初中数学综合复习教案
初中数学全套复习教案

初中数学全套复习教案一、教学目标:1. 巩固和掌握数与代数、几何、统计与概率等方面的基础知识。
2. 提高学生的数学思维能力、解决问题的能力和创新意识。
3. 培养学生对数学的兴趣和自信心,使学生在数学学习中获得成功体验。
二、教学内容:1. 数与代数:有理数、整式、分式、方程、不等式等。
2. 几何:平面几何、立体几何、几何变换等。
3. 统计与概率:数据的收集、整理、分析、概率等。
三、教学过程:1. 复习导入:通过复习已有知识,激发学生的学习兴趣,建立知识框架。
2. 课堂讲解:针对每个知识点,进行详细的讲解和分析,引导学生理解和掌握。
3. 例题解析:通过典型例题的讲解,让学生学会运用所学知识解决问题。
4. 练习巩固:布置适量练习题,让学生独立完成,巩固所学知识。
5. 总结提升:对本节课的知识进行总结,引导学生发现规律,提高解决问题的能力。
6. 课后作业:布置课后作业,让学生进一步巩固所学知识。
四、教学方法:1. 采用启发式教学,引导学生主动探究、积极思考,培养学生的创新意识。
2. 运用数形结合的方法,直观地展示数学概念和几何图形,帮助学生理解。
3. 通过小组合作、讨论交流,培养学生的团队合作精神和沟通能力。
4. 注重个体差异,针对不同学生给予个性化的指导,使每个学生都能在数学学习中取得进步。
五、教学评价:1. 定期进行课堂测试,了解学生对知识的掌握程度。
2. 关注学生的作业完成情况,及时发现和解决问题。
3. 鼓励学生参加各类数学竞赛和活动,提高学生的综合素质。
4. 注重学生的可持续发展,关注学生在数学学习中的兴趣和自信心。
六、教学资源:1. 教材、教辅、教案、课件等教学资料。
2. 数学模型、几何图形、实物教具等。
3. 计算器、电脑等辅助教学工具。
4. 网络资源、数学杂志、报纸等。
七、教学进度安排:1. 数与代数:4周2. 几何:6周3. 统计与概率:2周4. 总复习:2周八、教学总结:通过本学期的初中数学总复习,学生对初中阶段的数学知识有了系统的掌握和理解,提高了数学思维能力和解决问题的能力。
初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。
6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。
第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。
7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。
人教版数学初中复习教案

人教版数学初中复习教案一、教学目标:1. 知识点复习:对初中阶段的知识点进行系统的复习,包括代数、几何、概率等方面的基础知识。
2. 解题能力培养:通过复习,使学生掌握解题的基本方法,提高解题速度和准确率。
3. 思维能力培养:引导学生运用数学思维方法,提高解决问题的能力。
4. 学习兴趣激发:通过复习,使学生对数学产生浓厚的兴趣,提高自主学习能力。
二、教学内容:1. 代数部分:包括有理数、整式、分式、方程、不等式、函数等知识点。
2. 几何部分:包括平面几何、立体几何、几何变换等知识点。
3. 概率部分:包括概率的基本概念、概率计算等知识点。
三、教学过程:1. 复习导入:通过复习导入,使学生回忆起已学过的知识点,为新课的讲解做好铺垫。
2. 知识点讲解:对每个知识点进行详细的讲解,突出重点,突破难点。
3. 例题解析:选择具有代表性的例题进行解析,引导学生掌握解题方法。
4. 练习巩固:布置适量的练习题,让学生在课后进行巩固。
5. 课堂小结:对本节课的内容进行总结,加深学生对知识点的理解。
6. 课后作业:布置作业,让学生在课后对所学内容进行复习和巩固。
四、教学方法:1. 采用讲授法,讲解清晰、简洁,突出重点。
2. 运用举例法,通过具体例题让学生更好地理解知识点。
3. 采用提问法,引导学生思考,提高课堂互动性。
4. 运用小组合作学习法,培养学生的团队协作能力。
5. 运用多媒体辅助教学,提高课堂趣味性。
五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成绩评价:对学生的练习成果进行评价,了解学生对知识点的掌握情况。
3. 学生自我评价:鼓励学生进行自我评价,培养学生的自我学习能力。
4. 家长反馈:与家长保持沟通,了解学生的学习情况,共同促进学生的进步。
通过本节课的复习,使学生对初中阶段的数学知识有系统的掌握,提高解题能力和思维能力,激发学习兴趣,为高中阶段的数学学习打下坚实的基础。
中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
初中数学复习教案书写

教案标题:初中数学复习教案一、教学目标1. 知识与技能:巩固和掌握初中阶段的重要数学知识点,提高学生的数学素养。
2. 过程与方法:通过自主学习、合作交流、探究发现等方法,提高学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
