高中数学必修5导学案 第二章 数列

合集下载

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。

人教课标版(B版)高中数学必修5导学案2-数列

人教课标版(B版)高中数学必修5导学案2-数列

2.1数列学习目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。

过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

学习重点数列及其有关概念,通项公式及其应用 学习难点根据一些数列的前几项抽象、归纳数列的通项公式 基本知识1. 叫做数列, 叫做这个数列的项.2. 就叫做这个数列的通项公式.3.数列可用图象来表示,在直角坐标系中,以 来表示一个数列,图象是一些 ,它们位于 .4.根椐数列的项数可以把数列分为 和 .根据数列中项与项的大小关系可以把数列分为 、 、 和 . 5. 那么这个公式就叫做这个数列的递推公式.6.若数列{}n a 的前n 项和记为n S ,即,321n n a a a a S ++++= 则⎪⎩⎪⎨⎧≥==).2(),1(n n a n1.数列的通项公式实际上是一个以正整数集+N 或它的有限子集{}n ,,2,1 为定义域的函数的表达式;2.如果知道了数列的通项公式,那么依次用 ,3,2,1去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可以判断某数是否是某数列中的一项,如果是的话,是第几项;3.像所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到 ,0001.0,001.0,01.0,1.0,1所构成的数列,4142.1,414.1,41.1,4.1,1就没有通项公式.4.有的数列的通项公式,在形式上不一定是唯一的,例如数列:,1,1,1,1,1,1---它可以写成,)1(n n a -=也可以写成⎩⎨⎧-=.,1,,1为偶数为奇数n n a n 还可以写成2)1(+-=n n a 等.这些通项公式,形式上虽然不同,但都表示同一个数列. 5.有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一. 典例精析题型一 根据数列{}n a 的前几项,写出数列的通项公式. 例1 写出下列数列的一个通项公式: (1) ,33,17,9,5,3;(2) ,544,433,322,211; (3) ,777,,7777,777,77,7;(4).,1337,1126,917,710,1,32 --- 命题意图:寻求规律,写出通项公式.用观察归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律,观察、分析问题的特点是最重要的,观察要有目的,要能观察出特点,观察出项与项之间的关系、规律.这类问题就是要观察各项与对应的项数之间的联系,利用我们熟知的一些基本数列(如自然数数列、奇偶数列、自然数列的前n 项和数列、自然数的平方数列、简单的指数数列……),建立合理的联想,转换而达到问题的解决.一题一练 分别写出下列数列的一个通项公式,数列的前4项已给出.(1);,515,414,313,2122222 ----(2);,201,121,61,21 -- (3);9999.0,999.0,99.0,9.0 (4).,4,5,4,5 题型二 数列通项公式的简单应用 例2 已知有穷数列 ,2625,1716,109,54 (1)指出这个数列的一个通项公式;(2)判定0.98是不是这个数列中的项?若是,是第几项? 命题意图:考察对通项公式的理解及应用方法提升(1)本题中极容易错误地认为122+n n 是数列的通项公式,为避免这样的错误,可验证你所写通项公式是否适合数列的前几项.(2)要判断一个数是否为该数列中的项,可由通项等于这数解出n ,根据n 是否为正整数便可确写这个数是否为数列中的项,也就是说,判定某一数是否是数列中的某一项,其实质就是看方程是否有正整数解.一题一练 已知数列{}n a 的通项公式n n q a =,且.7224=-a a(1)求实数q 的值;(2)判断81-是否为此数列的某一项.题型三 已知n S 求n a例3 已知数列{}n a 的前n 项和n S ,求数列{}n a 的通项公式. (1);12-=n n S (2).322++=n n S n命题意图 本题为通过n S 求n a ,因为n n a a a S +++= 21,所以n S 与n a 有关系⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 可求得.n a解 (1)由,12-=n n S 当1=n 时,;112111=-==S a 当2≥n 时, )12(1211---=-=--n n n n n S S a.22211--=-=n n n当1=n 时也适合,12111==-a 所以.21-=n n a(2)由,322++=n n S n 当1=n 时,.611==S a当2≥n 时,[].143)1()1(2)32(221-=+-+--++=-=-n n n n n S S a n n n.)2(14)1(6⎩⎨⎧≥-==∴n n n a n由n S 求n a 时,当1a 不符合1--=n n n S S a 表达式时,通项公式要分段表示. 即⎩⎨⎧≥==2)(11n n f n a a n 的形式.一题一练(1)已知数列{}n a 的前n 项和n n S n 322-=,求数列通项公式; (2)已知数列⎣⎦n a 的前n 项和35-=n n S ,求数列通项公式题型四 数列的递推公式例4 已知数列{}n a 分别满足下列条件,写出它的前五项,并归纳出各数列的一个通项公式.(1));12(,011-+==+n a a a n n (2).22,111+==+n nn a a a a 命题意图 此数列是用递推公式给出的,已知1a 就可递推出,,2 a 依此类推,可求出它的任一项.再根据前5项归纳猜想n a 的一个通项公式.由递推公式,求出数列前5项,再归纳出通项公式,猜想不一定正确,还需严格证明(今后学到),也可以直接求出. 巩固练习 一、选择题1.下列说法不正确的是( )A. 数列可以用图像来表示B. 数列的通项公式不唯一C. 数列的项不能相等D. 数列可以用一群狐立的点表示2.已知数列{}n a 的通项公式为n a n 225-=,下列各数中,不是{}n a 的项的是( )A. 1B. -1C. 2D. 33.设数列,,11,22,5,2 则52是这个数列的( )A. 第六项B. 第七项C. 第八项D. 第九项4.无穷数列 1,3,6,10,的通项公式为( )A. 12+-=n n a nB. 12-+=n n a nC. 22nn a n +=D. 22nn a n -=5.数列{}n a ,其中,,6,31221n n n a a a a a -===++,那么这个数列的第五项为( )A. 6B. -3C. -12D. -6二、填空题6.数列{}n a 中,)2(,211≥+==-n n a a a n n ,则=10a .7.在数列 ,55,34,,13,8,5,3,2,1,1x 中,x 的值 .8.已知数列{}n a 通项公式*)(1242N n n n a n ∈--=,则:(1)这个数列的第四项是 ;(2)65是这个数列的第 项; (3)这个数列从第 项起各项为正数. 三、解答题9.写出下列数列的一个通项公式 (1);,811,271,91,31,1 --(2);,0,3,0,3(3) ,1716,109,54,21-- (4);,7777.0,777.0,77.0,7.010.在数列{}n a 中,.66,2171==a a 通项公式n a 是项数n 的一次函数. (1)求数列{}n a 的通项公式; (2)88是否是数列{}n a 中的项.11.已知数列{}n a 的前n 项和)(242*∈+-=N n n n S n .(1)求{}n a 的通项公式; (2)当n 为何值时, n S 达到最大?最大值是多少?12.设数列{}n a 的通项公式为)(2+∈+=N n kn n a n ,若数列{}n a 是单调递增数列,求实数k 的取值范围.锁定高考(2007年广东)已知数列{}n a 的前几项和n n S n 92-=,则其通项=n a ;若它的第k 项满足85<<k a ,则k = .。

