重庆理工大学__10-11_下)高数期末试题A
重庆大学高数(工学下)期末试题一(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆理工大学概率论与数理统计期末试卷答案10年12月(A)

重庆理工大学考试试卷2010~ 2011 学年第 1学期班级 学号 姓名 考试科目 概率与数理统计(理工) A 卷 闭卷 共 3 页 ···································· 密························封························线································学生答题不得超过此线一、 单项选择题(每小题2分,共22分)1、()0.5,()0.6,()0.8,P A P B P B A ===则 ()P A B 的值是( ) A 、0.6B 、0.7C 、0.8D 、0.92、设12),)F x F x ((分别为两随机变量的分布函数,若12)))F x aF x bF x =-(((为某一随机变量的分布函数,则( )A 、32,55a b ==-B 、22,33a b ==C 、13,22a b =-=D 、13,22a b ==-3、设随机变量X 的分布函数为()⎪⎩⎪⎨⎧>≤≤<=111003x x x x x F ,则()E X =( ) A 、⎰+∞04dx x B 、+⎰14dx x ⎰+∞1xdx C 、⎰133dx x D 、⎰+∞33dx x4、线路由A ,B 两元件并联组成(如图),A ,B 元件独立工作,A 正常工作的概率为pB 正常工作的概率为q ,则此线路正常工作的概率为( )A 、pqB 、p q +C 、p q pq +-D 、1pq -5、每张彩票中奖的概率为0.1,某人购买了20张号码杂乱的彩票,设中奖的张数为X ,则X 服从( )分布。
重庆2021-2021年高一下学期期末考试数学试卷及答案

秘密★启用前重庆高一下学期期末考试 数学数学试题共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置.1. 已知等差数列{}n a 中,282a a += ,5118a a +=,则其公差是( ) A . 6 B .3 C .2 D .12. 已知直线01)1(:1=+++y a ax l ,02:2=++ay x l ,则“2-=a ”是“21l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.学校为了解学生在课外读物方面的支出情况,抽取了n 个同学进行调查,结果显示这些同学的支出都 在[10,50)(单位:元),其中支出在[)30,50(单位:元)的同学有67人,其频率分布直方 图如右图所示,则n 的值为( )A .100B .120C .130D .3904.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球, A .15 B. 25 C. 13 D. 165.如图. 程序输出的结果s=132 , 则判断框中应填( ) A. i ≥10 B. i ≥11 开始输出s i = 12 , s = 1s = s i是否频率/组距元0.0370.0230.011020304050C. i ≤11D. i ≥126.圆()221x a y -+=与直线y x =相切于第三象限,则a 的值是( ).A .2B .2-C .2D .27.已知点(,)P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是( )A.[]2,1--B. []1,2-C. []2,1-D.[]1,28.设{}n a 是公比为q 的等比数列,令1n n b a =+,*n N ∈,若数列{}n b 的连续四项在集合}{53,23,19,37,82--中,则q 等于( )A .43-B .32-C .32-或23- D .34-或43- 9.已知在平面直角坐标系xoy 中,圆C 的方程为2223x y y +=-+,直线l 过点(1,0)且与直线10x y -+=垂直.若直线l 与圆C 交于A B 、两点,则OAB ∆的面积为( )A .1B 2C .2D .2210. (原创) 设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若A B φ=,则实数m 的取值范围是( )A 221m ≤≤ B. 022m <<+ C. 221m m <->或 D. 1222m m <>+或第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)各题答案必须填写在答题卡相应的位置上.11. 在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒.则b = . 12.在区间[5,5]-内随机地取出一个数a ,使得221{|20}x x ax a ∈+->的概率为 . 13.