促进剂→S→硬脂酸,混匀后要经十次薄通。

用途和性能:该胶料具有耐天候、耐臭氧、耐酸性能、耐磨、耐高低温、电绝缘和弹性等。

介质:耐过热水、耐臭氧、耐辐射。

温度:-40℃~160℃硬度70三元乙丙橡胶配方原材料名称基本配置物理机械性能标准实测三元乙丙胶 100拉伸强度(Mpa) 13.5氧化锌 5 扯断伸长率(%) 350硬脂酸 1永久变形(%) 8高耐磨碳黑 50硬度(邵氏) 70聚苯硫醚 10撕裂强度(KN/m) 28硫磺 0.3脆性温度 -65DCP 3.5合计 169.8硫化条件:160℃×30′混炼工艺:生胶→碳黑→聚苯硫醚→氧化锌→DCP→硬脂酸,薄通十次下片。

用途和性能:耐辐射剂量为1×107耐热、耐各种介质:耐乙酸。

工作温度:-55~150℃,生产各种密封件、垫片。

乙丙橡胶生产工艺及技术经济分析

乙丙橡胶生产工艺及技术经济分析

乙丙橡胶生产工艺及技术经济分析乙丙橡胶(EPDM)是一种聚合物材料,具有优异的化学性质和物理性能,可用于制造橡胶制品、密封材料等。

乙丙橡胶的生产工艺主要包括原料准备、聚合反应、分离、精炼和成品制备等步骤。

首先,原料准备是乙丙橡胶生产的第一步。

乙丙橡胶的主要原料是丙烯和乙烯,可以通过石油炼制、裂解等工艺获得。

在生产中,这两种原料需要进行质量控制和配比调节,以确保最终产品的性能。

接下来是聚合反应阶段。

乙丙橡胶的聚合反应主要通过高压过氧化钙催化剂进行。

在反应过程中,需要控制反应温度、气压和反应时间,以获得所需的产品性能。

这个过程中的催化剂、温度、压力等参数的控制,对产品质量有着重要的影响。

然后是分离和精炼阶段。

聚合反应后的乙丙橡胶需要经过分离和精炼,以去除催化剂残留和其他杂质。

这一步骤通常使用溶剂抽提、蒸馏、过滤等工艺进行。

分离和精炼能够提高乙丙橡胶的纯度和可靠性,从而提高产品的性能和可靠性。

最后是成品制备阶段。

乙丙橡胶经过前面的工艺后,还需要将其加工成成品,如橡胶制品、密封材料等。

这一步骤通常包括热压、挤出、注塑等工艺,以满足不同产品的要求。

乙丙橡胶生产工艺的技术经济分析主要包括原材料成本、设备投资和能耗成本等方面。

原材料成本是整个生产过程中的主要成本,直接影响着产品的经济性。

设备投资是乙丙橡胶生产线的重要组成部分,投资额与生产能力、工艺流程等有关。

能耗成本是乙丙橡胶生产过程中的重要组成部分,需要对能源消耗进行合理控制,以降低生产成本。

此外,乙丙橡胶的技术经济还受市场需求、销售价格和市场竞争等因素的影响。

产品的市场需求情况决定着生产规模和销售量。

销售价格的高低直接影响着企业的利润水平。

市场竞争激烈程度对企业的盈利能力和生产效益有着重要的影响。

综上所述,乙丙橡胶生产工艺及技术经济分析涉及多个方面,需要综合考虑原料成本、设备投资、能耗成本、市场需求、销售价格和市场竞争等因素。

通过科学的管理和技术创新,可以提高乙丙橡胶的生产效益和经济性,为企业发展提供支持。

乙丙橡胶撕裂强度

乙丙橡胶撕裂强度

乙丙橡胶撕裂强度
乙丙橡胶的撕裂强度是其重要的物理性能指标之一,它反映了材料抵抗撕裂的能力。

在生产、使用和研发过程中,了解乙丙橡胶的撕裂强度非常重要。

撕裂强度是指材料在受到撕裂力作用时所能承受的最大负荷,它与材料的韧性、强度和耐久性等性能密切相关。

对于乙丙橡胶而言,撕裂强度的高低直接影响到其在实际应用中的性能表现。

影响乙丙橡胶撕裂强度的因素主要有以下几点:
1.分子量及其分布:分子量越大,链段越长,橡胶的撕裂强度越高。

同时,分子量
分布的宽窄也会影响撕裂强度,较窄的分布可以使橡胶具有较高的撕裂强度。

2.硫化体系:硫化是乙丙橡胶加工的重要环节,合适的硫化体系可以改善橡胶的撕
裂强度。

选择合适的硫化剂、促进剂和硫化温度等参数,可以提高乙丙橡胶的交