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案
环节
教学内容
教师行为
学生行为
设计意图
时间
1.
课前3分钟
1、展示《优化设计》第20页预习测评
2、目标解读
检查,评价总结。
1.展示答案
2.提出自主学习困惑.
明确本节课学习目标,准备学习。
3分钟
2.
承接结 果
1、求通项公式的方法和步骤;
2、通项公式含义的理解
1.巡视检查学生预习习题完成情况,进行及时评价。
1、巡视学生完成情况,让学生更准确的认识计算〔化简〕的方法。
2、抽查记忆情况。
1、独立完成练习册习题。
2、归纳出计算〔化简〕的方法。

通过具体例题,总结出计算〔化简〕的方法。
10分钟
思考1:数列通项公式的ຫໍສະໝຸດ 义和谁密不可分?思考2:研究数列的项,本质是在研究什么?
思考3:面对一个数列,最在意的应该是什么?
思考4:如何利用通项看其单调性?
1、巡视学生的完成情况。
2、对学生的展示和评价要给予及时的反馈。
3.要对学生不同的解题过程和答案给出准确的评价,总结。
1、学生先独立完成教辅习题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的答案。
3、其他组给予评价〔主要是找错,纠错〕
在具体问题中,探索、挖掘内在规律、发现数学的本质。
2分钟
7
板书设 计
数列
学习目标: 例题: 练习:
8
课 后反 思
本节课,重点在于对数列通项公式的理解与应用上,唯一干扰学生思绪的地方在于函数的概念和性质的应用上;所以只有充分的理解了函数,才能真正明确通项公式的意义。
1、小考卷上作答。
2、同桌互批。