若直线)0,(022>=-+b a by ax 始终平分圆082422=---+y x y x 的周长,则ba 121+的最小值为14. (原创)给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组有六个数的数据是1,2,3,3,4,5的平均数、众数、中位数都相同;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3,b x y ===则1a =;其中正确的命题有 (请填上所有正确命题的序号) 15. (原创) 数列{}n a 满足*1142(1),()32nn n n a a a n N a n ++==∈+-,则n a 的最小值是三、解答题 :(本大题6个小题,共75分)各题解答必须答在答题卡上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).16.(本小题满分13分)在等比数列{}n a 中,11a =,且14a ,22a ,3a 成等差数列. (1)求n a ; (2)令2log n n b a =,求数列{}n b 的前n 项和n S .17. (本小题满分13分)在ABC ∆中,角,,A B C 对的边分别为,,a b c ,且2,60c C ==︒. (1)求sin sin a bA B++的值;(2)若a b ab +=,求ABC ∆的面积ABC S ∆.18. (本小题满分13分)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时 间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙 两组数据的平均数都为10. (1)求m ,n 的值;(2)分别求出甲、乙两组数据的方差2S 甲和2S 乙,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行 检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格” 的概率. (注:方差2222121[()()()n s x x x x x x n=-+-++-,x 为数据x 1,x 2,…,x n 的平均数)19. (本小题满分12分) (原创)已知函数f (x ) =bx ax ++(a 、b 为常数). (1)若1=b ,解不等式(1)0f x -<; (2)若1a =,当x ∈[1-,2]时, 21()()f x x b ->+恒成立,求b 的取值范围.20. (本小题满分12分)(原创)已知圆M :22224x y y +-= ,直线l :x +y =11,l 上一点A 的横坐标为a , 过点A 作圆M 的两条切线1l , 2l , 切点分别为B ,C.(1)当a =0时,求直线1l , 2l 的方程;(2)当直线 1l , 2l 互相垂直时,求a 的值; (3)是否存在点A ,使得2AB AC •=-?若存在, 求出点A 的坐标,若不存在,请说明理由.21. (本小题满分12分)已知数列{}n a 满足:2*1121()n n n a a a n N n--=+∈ (1)若数列{}n a 是以常数1a 为首项,公差也为1a 的等差数列,求1a 的值;y xA MBCO(2)若00a >,求证:21111n n a a n--<对任意*n N ∈都成立; (3)若012a =,求证:12n n a n n +<<+对任意*n N ∈都成立;数 学 答 案1—10DAACB CBCAD 11.7 12. 0.3 13.3222+ 14. ②③ 15.8-; 16.(13分)【解】(1)设{}n a 的公比为q ,由14a ,22a ,3a 成等差数列,得13244a a a +=. 又11a =,则244q q +=,解得2q =. ∴12n n a -=(*N n ∈ ).(2)12log 21n n b n -==-,∴11n n b b +-=,{}n b 是首项为0,公差为1的等差数列,它的前n 项和(1)2n n n S -=.17. (13分)18. (13分)解:(1)m=3,n=8(2)2 5.2S 甲=, 2S 乙=2,所以两组技工水平基本相当,乙组更稳定些。
重庆大学高数工学下资料期末试题十二含答案资料全

重庆大学《高等数学(工学类)》课程试卷20 —20 学年第学期答案:C.题号-一一二——三三四五六七八九十总分得分考试时间: ___ 120 分开课学院:数统学院课程号: 考试日期: ___________弊作绝拒、纪考肃严、信守实诚、争竞平公室教试考名姓号学级年班、业专院学考试提示1. 严禁随身携带通讯工具等电子设备参加考试;2. 考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.2.曲线x sect, y csct,z sectcsct在对应于t —点处的切线方程4是()•(A)拧¥ 22 z 2(B)x、+晋(C):22Z2 (D)x22育晋难度等级:1;知识点:多元微分学的几何应用答案:B.