二、教学内容1. 数与代数:有理数、整式、分式、方程、不等式等。
2. 空间与图形:平面几何、立体几何、坐标系等。
3. 统计与概率:数据的收集、整理、分析、概率的计算等。
4. 综合与应用:数学故事、数学日记、数学实践等。
三、教学过程1. 自主学习:让学生自主复习数与代数、空间与图形、统计与概率等知识点,通过课本、资料等进行查阅,巩固基础知识。
2. 合作交流:组织学生进行小组讨论,分享自己的复习心得和方法,互相学习和借鉴。
3. 探究发现:引导学生运用所学知识解决实际问题,发现数学的奥秘和乐趣。
4. 教师讲解:针对学生复习中的难点和易错点,进行有针对性的讲解和辅导。
5. 练习巩固:布置适量的练习题,让学生在实践中运用所学知识,巩固复习效果。
6. 总结反馈:对学生的复习情况进行总结和评价,给予鼓励和指导,帮助学生建立良好的学习习惯。
四、教学评价1. 过程评价:关注学生在复习过程中的态度、方法、合作等情况,给予及时的指导和鼓励。
2. 结果评价:通过测试、练习等手段,检查学生的复习效果,及时发现和解决问题。
3. 综合性评价:结合学生的平时表现、考试成绩、学习进步等方面,进行全面评价。
五、教学资源1. 课本、辅导书、练习册等教学资料。
2. 教学课件、视频、网络资源等。
3. 数学故事、数学日记、数学实践等案例。
六、教学时间1. 课时安排:根据具体教学需求,合理安排复习课时。
2. 教学周期:整个初中阶段,持续进行数学复习。
七、教学建议1. 注重基础:重视基础知识的学习,为学生打下扎实的数学基础。
2. 培养兴趣:激发学生的学习兴趣,提高学生学习数学的积极性。
中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。
负数的'意义是难点。
下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。
在正数前加上“-”号的数叫做负数如-5,-3,-等。
负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位零既不是正数,也不是负数,但它是自然数。
它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
初中数学复习课教案
初中数学复习课教案课程目标:1. 巩固本学期所学数学知识,提高学生的数学思维能力。
2. 培养学生自主学习、合作学习的能力,提高学生的学习效率。
3. 帮助学生发现自己的不足,制定合适的复习计划,为中考做好准备。
教学内容:1. 数学科目:有理数、整式、分式、方程、不等式、函数等。
2. 数学思想:分类讨论、归纳总结、数形结合等。
教学过程:一、导入(5分钟)1. 教师简要回顾本学期的学习内容,引导学生回顾自己的学习成果和不足。
2. 学生分享自己的学习心得和复习计划。
二、自主学习(15分钟)1. 学生根据教师提供的复习提纲,自主复习相关知识点。
2. 教师巡回指导,解答学生的疑问。
三、合作学习(20分钟)1. 教师布置合作学习任务,学生分组讨论、交流。
2. 各小组展示合作学习成果,分享解题思路和经验。
四、课堂讲解(20分钟)1. 教师针对学生的共性问题进行讲解,巩固重点知识点。
2. 结合中考题型,讲解数学题目的解题技巧和方法。
五、练习巩固(15分钟)1. 教师布置练习题,学生独立完成。
2. 教师批改练习题,及时反馈学生的答题情况。
六、总结与反思(5分钟)1. 学生自我总结本节课的学习收获,发现自己的不足。
2. 教师引导学生制定针对性的复习计划,为中考做好准备。
教学评价:1. 学生课堂参与度:观察学生在课堂上的发言、提问、解答等情况,了解学生的学习积极性。
2. 学生练习答题情况:分析学生练习题的答案,了解学生的掌握程度。
3. 学生反馈:收集学生的学习反馈,了解学生的学习需求和意见。
教学反思:本节课结束后,教师应认真反思教学效果,针对学生的学习情况调整教学策略,以提高复习课的教学质量。
同时,关注学生的心理健康,鼓励学生克服学习困难,提高学生的自信心。
初中复习教案教学目标
初中复习教案教学目标一、教学内容学生掌握初中阶段所学的数学知识,包括代数、几何、概率等方面的基础知识,以及解题方法和技巧。
二、教学目标1. 知识与技能目标:(1)使学生掌握初中阶段所学的数学知识,包括代数、几何、概率等方面的基础知识;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生运用数学思维方法分析和解决问题的能力。
2. 过程与方法目标:(1)通过复习,使学生对初中阶段所学的数学知识有一个全面、系统的了解;(2)培养学生自主学习、合作学习、探究学习的能力;(3)培养学生运用数学知识进行创新的能力。
3. 情感态度与价值观目标:(1)激发学生对数学学科的兴趣,培养学生的数学素养;(2)使学生认识数学在实际生活中的重要性,提高学生运用数学知识解决实际问题的能力;(3)培养学生积极、健康的情感态度和价值观。
三、教学重点与难点1. 教学重点:(1)初中阶段所学的数学知识;(2)解题方法和技巧。
2. 教学难点:(1)数学知识点的理解和运用;(2)解题方法和技巧的掌握。