高中数学 2.2等差数列的性质导学案 新人教A版必修5

高中数学 2.2等差数列的性质导学案 新人教A版必修5

2.2等差数列性质预习案【学习目标】1.准确理解等差数列的性质,掌握由等差数列的通项公式研究其图象的方法,提高运算求解能力.2.通过对等差数列通项公式的推导和等差数列性质的探究,进一步渗透数形结合思想、函数思想及方程思想.3.激情参与、惜时高效,激励学生自主探究,发现规律,感受等差数列的内在奥妙. 【重点】:等差数列的性质. 【难点】:等差数列的性质的应用. 【学法指导】1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法;2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识1. 等差数列的通项公式是什么?与一次函数有什么关系?2. 利用等差数列的通项公式可以解决那些问题?3. 若a 、A 、b 成等差数列,则A 叫做a 、b 的________,即A=_______________4. 判断一个数列是否为等差数列的方法有哪些? Ⅱ.教材助读1.依据等差数列的概念,你能写出等差数列的通项公式吗?公差对数列的增减性有何影响?2.已知等差数列的公差为d ,第m 项为m a ,第n 项为n a (n>m )则n a =m a +_________3.已知一个等差数列的首项是1a ,公差为d ,(1)将数列的前m 项去掉,其余各项组成的数列是等差数列吗?如果是,它的首项和公差各是什么?(2)取出数列的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(3)取出数列中所有项数是7的倍数的项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(4)数列,,,543432321a a a a a a a a a ++++++......是等差数列吗?如果是,它的首项和公差各是什么?【预习自测】1.在△ABC 中,A 、B 、C 成等差数列,则B 等于( ) A .30 B.60 C.90 D.不能确定2.若{a n }是等差数列,则,,,543432321a a a a a a a a a ++++++987a a a ++,……,n n n a a a 31323++--,……( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D .一定是递减数列 3.已知等差数列{a n }中,741a a a ++=39,33852=++a a a ,则963a a a ++等于( ) A .30 B.27 C.24D.21【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究 探究一:等差数列的性质问题1:如果数列{a n}是等差数列,首项为a1,公差为d,则通项公式a n=____________=___________.其中变化的量为n,a n,则点(n,a n)在直线____________上;点(n,a n)的横坐标每增加1,函数值增加_____.问题2:等差数列的性质:已知一个等差数列{a n},其中首项是a1,公差为d,(1)下标成等差数列且公差为m的项a k,a k+m,a k+2m,…(k,m∈N*)组成公差为_____的等差数列.(2)a1+a2,a3+a4,a5+a6,…组成公差为_____的等差数列. a1+a2+…+a m,a m+1+a m+2+…+a2m,a2m+1+a2m+2+…+a3m,…组成公差为_____的等差数列.(3)若{b n}是公差为d0的等差数列,则数列{pa n+qb n}(p,q为常数)是公差为________的等差数列.(4)若{a n}是有穷等差数列,则与首末两项等距离的两项之和都_______,且等于_______________.(5)若正整数m,n,p,q满足m+n=p+q,则a m+a n与a p+a q相等吗?说明理由.(6)若m+n=2p,则a m+a n_____2a p,a m+a n_____a2p(填“=”或“≠”).【归纳总结】等差数列的性质有哪些?数列{a n}为等差数列,首项是a1,公差为d.(1)d>0,{a n}是递增数列;d<0,{a n}是递减数列;d=0,{a n}是常数列.(2)a n=a m+(n-m)d(m,n∈N*).(3)a1+a2+…+a m,a m+1+a m+2+…+a2m,…组成公差为m2d的等差数列.(4)a m,a2m,a3m,…,a km,…组成公差为md的等差数列.(5)若数列{b n}是公差为b的等差数列,p,q为常数,则{pa n±qb n}是公差为pd±qb的等差数列.(6)若m,n,p,q∈N*,且满足m+n=p+q,则a m+a n=a p+a q.探究二:等差数列性质的应用(重难点)【例1】若{a n}是等差数列,a15=8,a60=20,求a75的值. 【规律方法总结】等差数列{an}的性质:(1)a1+a n=a2+a n-1=….(2)m,n,p,q∈N*,且m+n=p+q a m+a n=a p+a q.(3)若m,n,p∈N*,且m,n,p 成等差数列,则a m,a n,a p成等差数列.(4)a n=a m+(n-m)d.(5)若数列{a n}是等差数列,则a n=an+b(a,b为常数,n∈N*).(6)若{a n}与{b n}均为等差数列,则{a n±b n}也是等差数列.【拓展提升】已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.探究三:综合应用(重难点)【例2】数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8等于( )A.0B.3C.8D.11【规律方法总结】(1)求通项公式常用的方法:①不完全归纳法;②公式法;③叠加法;④累积法.(2)判断一个数列是等差数列常用的方法有:①定义法;②等差中项法;③函数法:若a n=an+b(a,b为常数),则数列{a n}是等差数列.(3)求数列的最大(小)项常用的方法:①不等式组法;②函数单调性判断法.Ⅱ.我的知识网络图训练案一、基础巩固------把简单的事做好就叫不简单!1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( )A.15 B.30 C.31 D.642.已知{a n}是等差数列,a3+a11=40,则a6-a7+a8等于( )A.20 B.48 C.60 D.723. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( ).A.a1+a101>0 B.a2+a100<0 Ca3+a100≤0 D.a51=04.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于( ) A.4 B.6 C.8 D.125. 在等差数列{a n}中,a18=95,a32=123,a n=199,则n=________.6. 已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=_________7. 设数列{a n},{b n}都是等差数列, 若711=+ba,2133=+ba, 则=+55ba___。