分析:t —时切点为G 2 '-2 2),切向量a (、-2、• 2,0).所以切线4方程为x二1 2三二.与(A)、(B)、(C)、(D)比较后知,应选(B).1 0、选择题(每小题3分,共18分)1.设Z x y x, 则-( ).xx(A)y x x y 1 (B) y x In xln y 丄xx(C) y x x y In x In 1 y _x(D) x 1x y iy x In x — x难度等级:2;知识点:偏导数t2t3、3.物质沿曲线:x t, y —,z — (0 t 1)分布,线密度为 2 3它的质量为().1 1A 0 t1 t2 t4dt (B) 0 -1 t2 t4dt(C) :t、1 t2 t4dt (D) :t2.1 t2 t4dt难度等级:2 ;知识点:第一类曲线积分的应用答案:C.组题人.审题人.命题时间教务处制则分析:化为疋积分,被积函数为只有C 符合. 4.设rm 2, n 1r m与 n 的r , r r r r J r r r—,a = 4m 2 n, b m 2n, c2m 3n ,则r 2 ar r 3(a b) 2(b c :)1 ( ). (A) 126(B) 102 (C) 103(D)104难度等级:1 ;知识点:二重积分 答案:(A)分析:四个选项都是先 y 后x 的积分顺序,曲线求交点得为(1,1),(2,4),积分区域为1 x 2,x 2 y x 2,显然(D)不符合,(C)下限小于上限不符合,(B)积分限不对,只有(A)符合. 6.设积分曲面为球面X 2 y 2 z 2 R 2的外侧,贝y难度等级:2 ;知识点:向量代数 答案:(D) 分析:「2 a(4rn n )2儲28mn n n 216 22 0 165r r , r r 、, r r 、 r 2 r r 小r 2朋a b (4 mn) (m2n) 4m7m n 2n 4 20 214r b c (mn2n)(2rm 3n) 2rri 2 2mn n 6n 2 2r 2 _r r r ra 3(a b) 2(b c)1 65 3 142 2 1 104x 2和y( 5.设积分区域D 由y 2 x 2(A) 1dx x 2f(x, y)dy1 x 2(C) 2dx 2f(x,y)dyx 2 围成,则 f (x, y)dD2 2(B) 1dx 0 f(x, y)dy 1 x 2(D) 0dx 2f (x,y)dy).O(X 2 z 2)3(xdydz ydzdx zdxdy)).(A) 0 (B)4 (C) 4 R 2(D) £ R 3难度等级:2;知识点:对坐标曲面积分的计算,高斯公式答案:(B).分析:先将 的方程代入被积函数,然后使用高斯公式,故选 B.二、填空题(每小题3分,共18分)7.极限难度等级:2;知识点:多元函数极限答案4分析:可通过分母有理化和等价无穷小的代换约去分母上的无穷小量,使分母的极限不为零.解:讪―y sin2x_ 1计网"2«6 1 4.xy 0J xy 1X0 xy8. 函数z 2x3 4xy y2 2x的驻点为_______________ . 答案:!,,1,2.3 3难度等级:1;知识点:多元函数极值分析:驻点处函数的偏导数等于0.2解:由Z x 6x 4y 20解得驻点:丄,2 , 1, 2 . z y 4x 2y 0 3 3 9. 设空间区域:x2 y2 z2 R2,则T x2~y2~ dV,难度等级:2;知识点:三重积分答案:R4.难度等级:1;知识点:旋度答案:一一x y2z 3y 3x z11. 设f(x) x4e x2,则f(69) (0)难度等级:2;知识点:函数展开成幕级数答案:0.n 2n分析:f (x) x4e x x4------- x f(69) (0) 0.因为 f (x) X4e X 幕n 0 n!级数的x69的系数为0.12. 设%(x),y2(x),y3(x)是线性微分方程y P(x)y Q(x)y f (x)的三个线性无关的解,则微分方程的通解是_________ .难度等级:1;知识点:二阶非齐次线性微分方程的通解答案:G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).类似的也可.分析:由二阶线性微分方程通解的结构定理,y.(x) V3(x)与分析::0 2 ,0,0r R,2 2-x y z2dv 二dR2d r r sin drR4.10.设向量场v A (2zv3y)iv3x z j y 2x k,则旋度rotA Y2(x) y3(x)是齐次微分方程y P(x)y Q(x)y 0的解,因此原方程的通解为G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).三、计算题(每小题6分,共24分)y 2x=2V4V 6,113.判断级数r(a 0)的敛散性.n 1 1 a难度等级:2;知识点:敛散性的判别分析:对参数进行讨论.M (x o, y°,Z o)处相切•难度等级:2 ;知识点:曲面的切平面•分析F(x,y,z) 0在点(x o,y o,z o)处的切平面的法向量为n (F x,F y,F z),两曲面在M(X o,y°,Z o)相切,说明法向量平行,且14.求微分方程xy y y2满足初始条件y— 1的解•难度等级:2;知识点:一阶线性微分方程.分析:方程为n 2的贝努利方程的初值问题•这是n 2的贝努利方程,在原式两边同除以xy2得丄dy丄y dx xydz 1zdx x 时针方向•解:(1) 0 a 1,lim 乙n1 a 1^ 1J n im T J7 I故级数发散M(X o,y o,z。