联密度,从而提高撕裂强度。

3.温度和老化:高温会加速乙丙橡胶的老化,降低其撕裂强度。

因此,在高温环境
下使用乙丙橡胶时需要注意其耐热性能。

此外,长时间的老化也会导致乙丙橡胶
撕裂强度的下降。

乙丙橡胶配方技术

乙丙橡胶配方技术

(3) 碘值高的 EPDM 用过氧化物交联
效率高。
J SR EP 33 的聚合物结构特性如下:
门尼度M L 1+ 4 (100°C ) 45
丙烯含量, w t%
43
碘 值 (ENB )
26
2. 1. 2 防老剂
选择防老剂 TM DQ (2, 2, 42三甲基21, 22
二氢化喹啉聚合物) 与防老剂M B (22硫醇基
苯并咪唑啉) 并用, 既可提高硫化胶的耐热
性, 又不妨碍过氧化物交联。
2. 1. 3 软化剂
选择 分 子 量 为 780 的 聚 丁 烯 ( Po lyvis
5SH ) 作为软化剂, 不妨碍过氧化物交联。
2. 2 汽车用水管 (硬度 70)
该制品的配方及性能如表 5 所示。
2. 2. 1 聚合物
高分子量、高乙烯含量 EPDM 有利于高
D DCPD 10. 0 1. 60
6. 1
图 6 第三单体对 EPDM 硫化速度的影响响 注: 1kgf·cm = 9. 80665N ·m ; M NB - 甲又降冰片烯
配方 (1) 硫黄硫化体系
配方 (2) 过氧化物交联体系
EPDM
100 EPDM
100
HA F
50 氧化锌
50
氧化锌
5 HA F
试样编号
1
2
3
4
46 46 45 44
46 44 45 45
23 26 17 15
3. 5 1. 8 3. 7 2. 9 无※ 无※ 有※※ 有※※ 良可优优
※ 无组成分布乙丙橡胶 ※※有组成分布乙丙橡胶, 在高分子量一侧丙烯含量 降低 注: 一般碘值小包辊性差, 但此处相反, 明显表现组成 分布的效果

211060756_三元乙丙橡胶J-4090和6950C的结构与性能研究

211060756_三元乙丙橡胶J-4090和6950C的结构与性能研究

橡 胶 工 业CHINA RUBBER INDUSTRY272第70卷第4期Vol.70 No.42023年4月A p r.2023三元乙丙橡胶J -4090和6950C 的结构与性能研究靳紫昊,邹 华*(北京化工大学 北京市新型高分子材料制备与加工重点实验室,北京 100029)摘要:研究2种应用于汽车海绵密封条的牌号为J -4090和6950C 的三元乙丙橡胶(EPDM )的微观结构及其复合材料(包括密实胶和发泡胶)的性能。

结果表明:与EPDM 6950C 相比,EPDM J -4090的乙烯基质量分数较大,第三单体(亚乙基降冰片烯)质量分数较小,相对分子质量分布较宽;与EPDM 6950C 密实胶相比,EPDM J -4090密实胶的硫化速率和交联密度较小,抵抗变形的能力较差,硫化体系用量增大20%的EPDM J -4090密实胶的物理性能达到EPDM 6950C 密实胶一致的水平。

与EPDM 6950C 发泡胶相比,硫化体系用量增大20%的EPDM J -4090发泡胶的挤出胀大比略大,发泡特性和物理性能相近。

关键词:三元乙丙橡胶;海绵密封条;密实胶;发泡胶;微观结构;物理性能;发泡特性;挤出胀大比中图分类号:TQ333.4;TQ336.4+2 文章编号:1000-890X (2023)04-0272-06文献标志码:A DOI :10.12136/j.issn.1000-890X.2023.04.0272三元乙丙橡胶(EPDM )是乙烯和丙烯的共聚物中引入少量非共轭二烯烃作为交联点的通用橡胶。

由于其密度低、可大量填充填料和增塑剂以降低成本,且具有优异的电绝缘、耐臭氧和耐热空气老化等性能,因此EPDM 是发展很快的合成橡胶,可广泛应用于汽车、电力和建筑等行业[1-3]。