北师大版必修5高中数学1.3等比数列导学案(二)

北师大版必修5高中数学1.3等比数列导学案(二)

高中数学 1.3等比数列导学案北师大版必修5【学习目标】个性笔记1.在等差数列的基础上,通过类比的方法复述等比数列的定义;2.利用上述的定义、公式能判断一个数列是否为等比数列,并能确定其公比;3.记住等比数列的通项公式,能类比等差数列通项公式的推导方法推导等比数列的通项公式。

【学习重点】等比数列的定义和通项公式。

【学法指导】通过类比等差数列的知识研究等比数列的定义和通项公式。

【使用说明】......1.请同学们认真阅读课本21-----23页内容,规范完成导学案上的内容,用红笔做好疑难标记。

2.该学案分为AB三个层次,其中A,B每个同学都必须完成;C为拓展延伸,供学有余力的同学选作。

3.在课堂上联系课本知识和已学过的知识,小组合作、讨论完成导学案上的内容;组长负责,拿出讨论结果,准备展示、点评。

【学习过程】一、基础学习1. 自主阅读课本第21页至23页内容,思考:(1)等比数列的定义是什么?焦点词语有哪些?(用红笔画出来)(2)类比等差数列的定义,请你用数学符号表示出等比数列的定义。

(3)定义的作用是什么?2.自主阅读课本第22页至23页内容,思考:(1)等比数列的通项公式是?怎样推导?除了课本的方法,你还有没有其他的方法进行推导?(请类比等差数列推导方法,即等差数列用“累加法”,想一想,等比数列用什么方法?请你动手推导,将你所用到的方法写在下面的空白处。

)(2)它的作用是什么?(B)【探究二】(1)已知等比数列的第2项与第3项分别是10与20,求这个数列的第1项与第4项。

(2)已知{a n }为等比数列,且a 5=8,a 7=2,该数列的各项都为正数,求a n .. (思路点拨:结合知识点2完成)【探究三】(C)+11{}3a 2 4.(1){}12n n n n a a a a ==-已知数列满足,且求证:是等比数列。

(2)-13是否是这个数列中的项?如果是,是第几项?(请参照结合课本24也例3,写出详细规范的解答过程,相信你一定能做到。

苏教版高中数学必修5-2.1《数列(第2课时)》导学案

苏教版高中数学必修5-2.1《数列(第2课时)》导学案

数列(第2课时)【学习导航】知识网络学习要求1.进一步理解数列概念,了解数列的分类;2.理解数列和函数之间的关系,会用列表法和图象法表示数列;3.了解递推数列的概念。

【自学评价】1.数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项。

2.数列的分类:按n a 的增减分类:(i )递增数列:n N *∈任意,总有1n n a a +>;(ii )递减数列:n N *∈任意,总有1n n a a +<;(iii) 摆动数列:l N *∈任意k,,有1k k a a +>,也有1l l a a +<,例如1,2,4,6,8,---;(iv )常数列:n N *∈任意,1n n a a +=;(v )有界数列:存在正整数M 使||n a M ≤;(vi )无界数列:对任意正整数M 总存在n a 使||n a M >。