11-12重庆理工大学(下)高数期末试题A及答案

重庆理工大学考试试卷2011~ 2012学年第二学期班级 学号 姓名 考试科目 高等数学[(a2)机电] A 卷 闭卷 共 3 页一、判断题(本大题共5小题,每小题2分,共10分)(请在正确说法后面括号内画√,错误说法后面括号内画╳)(1) 若(,,)0x y z a a a a →→=≠,则(,,)||||||yxza a a a a a →→→为平行于向量a →的、长度为1的向量。
( ) (2)22(,)(0,0)3lim6x y xyx y →+=1/2。
( ) (3)⎰+Ldsy x )(22=22 0r d πθ⎰,其中L 为圆周122=+y x 。
( ) (4)若∑∞=1n nu收敛,∑∞=1n nv发散,则)(1∑∞=+n n nv u发散。
( )(5) 设幂级数0nn n a x∞=∑在3x =处收敛,则该级数在1x =-处发散。
( )二、填空题(本大题共10小题,每小题2分,共20分)(6)设向量2a i j k →→→→=-+,42b i j k λ→→→→=-+,则当λ= 时,a →与b →垂直。
(7)xoz 坐标面上的直线1x z =-绕oz 轴旋转而成的圆锥面的方程是 。
(8)直线L :11423zy x =+=-+与平面π:4223x y z --=的关系是 。
(9)设22),(y x y x y x f -=+-,则=),(y x f 。
(10)设363323sin1z x y x y x y =--+,则二阶混合偏导数=)0,1(xy z ___________。
(11)函数22y x z +=在点(3,2)处沿)1,1(=l方向的方向导数为 。
(12)设开区域G 是一个单连通域, 函数P (x , y )及Q (x , y )在G 内具有一阶连续偏导数, 则dy y x Q dx y x P ),(),(+在G 内为某一函数u (x , y )的全微分的充分必要条件是 在G内恒成立。
重庆理工大学 高等数学部分答案

习题一一、 1. × 2. \/ 3. × 4. × 5. × 6. × 7. ×二、 1. A 2. D3. B4. A三、1. 直线y x =2. [ -1,3 )3. 1[,0]2- 4.奇 5. 2log 1x y x =- 6.3,,sin u y e u v v x === 四、1(2)3f x x +=+,221()1f x x=+, 11(())1211xf f x x x+==+++,11()()2f f x x =+习题二一、 1. ∨ 2. × 3. × 4. ∨ 5. ∨ 6. × 二、 1. B 2. B3. A4. C三、 (1)22110n n ε-=<取N =即可(3)sin 10n n nε-≤< 取1[]N ε=即可四、根据条件,0ε∀>,N ∃,当n N >时,有0n n x y M ε-≤即证。
习 题 三一、 1. × 2. × 3. × 二、 1. C2. D3. C4. C四、(1)证明:0ε∀>,要32832x x ε+-=-< 取3εδ=即可(2)0ε∀>,要242x x ε+-=-< 取δε=即可 (3)0ε∀>,要213211x x x ε---=<++ 只要31x ε>+即可五、 1)lim 1x x x-→=-,0lim 1x x x+→=limx x x→不存在2)1lim ()2x f x +→=,1lim ()2x f x -→= 1lim ()2x f x →=2lim ()5, lim ()0x x f x f x →→==习题四一、1. ∨2. ×3. ∨4. ∨5. ×6. ×7. × 8. ∨ 9. ×10. × 11. ∨ 12. ×二、 1. D 2. C 3. B 4. D5. D三、 (1) 2131lim11x x x →-+=-+(2) 2211112lim lim 21213x x x x x x x →→-+==--+ (3) 202lim2h hx h I x h→+== (4) 23I =(5) 0I =(6) 422lim13x x I x →-==-(7) 11133lim 1213n n I +→∞-==-(8) 111lim (1)2212n n →∞-=+(9) 23211132limlim 111x x x x x I x x x →→++-+==-=--++ (10) 15I =(11) I =+∞ (12) 0I =(13) 由于lim 1lim1x x ==-,故原极限不存在。
重庆理工大学2015年 高等代数A
-2-
重庆理工大学考试试卷
2014 ~ 2015 学年第 1 学期