四、教学过程1. 自主学习:学生通过教材、参考书等资源,对初中阶段所学的数学知识进行自主复习,了解自己的掌握情况,发现存在的问题。
2. 合作学习:学生分组讨论,共同解决复习过程中遇到的问题,互相交流解题方法和技巧。
3. 探究学习:教师引导学生针对复习中的重点、难点问题进行探究,培养学生运用数学知识进行创新的能力。
4. 讲解与示范:教师针对学生复习中的共性问题进行讲解,示范解题方法和技巧,引导学生正确解题。
5. 练习与巩固:学生进行适量练习,巩固所学知识,提高解题能力。
6. 情感态度与价值观教育:教师在教学过程中,注重激发学生的学习兴趣,培养学生的数学素养,使学生认识数学在实际生活中的重要性。
五、教学评价1. 过程性评价:关注学生在复习过程中的学习态度、合作意识、探究能力等方面的发展。
2. 终结性评价:通过测试等方式,了解学生对初中阶段所学数学知识的掌握情况,以及解题方法和技巧的运用能力。
初中七年级数学复习教案怎么写【精选5篇】
初中七年级数学复习教案怎么写【精选5篇】初中七年级数学复习教案怎么写(篇1)教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为( )A.3B.-3C.-2.5D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了 3 kg,记作+3 kg;小阳体重减少了 2 kg,则小阳增加了 .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)初中七年级数学复习教案怎么写(篇2)教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0 m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247, 孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低 5 ℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减 -5 +7 -3 +4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.初中七年级数学复习教案怎么写(篇3)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
初中数学复习课教案大全15篇
初中数学复习课教案大全15篇初中数学复习课教案篇1一、教学目标:1、使学生体验调查和收集、整理数据的过程,会用简单的方法收集和整理数据。
2、学生填写比较简单的复式统计表,能根据统计表中的数据提出并回答简单的问题。
3、通过对周围现实生活有关事例的调查,激发学生的学习兴趣,培养学生的实践能力和参与意识。
二、教学过程:(一)、问题情景,导入新课1、多媒体出示例1主题图,问:图上的小朋友在干什么?你们测量过体重吗?测量了几次?2、读一年级刚入学时,你测量的体重是多少?(学生自由汇报各自的体重情况)3、怎样才能让大家一看就明白我们班所有人的`体重情况呢?(二)、活动体验,探究新知1、电脑出示统计表(1):体重(千克)15以下、16~20、21~25、26~30、31以上人数师:现在我们就用“正”字记录法来统计一下刚入学时的体重(集体活动)2、活动结束后,师生共同将收集的数据整理后填入表格中。
3、二年级时,我们的体重有什么变化呢?体重(千克)15以下、16~20、21~25、26~30、31以上人数集体进行统计活动,并将结果填入表中。
4、讨论:如果想把两年的体重数据填入一个统计表中,该如何表示呢?学生讨论后,在黑板上出示表格(3):(单位:千克)5、先让学生独立尝试填空,然后小组合作交流。
指名上台在黑板上填写数据。
6、引导观察讨论大屏幕上的两个单式统计表与黑板上的复式统计表有什么联系与区别。
7、观察复式统计表,回答问题。
(1)一年级时,体重在()千克的人最多(2)二年级时,体重在()千克的人最多8、你还能发现什么?先在小组交流,后指名在全班汇报。
9、你有什么好的建议吗?组织学生对体重过轻或过重的学生提些合理的建议等。
(三)、整理数据,巩固练习出示“做一做”,练习情景图。
1、交流图上的小朋友参加了哪些课外活动?一班的同学参加各项课外外小组活动人数的情况是怎样的?