3.递推数列:如果已知数列{}n a 的前一项(或前几项),且任意一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,则这个数列叫递推数列,这个公式叫这个数列的递推公式。

递推公式是给出数列的一种重要方式。

【精典范例】【例1】写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)222221314151,,,2345----; (2)12341,2,3,42345; (3)9,99,999,9999。

【解】(1)这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,所以它的一个通项公式是:2(1)11n n a n +-=+; (2)这个数列的前4项每一项都可以分为整数部分n 与分数部分1n n +的和,所以它的一个通项公式是:1n n a n n =++; (3)这个数列的前4项每一项加1后变成10,100,1000,10000,所以它的一个通项公式是:101n n a =-。

高中数学必修5导学案_第二章_数列

高中数学必修5导学案_第二章_数列

§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备复习:函数,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学学习探究⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列,数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.典型例题写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴ 1,-12,13,-14; ⑵ 1, 0, 1, 0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.三、总结提升知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++。

人教版数学高二 数学A版必修五导学案第二章 数列(复习)

人教版数学高二 数学A版必修五导学案第二章 数列(复习)

第二章 数列(复习)1. 系统掌握数列的有关概念和公式;2. 了解数列的通项公式n a 与前n 项和公式n S 的关系;3. 能通过前n 项和公式n S 求出数列的通项公式n a .一、课前准备(复习教材P 28 ~P 69,找出疑惑之处)(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.(5)等差、等比数列的前n 项和公式及其推导方法.二、新课导学※ 学习探究1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.3. 求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.5. 数列求和主要:(1)逆序相加;(2)错位相消;(3)叠加、叠乘;(4)分组求和;(5)裂项相消,如111(1)1n n n n =-++.※ 典型例题例1在数列{}n a 中,1a =1,n ≥2时,n a 、n S 、n S -12成等比数列. (1)求234,,a a a ; (2)求数列{}n a 的通项公式.例2已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对任意正整数n ,均有3121123n n nc c c c a b b b b ++++⋯⋯+=, 求c 1+c 2+c 3+…+c 2004的值.※ 动手试试练 1. 等差数列{}n a 的首项为,a 公差为d ;等差数列{}n b 的首项为,b 公差为e . 如果(1)n n n c a b n =+≥,且124,8.c c == 求数列{}n c 的通项公式.练2. 如图,作边长为a 的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,求前n 个内切圆的面积和.练3. 一个蜂巢里有1只蜜蜂,第1天,它飞出去回了5个伙伴; 第2天, 6只蜜蜂飞出去,各自找回了5个伙伴,……,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.A. 55986B. 46656C. 216D. 36三、总结提升 ※ 学习小结1. 数列的有关概念和公式;2. 熟练掌握有关概念和公式并能灵活运用,培养解决实际问题的能力.※ 知识拓展数列前n 项和重要公式:2222(1)(21)1236n n n n +++++=; 3332112[(1)]2n n n ++=+ 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 集合{}*21,,60M m m n n N m ==-∈<的元素个数是( ). A. 59 B. 31 C. 30 D. 292. 若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是( ).A .648B .832C .1168D .19443. 设数列{}n a 是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1B. 2C. 4D. 84. 已知等差数列245,4,3, (77)的前n 项和为n S ,则使得n S 最大的序号n 的值为 . 5. 在小于100的正整数中,被5除余1的数的个数有 个;这些数的和是1. 观察下面的数阵, 容易看出, 第n 行最右边的数是2n , 那么第20行最左边的数是几?第20行所有数的和是多少?12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25… … … … … …2. 选菜问题:学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的,下星期一会有20% 改选B 种菜;而选B 种菜的,下星期一会有30% 改选A 种菜. 用,n n a b 分别表示在第n 个星期选A 的人数和选B 的人数,如果1300,a = 求10a .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,-12,13,-14;⑵1,0,1,0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.※动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,13,15,17;⑵1,2,3,2 .练2. 写出数列2{}n n-的第20项,第n+1项.三、总结提升※学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.※知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A. 数列中不能重复出现同一个数B. 1,2,3,4与4,3,2,1是同一数列C. 1,1,1,1…不是数列D. 两个数列的每一项相同,则数列相同2. 下列四个数中,哪个是数列{(1)}n n+中的一项().A. 380B. 392C. 321D. 2323. 在横线上填上适当的数:3,8,15,,35,48.4.数列(1)2{(1)}n n--的第4项是.5. 写出数列121-⨯,122⨯,123-⨯,124⨯的一个通项公式.课后作业1. 写出数列{2n}的前5项.2. (1)写出数列2212-,2313-,2414-,2515-的一个通项公式为.(2)已知数列3,7,11,15,19,…那么311是这个数列的第项.§2.1数列的概念与简单表示法(2)学习目标1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.学习过程一、课前准备(预习教材P 31 ~ P 34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式?