班级 学号 姓名 考试科目 高等代数[I] A 卷 闭卷 共 4 页 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 密· · · · · · · · · · · · · · · · · · · · · · · ·封· · · · · · · · · · · · · · · · · · · · · · · ·线· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 学生答题不得超过此线
b1
bn O ,
(1)证明 A 的秩 R( A) 1 ;
(2)证明存在常数 k 使 A2 kA ,并求常数 k
-4-
3 1 4 2 2 2 3. 设 D 0 7 1 5 3 2
0 2 ,则 A41 A42 A43 A44 ___________ ; 3 2
4. 设 A 为 3 阶方阵且 | A | 3 ,则 | 3 A1 2 A* | ___________;
A O 1 5. 给定分块矩阵 C ,其中 A 为 m 阶可逆方阵, B 为 n 阶可逆方阵,则 C ___________ O 2 B
6.已知线性方程组 Amn x b 有唯一解,则 m _________ n 。
;
二、(8 分)
得分 评卷人
设 m , n 是一个整数,令 nZ nz z Z , mZ nZ mx ny x, y Z , 证明: (1) mZ nZ 是一个数环; (2) mZ nZ =dZ , d 是 m 与 n 的最大公因数。
重庆理工大学概率论与数理统计A【理工】(2011--2012下学期)
重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页,,X是来自正态总体6重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页X为来自总体,,n2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································学生答题不得超过此线重庆理工大学考试答题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································。
重庆理工大学考试试卷-1011A
重庆理工大学考试试卷2010~2011学年第一学期班级109216103学号姓名考试科目会计信息化原理与应用A卷闭卷共5页····································密························封························线································一、单选题(20分,每题1分)1、财政部于( )年制定并印发了我国第一个会计电算化管理制度《会计核算软件管理的几项规定(试行)》。
重庆大学高数(下)期末试题11(含答案)
重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、 选择题(每小题3分,共18分)1. 设,yu xy x =+则22u x ∂=∂__________.答案:32.y x难度等级:1;知识点:偏导数.2. 已知级数1nn n a x ∞=∑满足11lim ,3n n na a +→∞=且lim 2,n n n ab →∞=则级数1n n n b x ∞=∑的收敛半径为__________.答案:3.难度等级:2;知识点:幂级数分析:1111111limlim 2, 3.233n n n n n n n n n n b b a a R b a a b +++→∞→∞+==⨯⨯== 3. 若曲线上任一点(,)x y 处的切线斜率等于(1),yx-+且过点(2,1),则该曲线方程是__________.答案:14.2y x x =-+难度等级:2;知识点:一阶线性微分方程4. 设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)__________.Lxy y dx x x dy -+-=⎰答案:18.π-难度等级:2;知识点:格林公式分析:利用格林公式可化为被积函数为2-的二重积分,而积分区域面积为9,π故得.5. 设()f t 具有连续导数, (0)0,(0)1,f f '=={}2222(,,)|,x y z x y z t Ω=++≤则1lim40I f d t t V π==⎰⎰⎰+Ω→__________. 答案:1.命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密难度等级:2;知识点:三重积分6. 求以向量23a m n =+和4b m n =-为边的平行四边形的面积为 ,其中,m n 是互相垂直的单位向量. 答案:11.难度等级:2;知识点:向量代数.