你参加了哪项课外活动?2、讨论:怎样收集我们班参加课外活动人数的数据?3、活动、统计数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章实数与代数式1.1 有理数 (4)1.2 实数 (6)1.3 整式 (8)1.4 因式分解 (10)1.5 分式 (12)1.6 二次根式 (14)●单元综合评价 (16)第二章方程与不等式2.1 一次方程(组) (20)2.2 分式方程 (23)2.3 一元二次方程 (25)2.4 一元一次不等式(组) (28)2.5 方程与不等式的应用 (30)●单元综合评价 (33)第三章函数3.1 平面直角坐标系与函数 (37)3.2 一次函数 (39)3.3 反比例函数………………………………………………………………………………3.4 二次函数…………………………………………………………………………………3.5 函数的综合应用…………………………………………………………………………●单元综合评价………………………………………………………………………………第四章图形的认识4.1 简单空间图形的认识……………………………………………………………………4.2 线段、角、相交线与平行线……………………………………………………………4.3 三角形及全等三角形……………………………………………………………………4.4 等腰三角形与直角三角形………………………………………………………………4.5 平行四边形………………………………………………………………………………4.6 矩形、菱形、正方形……………………………………………………………………4.7 梯形………………………………………………………………………………………●单元综合评价………………………………………………………………………………第五章圆5.1 圆的有关性质……………………………………………………………………………5.2 与圆有关的位置关系……………………………………………………………………5.3 圆中的有关计算…………………………………………………………………………5.4 几何作图…………………………………………………………………………………●单元综合评价………………………………………………………………………………第六章图形的变换6.1 图形的轴对称……………………………………………………………………………6.2 图形的平移与旋转………………………………………………………………………6.3 图形的相似………………………………………………………………………………6.4 图形与坐标………………………………………………………………………………6.5 锐角三角函数……………………………………………………………………………6.6 锐角三角函数的应用……………………………………………………………………●单元综合评价………………………………………………………………………………第七章统计与概率7.1 数据的收集、整理与描述………………………………………………………………7.2 数据的分析………………………………………………………………………………7.3 概率………………………………………………………………………………………●单元综合评价………………………………………………………………………………第八章拓展性专题8.1 数感与符号感……………………………………………………………………………8.2 空间观念…………………………………………………………………………………8.3 统计观念…………………………………………………………………………………8.4 应用性问题………………………………………………………………………………8.5 推理与说理………………………………………………………………………………8.6 分类讨论问题……………………………………………………………………………8.7 方案设计问题……………………………………………………………………………8.8 探索性问题………………………………………………………………………………8.9 阅读理解问题……………………………………………………………………………1.1 有理数【教学目标】1.理解有理数的有关概念,能用数轴上的点表示有理数,会求倒数、相反数、绝对值.2.掌握有理数的加、减、乘、除、乘方及简单的混合运算,会比较两个有理数的大小.3.理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式.4.能运用有理数的运算解决简单的实际问题,会探索有规律性的计算问题.【重点难点】重点:有理数的加、减、乘、除、乘方运算及简单的混合运算.难点:对含有较大数字的信息作出合理的解释和推断.【考点例解】例1 (1)-5的绝对值是( ) A. -5 B. 5 C. 15 D. 15- (2)2007年3月5日,温总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费. 这个数据保留两个有效数字用科学记数法表示为( )A. 75210⨯B. 75.210⨯C. 85.210⨯D. 85210⨯(3)2008年2月4日,我国遭受特大雪灾,部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是( )A. 广州B. 福州C. 北京D. 哈尔滨 分析:本题主要是考查学生对有理数相关概念的理解. 第(1)小题考查绝对值的意义;第(2)小题考查科学记数法;第(3)小题考查有理数的大小比较.解答:(1)B ; (2)B ; (3)D.例2 计算:32211(1)3()3+-÷⨯-.分析:本题主要是考查有理数的乘方运算及有理数混合运算的顺序.解答:原式11801(1)9198181=+-÷⨯=-=. 