复习2:数列如何分类?二、新课导学 ※ 学习探究探究任务:数列的表示方法问题:全体正偶数按从小到大的顺序构成数列:2,4,6, (2)1. 通项公式法:试试:上面数列中n a 与项数n 之间关系的一个通项公式是 .2 .列表法:试试:上面数列中n a 与项数n 之间关系用列表法如何表示?n 1 2 3 …… n …… n a246……2n……3.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.4. 递推公式法: 递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.反思:所有数列都能有四种表示方法吗?※ 典型例题例1 设数列{}n a 满足11111(1).nn a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项.变式:已知12a =,12n n a a +=,写出前5项,并猜想通项公式n a .小结:由递推公式求数列的项,只要让n 依次取不同的值代入递推公式就可求出数列的项.例2 已知数列{}n a 满足10a =,12n n a a n +=+, 那么2007a =( ). A. 2003×2004 B. 2004×2005 C. 2007×2006 D. 22004变式:已知数列{}n a 满足10a =,12n n a a n +=+,求n a .小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. ※ 动手试试练1. 已知数列{}n a 满足11a =,223a =,且111120n n n n n n a a a a a a -+-++-= (2n ≥),求34,a a .练2.(2005年湖南)已知数列{}n a 满足10a =,1331n n n a a a +-=+ (*n N ∈),则20a =( ).A .0 B.-3 C.3 D.32练3. 在数列{}n a 中,12a =,1766a =,通项公式是项数n 的一次函数. ⑴ 求数列{}n a 的通项公式; ⑵ 88是否是数列{}n a 中的项.三、总结提升 ※ 学习小结1. 数列的表示方法;2. 数列的递推公式.※ 知识拓展n 刀最多能将比萨饼切成几块?意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+. 由此可求得n a =1+2)1(+n n .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测1. 已知数列130n n a a +--=,则数列{}n a 是( ).A. 递增数列B. 递减数列C. 摆动数列D. 常数列2. 数列{}n a 中,2293n a n n =-++,则此数列最大项的值是( ).A. 3B. 13C. 1318D. 123. 数列{}n a 满足11a =,12n n a a +=+(n ≥1),则该数列的通项n a =( ). A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 4. 已知数列{}n a 满足113a =,1(1)2n n n a a -=- (n ≥2),则5a = .5. 已知数列{}n a 满足112a =,111n n a a +=-(n ≥2),则6a = .课后作业1. 数列{}n a 中,1a =0,1n a +=n a +(2n -1) (n ∈N ),写出前五项,并归纳出通项公式.2. 数列{}n a 满足11a =,12()2nn n a a n N a +=∈+,写出前5项,并猜想通项公式n a .§2.2等差数列(1)学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.学习过程一、课前准备(预习教材P 36 ~ P 39 ,找出疑惑之处) 复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?二、新课导学 ※ 学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第 2 项起,每一项与它 前 一项的 差 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 公差 , 常用字母 d 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 典型例题例1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.例2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数.※ 动手试试练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+.2. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).A. 2B. 3C. 4D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ;⑵已知13a =,21n a =,d =2,求n ;⑶已知112a =,627a =,求d ;⑷已知d =-13,78a =,求1a .§2.2等差数列(2)学习目标1. 进一步熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题.学习过程一、课前准备(预习教材P 39 ~ P 40,找出疑惑之处) 复习1:什么叫等差数列?复习2:等差数列的通项公式是什么?二、新课导学 ※ 学习探究探究任务:等差数列的性质1. 在等差数列{}n a 中,d 为公差, m a 与n a 有何关系?2. 在等差数列{}n a 中,d 为公差,若,,,m n p q N +∈且m n p q +=+,则m a ,n a ,p a ,q a 有何关系?※ 典型例题例1 在等差数列{}n a 中,已知510a =,1231a =,求首项1a 与公差d .变式:在等差数列{}n a 中, 若56a =,815a =,求公差d 及14a .小结:在等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出.例2 在等差数列{}n a 中,23101136a a a a +++=,求58a a +和67a a +.变式:在等差数列{}n a 中,已知234534a a a a +++=,且2552a a = ,求公差d .小结:在等差数列中,若m +n =p +q ,则 m n p qa a a a +=+,可以使得计算简化. ※ 动手试试练1. 在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.练2. 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个相同项?三、总结提升 ※ 学习小结1. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.※ 知识拓展判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=; (2)(0)n a pn q p =+≠; (3)2n S an bn =+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一个等差数列中,1533a =,2566a =,则35a =( ).A. 99B. 49.5C. 48D. 492. 等差数列{}n a 中7916a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 643. 等差数列{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ). A. 3 B. 5 C. -3 D. -54. 等差数列{}n a 中,25a =-,611a =,则公差d = .5. 若48,a ,b ,c ,-12是等差数列中连续五项,则a = ,b = ,c = .