分析:为了便于计算,令,m i n j ==,则23a i j =+,4b i j =-,230(0,0,11),140i j ka b ⨯==--平行四边形的面积为20011a b ⨯=+=二、填空题(每小题3分,共18分)7. 设非零向量,,a b c 满足条件0a b c ++=,则a b ⨯().=(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯ 答案:(B).难度等级:1;知识点:向量代数分析:在0a b c ++=的两边左乘以b得到()0,b a b c b ⨯++=⨯0,b a b b b c ⨯+⨯+⨯=即0.a b b c -⨯+⨯=于是.a b b c ⨯=⨯8. 设函数z f x y =(,)在点(,)x y 00处沿任何方向有方向导数,则z f x y =(,)在点(,)x y 00处().(A)偏导数存在(B)可微 (C)偏导数不一定存在 (D)偏导数连续 答案:(C).难度等级:2;知识点:偏导数与方向导数分析:函数z =(0,0)处沿任何方向的方向导数均为1,但偏导数不存在,所以应选(C).9. 微分方程22x y y '''=的通解是().(A)1221ln(1)C x y x C C -=--+ (B) 1211ln(1)C x x y C C C -=--+ (C)12211ln(1)C x x y C C C -=-+ (D) 12211ln(1)C x x y C C C -=--+ 答案: (D).难度等级:2;知识点:可降阶微分方程分析:方程为二阶非线性方程.令,u y '=则方程降为一阶方程22,x u u '=这是变量可分离方程.分离变量得22,du dxu x=积分得111.C u x =+将u y '=代入并积分可得12211,ln(1)C x x y C C C -=--+故应选(D).10.曲线2,x t y z t ===在点(4,8,16)处的法平面方程为().(A) 8132x y z --=- (B) 8140x y z ++= (C)x-y+8z=124 (D) 8116x y z +-=答案:(B).难度等级:1;知识点:多元微分学在几何上的应用 分析:法平面的法向量就是曲线的切向量,为(1,1,8),n =所以法平面方程为:(4)(8)8(16)0.x y z -+-+-=即 8140.x y z ++= 与(A)、(B)、(C)、(D)比较后知,应选B).11. 设有一分布非均匀的曲面,∑其面密度为(,,),x y z ρ则曲面∑对x 轴的转动惯量为().(A)xdS ∑⎰⎰ (B)(,,)x x y z dS ρ∑⎰⎰(C)2x dS ∑⎰⎰ (D)22()(,,)y z x y z dS ρ∑+⎰⎰答案:(D).难度等级:1;知识点:曲面积分的应用分析:A,C 明显不对,B 被积函数不对,D 是转动惯量. 12. 设流速场{0,0,1},v =则流过球面2222x y z R ++=的流量值为().(A)0 (B)24R π (C)334R π (D)1 答案:(A).难度等级:2;知识点:第二型曲面积分的应用.分析:通量00.dxdy dV ∑ΩΦ===⎰⎰⎰⎰⎰三、 计算题(每小题6分,共24分)13. 求微分方程3dy y dx x y =+的通解. 难度等级:2;知识点:一阶线性微分方程.分析 方程为一阶非线性方程,需变形为一阶线性方程求解.解 方程改写为21dx x y dy y-=, 这是关于()x x y =的一阶线性非齐次方程,故通解为2()dydyyyx ey edy C -⎰⎰=+⎰ 21()2y y C =+即32y x Cy =+.14. 设(,)z z x y =由方程(,)0f y x yz -=所确定,其中f 具有二阶连续偏导数,求22zx∂∂.难度等级:2;知识点:隐函数的高阶偏导数. 分析 由方程(,,)0F x y z =所确定的隐函数的偏导数xzFz x F ∂=-∂,求出zx∂∂后再对x 求偏导数即可得22z x ∂∂.解11221f f z x yf y f -∂=-=∂ 21112221221222()()1z zf yf f f yf f z x x x y f ∂∂-+--+∂∂∂=⋅∂ 211121221232222f f f f fyf yf yf=-+-15.将函数()ln(f x x =+展成关于x 的幂级数. 难度等级:2;知识点:函数展开成幂级数分析:有对数,反三角函数需要求导后展开,然后逐项积分解:()f x '====0(21)!!(1).(2)!!n nn n x n ∞=-=-∑20(21)!!(),.(2)!!n n n f x x x R n ∞=-'⇒==∈∑ 21(21)!!()(1),.(2)!!21n knn n x f x dx x R n n +∞=-'⇒=-∈+∑⎰21(21)!!()(1),.(21)(2)!!nn n n f x x x R n n ∞+=-⇒=-∈+∑16. 计算2232(()(2),xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰其中∑为上半球体0z ≤≤表面的外侧.