例3 观察表①,寻找规律,表②、表③、表④分别是从表①中截取的一部分,其中a 、b 、c 的值分别是( )A. 20,29,30B. 18,30,26C. 18,20,26D. 18,30,28 分析:本题主要考查有理数运算的简单应用. 表①中第一行中的数均为连续的自然数,而下面各行依次是第一行的2倍、3倍、4倍、…;表①中第一列中的数均为连续的自然数,依次从左往右各列的最大公约数分别是2、3、4、….解答:D.【考题选粹】1.(2007·宜宾)数学家发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:21a b ++.如把(3,-2)放入其中,会得到23(2)18+-+=. 现将实数对(-2,3)放入其中得到实数m ,再将实数对(m ,1)放入其中得到的数是 .2.(2007·玉溪)小颖中午回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜3分钟. 以上各道工序,除④外,一次只能进行一道工序,则小颖要将面条煮好,最少用 分钟.【自我检测】见《数学中考复习一课一练》.1.2 实数【教学目标】1.了解算术平方根、平方根、立方根的概念,会求非负数的算术平方根和实数的立方根.2.了解无理数与实数的概念,知道实数与数轴上的点的一一对应关系,能用有理数估计一个无理数的大致范围.3.会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算.【重点难点】重点:用算术平方根的性质进行实数的简单四则运算.难点:实数的分类及无理数的值的近似估计.【考点例解】例1 (1)下列实数:227,sin60 ,3π,0,3.14159,2(-无理数有()A. 1个B. 2个C. 3个D. 4个(2)下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是()A.①②③B.②③④C.①②④D.②④分析:本题主要是考查学生对无理数与实数概念的理解.解答:(1)C;(2)C.例2计算:021111sin3020082-⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭.分析:本题主要是考查零指数幂、负指数幂及算术平方根的化简与运算.解答:原式)11141122=-+⨯-=-+-=-例3 我国《劳动法》对劳动者的加班工资作出了明确规定:春节长假期间,前3天是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资;后4天是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资. 小王由于工作需要,今年春节的初一、初二、初三共加班三天(春节长假从十二月卅日开始). 如果小王的月平均工资为2800元,那么小王加班三天的加班工资应不低于元.分析:本题主要考查学生灵活应用实数运算的相关知识解决实际问题的能力.要注意的是今年的法定假期共有11天,因此日工资标准的计算方法是:280021.75÷.解答:()280021.752300%1200%1030÷⨯⨯+⨯≈(元).【考题选粹】1.(2007·内江)若a ,b均为整数,且当1x =时,代数式2x ax b ++的值为0,则b a 的算术平方根为 .2.(2007()312tan 452--⨯+ . 3.(2007·重庆)将正整数按如右图所示的规律排列下去. 若用有序实数对(n ,m )表示第n 排、从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 .【自我检测】见《数学中考复习一课一练》.1.3 整式1 ………………… 第一排23 ……………… 第二排456 …………… 第三排789 10 ……… 第四排 ……………………………………【教学目标】1.了解整式的有关概念,理解去括号法则,能熟练进行整式的加减运算.2.掌握正整数指数幂的运算性质,能在运算中灵活运用各种性质.3.会进行简单的整式乘法运算和简单的多项式除法运算,了解两个乘法公式及其几何背景,能运用乘法公式进行简便.4.会通过对问题的分析列出代数式,能熟练进行整式的化简与求值.【重点难点】重点:列代数式表示数量关系,整式的化简与求值.难点:乘法公式的灵活运用.【考点例解】例1 (1)已知整式3121y x a -与b a b y x +--23是同类项,那么a ,b 的值分别是( ) A. 2,-1 B. 2,1 C. -2,-1 D. -2,1(2)下列运算中正确的是( )A.853x x x =+B.()923x x = C.734x x x =⋅ D.()9322+=+x x (3)如果5m x =,25n x =,那么代数式52m n x -的值是 .分析:本题主要是考查同类项的概念和整式的加法、乘法和正整数指数幂的运算. 解答:(1)A ; (2)C ; (3)5.例2 (1)王老板以每枝a 元的单价买进玫瑰花100枝. 现以每枝比进价多两成的价格卖出70枝后,再以每枝比进价低b 元的价格将余下的30枝玫瑰花全部卖出,则王老板的全部玫瑰花共卖了 元(用含a ,b 的代数式表示).