课后作业1. 若 12530a a a +++= , 671080a a a +++= , 求111215a a a +++ .2. 成等差数列的三个数和为9,三数的平方和为35,求这三个数.§2.3 等差数列的前n 项和(1)学习目标1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.学习过程一、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?二、新课导学 ※ 学习探究探究:等差数列的前n 项和公式 问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S反思:① 如何求首项为1a ,第n 项为n a 的等差数列{}n a 的前n 项的和?② 如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?试试:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S . ⑴184188a a n =-=-=,,;⑵114.50.715a d n ===,,.小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .※ 典型例题例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》. 某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元. 为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元. 那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?小结:解实际问题的注意:① 从问题中提取有用的信息,构建等差数列模型;② 写这个等差数列的首项和公差,并根据首项和公差选择前n 项和公式进行求解. 例2 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n 项和的公式吗?变式:等差数列{}n a 中,已知1030a =,2050a =,242n S =,求n .小结:等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.三、总结提升 ※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在等差数列{}n a 中,10120S =,那么110a a +=( ).A. 12B. 24C. 36D. 482. 在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663. 已知等差数列的前4项和为21,末4项和为67,前n 项和为286,则项数n 为( ) A. 24 B. 26 C. 27 D. 284. 在等差数列{}n a 中,12a =,1d =-,则8S = .5. 在等差数列{}n a 中,125a =,533a =,则6S = .课后作业1. 数列{n a }是等差数列,公差为3,n a =11,前n 和n S =14,求n 和3a .§2.3 等差数列的前n 项和(2)学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习过程一、课前准备(预习教材P 45 ~ P 46,找出疑惑之处)复习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .复习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课导学 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 典型例题例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法. (1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 动手试试练1. 已知232n S n n =+,求数列的通项n a .三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法.※ 知识拓展等差数列奇数项与偶数项的性质如下: 1°若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=; 2°若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列数列是等差数列的是( ). A. 2n a n = B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ).A. 3B. 4C. 6D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 140 D. 1704. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?§2.4等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.学习过程一、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:二、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ; 24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:※ 典型例题例1 (1) 一个等比数列的第9项是49,公比是-13,求它的第1项; (2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n na a +是一个不为0的常数就行了.※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?三、总结提升 ※ 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项n a 与m a 的关系.※ 知识拓展在等比数列{}n a 中,⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列; ⑶ 当10a >,01q <<时,数列{}n a 是递减数列; ⑷ 当10a <,q >1时,数列{}n a 是递减数列; ⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列,112a =,224a =,则3a =( ).A. 36B. 48C. 60D. 722. 等比数列的首项为98,末项为13,公比为23,这个数列的项数n =( ).A. 3B. 4C. 5D. 63. 已知数列a ,a (1-a ),2(1)a a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠14. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则123422a a a a ++= .5. 在等比数列{}n a 中,4652a a a =-,则公比q = .课后作业在等比数列{}n a 中, ⑴ 427a =,q =-3,求7a ;⑵ 218a =,48a =,求1a 和q ;⑶ 44a =,76a =,求9a ;⑷ 514215,6a a a a -=-=,求3a .§2.4等比数列(2)学习目标1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.学习过程一、课前准备(预习教材P 51 ~ P 54,找出疑惑之处)复习1:等比数列的通项公式n a = = . 公比q 满足的条件是复习2:等差数列有何性质?二、新课导学 ※ 学习探究问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒=新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号).