难度等级:2;知识点:高斯公式分析:题设曲面为封闭曲面,利用高斯公式,再用球面坐标化为三次积分.解: 2232(()(2)xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰222205sin 2.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17. 设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求函数),(y x z z =的极值点和极值.难度等级:3;知识点:多元函数极值解:方程0182106222=+--+-z yz y xy x 两边分别对,x y 求偏导数得到26220,(1)6202220.(2)x x y y x y yz zz x y z yz zz ---=⎧⎪⎨-+---=⎪⎩令00x yz z =⎧⎪⎨=⎪⎩得260,62020x y x y z -=⎧⎨-+-=⎩即3.x yz y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x 得 3.y =±因此有两个驻点(9,3),(9,3).--相应的函数值为3, 3.-方程(1),(2)两边再次分别对,x y 求偏导数得到22222()20(3)622220(4)20422()20.(5)xx x xxx xy y x xy y yy y yy yz z zz z yz z z zz z yz z zz ⎧---=⎪⎪-----=⎨⎪----=⎪⎩将9,3,3,0,0x y x y z z z =====代入(3),(4),(5)得到21150,,,0.623xx xy yy A z B z C z AC B ==>==-==->故点(9,3)是(,)z z x y =的极小值点,极小值(9,3) 3.z = 同样将9,3,3,0,0x y x y z z z =-=-=-==代入(3),(4),(5)得到 21150,,,0.623xx xy yy A z B z C z AC B ==-<====--> 故点(9,3)--是(,)z z x y =的极大值点,极大值(9,3) 3.z --=-18. 计算23,ydx xzdy yz dz Γ-+⎰其中Γ为圆周222, 2.x y z z +==若从z 轴的正向看去,这圆周是取逆时针方向.难度等级:2,知识点:斯托克斯公式,曲面积分的概念,二重积分的性质分析:曲线的参数方程不易写出,积分路径为闭,用斯托克斯公式化为对面积的曲面积分.解:取∑为平面2z =被Γ所围成的部分的上侧,∑的法线向量为(0,0,1),n =其方向余弦为(cos ,cos ,cos )(0,0,1).αβγ=于是23ydx xzdy yz dz Γ-+⎰2cos cos cos 3(3)dS x y z yxzyzz dSαβγ∑∑∂∂∂=∂∂∂-=--⎰⎰⎰⎰ 2245520.x y dSdxdy π∑+≤=-=-=-⎰⎰⎰⎰五、证明题(每小题6分,共12分)19. 证明下列第二类曲线积分的估计式: .L xdx ydy LM +≤⎰其中L 为积分路径L 的弧长,M 为函数22y x +在L 上最大值.难度等级:3;知识点:第二类曲线积分分析:将题设积分转化为对弧长的积分,再进行估值,并注意将被积函数表成向量的点积.证明:设路径L 上的单位切向量为(cos ,sin ).αα利用两类曲线积分的联系可得(cos sin )LL xdx ydyx y dsαα+=+⎰⎰cos sin {,}{cos ,sin }LLx y ds x y dsαααα≤+=⋅⎰⎰.LMdsML =≤=⎰⎰20. 设函数)(0x f 在),(+∞-∞内连续,10()(),1,2,.xn n f x f t dt n -==⎰证明:(1)1001()()(),1,2,;(1)!xn n f x f t x t dt n n -=-=-⎰ (2)对于区间),(+∞-∞内的任意固定的,x 级数()∑∞=1n n x f 绝对收敛.难度等级:3;知识点:无穷级数 证明:(1)由函数)(0x f 在),(+∞-∞内连续,1011000()(),1,2,()();(0)lim ()0,,(0)0(2).xn n nn xk x f x f t dt n f x f x f f t dt f k --→=='=⎧⎪⇒⎨===≥⎪⎩⎰⎰11()()(1)!xn f t x t dt n -⇒--⎰ 1101()()(1)!xn x t df t n -=--⎰ 1110102101(()()()())(1)!1()()(2)!xn x n xn x t f t f t d x t n f t x t dt n ---=----=--⎰⎰().n f x ==(2) 函数0()f t 在t x ≤上连续,⇒存在0()0,,()().M x t x f t M x >∀≤≤由(1),1001001()()()(1)!1()()()(1)!xn n xn n f x f t x t dt n f x f t x t dt n --=--⇒=--⎰⎰10()()()().