(2)如图3-1所示,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:①第4个图案中有白色纸片 张;②第n 个图案中有白色纸片 张. 分析:本题主要考查列代数式表示数量关系,第(1)题的关键是弄清前70枝玫瑰花的单价和后30枝的单价分别是多少;第(2)题的关键是要发现图案中的规律:第一个图形有4张白色纸片,以后每个图形都比前一个图形多3张白色纸片.解答:(1)()()b a b a a 3011430%20170-=-++.(2)①13; ②31n +.例3 先化简,再求值:()()()()232325121x x x x x +-----,其中13x =-.分析:本题主要考查乘法公式的灵活应用及整式的化简求值.解答这一类题目时,一般应先将整式化简,然后再将字母的值代入计算.解答:原式222945544195x x x x x x =--+-+-=-.当13x =-时,原式19583⎛⎫=⨯--=- ⎪⎝⎭.【考题选粹】1.(2006·济宁)()()2006200588-+-能被下列数整除的是( )A. 3B. 5C. 7D. 92.(2007·淄博)根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论(不要求证明).【自我检测】见《数学中考复习一课一练》.1.4 因式分解【教学目标】1.理解因式分解的概念,了解因式分解与整式乘法之间的关系.2.掌握因式分解的一般思考顺序,会运用提公因式法和公式法进行因式分解,会利用因式分解解决一些简单的实际问题.【重点难点】重点:运用提公因式法和公式法进行因式分解.难点:利用因式分解解决一些简单的实际问题.【考点例解】例1 (1)在一次数学课堂练习中,小聪做了以下4道因式分解题,你认为小聪做得不够完整的一道题是( )A.()321x x x x -=-B.()2222x xy y x y -+=- C.()22x y xy xy x y -=- D.()()22x y x y x y -=+-. (2)因式分解()219x --的结果是( )A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+.分析:本题主要是考查因式分解的概念和因式分解一般思考顺序,强调因式分解一定要分解到结果中的每个因式都不能再分解为止.解答:(1)A ; (2)B.例2 利用因式分解说明:712255-能被120整除.分析:要说明712255-能被120整除,关键是通过因式分解得到712255-含有因数120,可将712255-化为同底数形式,然后利用提公因式法分解因数.解答:∵ ()71214121221211255555515245120-=-=-=⨯=⨯, ∴ 712255-能被120整除.例3 在日常生活中经常需要密码,如到银行取款、上网等. 有种用“因式分解”法产生的密码方便记忆,原理是:如对于多项式,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各因式的值分别是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码. 同理,对于多项式324a ab -,若取10a =,10b =,则产生的密码是: (写出一个即可).分析:本题是因式分解的知识在实际生活中的简单应用. 解答时只需要先对多项式进行因式分解,再求各因式的值就可以了.解答:()()()32224422a ab a a b a a b a b -=-=-+,当10a =,10b =时,各因式的值分别是:10a =,210a b -=,230a b +=,所以密码可以为101030(也可以为103010或301010).【考题选粹】1.(2006·南通)已知2A a =+,25B a a =-+,2519C a a =+-,其中2a >.(1)求证:0B A ->,并指出A 与B 的大小关系;(2)指出A 与C 的大小关系,并说明理由.2.(2007·临安)已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,判断ABC ∆的形状. 阅读下面的解题过程:解:由 422422a b c b a c +=+ 得 442222a b a c b c -=-, ①即 ()()()2222222a b ab c a b +-=-, ② ∴ 222a b c +=, ③∴ ABC ∆是直角三角形. ④试问:以上解题过程是否正确? . 若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题的正确结论应该是 .【自我检测】见《数学中考复习一课一练》.1.5 分式【教学目标】1.了解分式概念,会求分式有意义、无意义和分式值为0时,分式中所含字母的条件.2.掌握分式的基本性质和分式的变号法则,能熟练地进行分式的通分和约分.3.掌握分式的加、减、乘、除四则运算,能灵活地运用分式的四则运算法则进行分式的化简和求值. 【重点难点】重点:分式的基本性质和分式的化简.难点:分式的化简和通过分式的运算解决简单的实际问题. 