试试:数4和6的等比中项是 .问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = .※ 典型例题例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例 自选1 自选2 n a 23()3n ⨯n b152n --⨯n n a b 1410()3n --⨯{}n n a b 是否等比 是变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知47512a a =- ,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知7125a a = ,则891011a a a a = .※ 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比为1:3:3C. 较小锐角的正弦为512-D. 较大锐角的正弦为512-练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,求a +b +c +d 的值.三、总结提升 ※ 学习小结1. 等比中项定义;2. 等比数列的性质.※ 知识拓展公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b,{}n n ab 也等比. 2. 若*m N ∈,则n m n m a a q -= . 当m =1时,便得到等比数列的通项公式. 3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a = .4. 若{}n a 各项为正,c >0,则{l o g }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ).A. ±4B. 4C. 2D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,569a a = ,则log 31a + log 32a +…+ log 310a = .课后作业1. 在{}n a 为等比数列中,1964a a = ,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++.§2.5等比数列的前n 项和(1)学习目标1. 掌握等比数列的前n 项和公式;2. 能用等比数列的前n 项和公式解决实际问题.学习过程一、课前准备(预习教材P 55 ~ P 56,找出疑惑之处)复习1:什么是数列前n 项和?等差数列的数列前n 项和公式是什么?复习2:已知等比数列中,33a =,681a =,求910,a a .二、新课导学 ※ 学习探究探究任务: 等比数列的前n 项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n 项和公式设等比数列123,,,n a a a a 它的前n 项和是n S =123n a a a a +++ ,公比为q ≠0,公式的推导方法一:则22111111n n n nS a a q a q a q a q qS --⎧=++++⎪⎨=⎪⎩(1)n q S ∴-= 当1q ≠时,n S = ①或n S = ②当q =1时,n S =公式的推导方法二:由等比数列的定义,32121n n a a a q a a a -==== , 有231121n n n n na a a S a q a a a S a -+++-==+++- ,即1n n nS a q S a -=-.∴ 1(1)n n q S a a q -=-(结论同上)公式的推导方法三:n S =123n a a a a +++=11231()n a q a a a a -++++ =11n a qS -+=1()n n a q S a +-. ∴ 1(1)n n q S a a q -=-(结论同上)试试:求等比数列12,14,18,…的前8项的和.※ 典型例题 例1已知a 1=27,a 9=1243,q <0,求这个等比数列前5项的和.变式:13a =,548a =. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?※ 动手试试练1. 等比数列中,33139,.22a S a q ==,求及练2. 一个球从100m 高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m )三、总结提升 ※ 学习小结1. 等比数列的前n 项和公式;2. 等比数列的前n 项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若1q ≠-,*m N ∈,则232,,,m m m m m S S S S S --⋅⋅⋅构成新的等比数列,公比为m q .2. 若三个数成等比数列,且已知积时,可设这三个数为,,aa aq q. 若四个同符号的数成等比数列,可设这四个数为33,,,a aaq aq q q .3. 证明等比数列的方法有:(1)定义法:1n naq a +=;(2)中项法:212n n n a a a ++= .4. 数列的前n 项和构成一个新的数列,可用递推公式111(1)n n n S a S S a n -=⎧⎨=+>⎩表示.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ).A. 11n a a --B. 111n a a +--C. 211n a a+-- D. 以上都不对2. 等比数列中,已知1220a a +=,3440a a +=,则56a a +=( ).A. 30B. 60C. 80D. 1603. 设{}n a 是由正数组成的等比数列,公比为2,且30123302a a a a ⋅⋅⋅=,那么36930a a a a ⋅⋅⋅=( ).A. 102B. 202C. 1D. 6024. 等比数列的各项都是正数,若1581,16a a ==,则它的前5项和为 .5. 等比数列的前n 项和3n n S a =+,则a = .课后作业1. 等比数列中,已知1441,64,.a a q S =-=求及2. 在等比数列{}n a 中,162533,32a a a a +== ,求6S .§2.5等比数列的前n 项和(2)学习目标1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题.学习过程一、课前准备(预习教材P 57 ~ P 62,找出疑惑之处) 复习1:等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S =复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++ , 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S .练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .三、总结提升 ※ 学习小结1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列.※ 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列{}n a 中,33S =,69S =,则9S =( ).A. 21B. 12C. 18D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ).A. 11B. 10C. 12D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ).A. 922-B. 821-C. 822-D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .课后作业1. 等比数列的前n 项和12nn s =-,求通项n a .2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;。

相关文档
最新文档