在EPDM 产品中,牌号为J -4090的国产和牌号为6950C 的进口EPDM 均为中等乙烯基含量、高第三单体含量的产品,主要应用于汽车门窗海绵密封条的制造。

三元乙丙和硅胶抗撕裂强度

三元乙丙和硅胶抗撕裂强度

三元乙丙和硅胶抗撕裂强度三元乙丙和硅胶都是广泛应用于工业和日常生活中的材料。

它们在许多方面都有优异的性能,其中包括抗撕裂强度。

本文将详细介绍三元乙丙和硅胶的抗撕裂强度,包括其定义、测试方法、影响因素以及在不同领域的应用。

一、抗撕裂强度的定义和测试方法抗撕裂强度指材料在受到力的作用下抵抗撕裂的能力。

通常用撕裂强度来表示材料的抵抗撕裂的能力大小。

撕裂强度的测试一般采用拉伸试验或撕裂试验。

拉伸试验是将材料在一定速度下拉伸直到断裂,通过测量应力-应变关系曲线来计算抗拉强度和屈服强度。

撕裂试验则是在材料上施加一定的撕裂力,通过测量撕裂断口的长度来计算撕裂强度。

二、三元乙丙的抗撕裂强度三元乙丙(也称为EPDM)是一种合成橡胶,具有良好的耐热、耐老化和耐臭氧性能。

它的抗撕裂强度较高,使得它在许多领域都有广泛的应用。

1.影响三元乙丙抗撕裂强度的因素三元乙丙的抗撕裂强度受到多种因素的影响,包括材料的配方、交联程度、填料的添加以及硬度等。

-配方:三元乙丙的配方中通常包含橡胶基体、增强剂、填料、增效剂等,这些组分的选择和配比会对抗撕裂强度产生影响。

-交联程度:三元乙丙由于采用了硫化剂进行交联,交联程度的高低会直接影响抗撕裂强度。

-填料的添加:根据需要,三元乙丙中可以添加填料(如碳黑、硅石等),填料的添加可以增加材料的刚性和硬度,从而提高抗撕裂强度。

-硬度:三元乙丙的硬度会对抗撕裂强度产生影响,通常来说,硬度较高的三元乙丙具有更高的抗撕裂强度。

2.三元乙丙的应用领域由于其良好的抗撕裂强度和其他优异性能,三元乙丙被广泛应用于汽车制造、建筑工程、电气设备、管道系统等领域。

-汽车制造:三元乙丙被用作汽车密封件、橡胶管件等,因为它具有优异的耐油、耐热性能和抗撕裂强度,可以在各种恶劣环境下使用。

-建筑工程:三元乙丙被用作防水卷材、屋顶防水薄膜等,它的抗撕裂强度可以确保建筑材料的稳定性和耐久性。

-电气设备:三元乙丙被用于制作电线绝缘层、电缆护套等,因为它的抗撕裂强度可以保护电线电缆免受外部冲击和挤压。

乙丙橡胶的生产工艺现状分析

乙丙橡胶的生产工艺现状分析

乙丙橡胶的生产工艺现状分析乙丙橡胶(EPDM)是一种合成橡胶,具有优异的耐老化、耐候性、耐腐蚀性和电气绝缘性能,广泛应用于汽车、建筑材料、电线电缆等领域。

乙丙橡胶的生产工艺主要包括原料制备、聚合反应、后处理和成型等几个步骤。

乙丙橡胶的原料主要是乙烯、丙烯和非共聚单体,如烯烃醇、烯烃酮和烯烃酸等。

原料制备过程中需要对原料进行精细筛选和提纯,以确保产品的质量和性能。

乙丙橡胶的聚合反应主要通过引入聚合催化剂和控制反应温度和时间等条件来实现。

后处理步骤主要包括溶剂抽提、干燥和筛选等,以去除残留的催化剂和非共聚单体,提高产品的纯度和适用性。

乙丙橡胶的成型工艺有很多种,主要包括挤出、压延、注塑、发泡和硫化等。

挤出是最常用的成型工艺,可以生产出各种规格的橡胶条、板和管等产品。

压延适用于生产大尺寸和复杂形状的产品,如橡胶板材和密封条等。

注塑工艺适用于生产小尺寸和精密度较高的产品,如密封件和连接件等。

发泡工艺可以生产出轻质、柔软和隔热性能良好的橡胶制品,如橡胶密封条和防震垫等。

硫化是乙丙橡胶产品的必要工艺,可以提高橡胶的强度、耐磨性和耐老化性能。

当前,乙丙橡胶的生产工艺在原料制备、聚合反应和成型等方面都取得了较大的进展。

在原料制备方面,新型的催化剂和溶剂已经得到应用,能够提高产品的纯度和收率。

在聚合反应方面,新型的反应器和控制系统已经得到应用,能够提高反应的效率和稳定性。

在成型方面,新型的模具和设备已经得到应用,能够生产出更高精度和更复杂的乙丙橡胶制品。

乙丙橡胶的生产工艺还存在一些问题。

原料的供应和成本仍然是一个挑战,需要进一步寻找替代原料和提高利用率。

在聚合反应过程中,催化剂的选择和反应条件的控制仍然需要改进,以提高产品的质量和产率。

在成型过程中,模具的设计和加工技术需要进一步改进,以满足不同产品的需求。

乙丙橡胶的生产工艺在原料制备、聚合反应和成型等方面都取得了一定的进展,但仍然存在一些问题需要解决。

随着科学技术的进步和工艺的不断创新,相信乙丙橡胶的生产工艺将进一步得到改进和完善,为乙丙橡胶的应用提供更好的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档