(1)!!n xn n M x x M x f x x t dt n n -⇒≤-=-⎰ 由于0()!nn M x x n ∞=∑收敛,故级数()∑∞=1n n x f 绝对收敛.六、应用题 (每小题8分,共16分)21. 设均匀柱体密度为,ρ占有闭区域222,,{()|,0,}x y z x y R z h Ω=+≤≤≤ 求它对于位于点00,0(),)(M a a h >处单位质量的质点的引力. 分析:由空间物体引力公式和对称性,利用直角坐标计算即可 解:由柱体的对称性可知, 沿x 轴与y 轴方向的分力互相抵消, 故0,x y F F ==而 2223/2[()]z z aF G dv x y z a ρΩ-=++-⎰⎰⎰2222223/20()[()]hx y R dxdyG z a dzx y z a ρ+≤=-++-⎰⎰⎰ 2223/2000()[()]hRrdrG z a dz d r z a πρθ=-+-⎰⎰⎰012()[hG z a dz a z πρ=--⎰2[G h πρ=-22. 按P.F.Verhulst 人口增长规律:当人口数充分大时,大致按有机增长规律随时间成正比例增长(设比例系数为a ).如考虑到疾病和其它原因,有一个与人口数的平方成反比的的负增长率(设比例系数为b ).已知0t =时,人口数为0,x 求在时刻t 时的人口数(),x t 并问当t →∞时人口数如何?难度等级:3;知识点:常微分方程模型,可分离变量的微分方程的初值问题.分析:只需将二阶导数表示出来就可证之. 解:据题意可得如下初始值问题200.t dx ax bxdtx x =⎧=-⎪⎨⎪=⎩ 将方程分离变量,积分得020,xt x dxdt ax bx =-⎰⎰ 即有 00()1ln.()x a bx t ax a bx -=-解出x 得000.atatax e x a bx bx e=-+ 而且,当t →∞时,.a x b→。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、 B、 C、 D、
(6)设 是圆域 的正向圆周,则 ( )。
A、 B、0C、 D.
(7)若级数 收敛,则下列结论不成立的是( )。
A、 B、 收敛C、 收敛D、 收敛
(8)下列级数中绝对收敛的是()。
A、 B、 C、 D、
重庆理工大学考试试题卷
0~2011学年第二学期
(26)求幂级数 的和函数及收敛域。
四、应用题(本大题共2小题,每小题5分,共10分)
(27)求点 到抛物线 的最短距离。
(28)设平面薄片所占的闭区域 由直线 及两坐标轴围成,它的面密度 ,求该薄片的质量。
五、证明题(6分)
(29)证明曲线积分 与路径无关,并计算积分值。
学生答题不得超过此线
注意:1、本试卷分为试题卷和答题卷两部分;2、请把试题答案写在答题卷上;
3、交卷时,把试题卷和答题卷分开交。
一、单项选择题(本大题共8小题,每小题2分,共16分)。
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
(1)微分方程 为( )。
A、一阶线性微分方程B、齐次微分方程C、可分离变量微分方程D、二阶线性微分方程
(2)曲线 绕 轴旋转所形成的旋转曲面方程是( )。
A、 B、 C、 D、
(3)函数 在点 处沿 ( )的方向导数最大。
A、 B、 C、 D、
(4)函数 ,则在点(2,1)处,当 时,函数的全微分 ()。
A、 B、0.03C、0.04D、0.05
二、 填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
(9)微分方程 的通解是 。(10)设 ,则 =。
(11)点 到平面 的距离是。(12) =。
(13)交换积分次序 =。(14)设曲线 则 。
(15)球面 在点 处的切平面方程为。(16)设 =。
(17)级数 的 项部分和为 ,则 。(18) 的麦克劳林展开式为 =。
三、求解下列各题(本大题共6小题,每小题8分,共48分)。
(19)求微分方程 的通解。
(20)求微分方程 的通解。
(21)求过点 且与平面 及 都垂直的平面方程。
(22) ,求 。
(23)求 ,其中 是由 围成的区域。
(24)求 , 是界于 和 之间的圆柱体 的整个表面的外侧。
(25)判别级数 的收敛性。
班级学号姓名考试科目高等数学[机电(2)]A卷闭卷共2页
····································密························封························线································
学生答题不得超过此线
重庆理工大学考试试题卷
2010~2011学年第二学期
班级学号姓名考试科目高等数学[机电(2)]A卷闭卷共2页
····································密························封························线································