【考点例解】例1 (1)在函数23xy x =-中,自变量x 的取值范围是( ) A.0x ≠ B.32x ≠ C.32x > 且0x ≠ D.0x ≠且32x ≠.(22x 的值为 .(3)下列分式的变形中,正确的是( )A.1111a a b b +-=+-B.x y x y x y x y ---=-++C.()222x y x y x y x y --=-+ D.22x y x yx y x y--=++分析:本题主要考查分式的概念与分式的基本性质. 在分式中,要使分式有意义,分式的分母要不为零;要使分式值为0,则要求分子的值为0且分式有意义.解答:(1)B ; (2)x = (3)C. 例2 先化简:21111xx x ⎛⎫+÷ ⎪--⎝⎭,再选择一个恰当的x 的值代入求值. 分析:本题主要考查分式的化简和分式有意义的条件. 在分式化简中,经常可以把分式的除法改为乘法,再利用“分解约分”法进行化简. 在本题中的x 不能取0和±1. 解答:原式()()1111x x x x x x-+=⋅=+-,当2x =时,原式=3.例3 (1)已知一个正分数()0nm n m>>,如果分子、分母同时增加1,分数的值是增大减小?请证明你的结论;(2)若正分数()0nm n m>>中分子和分母同时增加2,3,…,k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定,民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板的比应不小于10%,并且这个比值越大,住宅的采光条件越好. 问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.分析:本题考查了分式的大小比较,并要求利用有关知识解决实际问题. 解题的关键是理解题意,得到正确的结论. 解答:(1)正分数()0nm n m>>中,若分子、分母同时增加1,分数的值增大,证明如下:∵ 0m n >>, ∴ 0m n ->,()10m m +>∴()1011n n m nm m m m +--=>++, 即11n n m m +>+. (2)正分数()0nm n m>>中分子和分母同时增加2,3,…,k (整数k >0)时,分式的值也增大. (3)住宅的采光条件变好,理由略.【考题选粹】1.(2007·东营)小明在考试时看到一道这样的题目:“先化简2211111aa a a ⎛⎫⎛⎫-÷-⎪ ⎪--+⎝⎭⎝⎭,再求值.”小明代入某个数后求得值为 3. 你能确定小明代入的是哪一个数吗?你认为他代入的这个数合适吗?为什么?2.(2007·嘉兴)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题. 例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”等等.(1)设322x x A x x =--+,24x B x-=,求A 与B 的值; (2)提出(1)的一个“逆向”问题,并解答这个问题. 【自我检测】见《数学中考复习一课一练》.1.6 二次根式【教学目标】1.了解二次根式的概念,掌握二次根式有意义的条件.2.了解二次根式的加、减、乘、除运算法则,会对简单的二次根式进行化简,会用二次根式的运算法则进行实数的简单四则运算. 【重点难点】重点:二次根式的化简和用二次根式的运算法则进行实数的简单四则运算. 难点:二次根式的化简. 【考点例解】例1 (1)若代数式2-x 在实数范围内有意义,则x 的取值范围是( ) A.2>x B.2≥x C.2<x D.2≤x .(2)若x 为实数,则下列各式中一定有意义的是( ) A.x -2 B.12+x C.21xD.22-x 分析:本题主要考查二次根式的概念,即在二次根式中,被开方数必须是非负数. 解答:(1)B ; (2)B.例2 (1)计算:⎪⎪⎭⎫ ⎝⎛-+483137512. (2)比较大小:-152.分析:本题主要考查二次根式性质的灵活应用和二次根式的混合运算. 第(1)题中,可先利用二次根式的性质进行化简,然后利用实数的运算法则进行计算;第(2)题要先逆用性质:()02≥=a a a ,再进行两个数的大小比较.解答:(1)原式()1232323433532=⨯=-+=. (2)∵ 6373-=-,60152-=-,且6063>,∴ 15273-<-.例 3 已知ABC ∆的三边a ,b ,c 满足224210212--+=--++b a c b a ,则ABC ∆为( ).A. 等腰三角形B. 正三角形C. 直角三角形D. 等腰直角三角形 分析:本题考查了二次根式的非负性,即:在二次根式a 中,0≥a 且0≥a . 解答:将原式变形,得 ()()021*********2=--+⎥⎦⎤⎢⎣⎡+---++-c b b a a .即 ()()02114522=--+--+-c b a .∴ 05=-a ,014=--b ,021=--c .∴ 5===c b a . ∴ ABC ∆为等边三角形,故选B. 【考题选粹】1.(2006·南充)已知0<a ,那么化简a a 22-的正确结果是( )A.a -B.aC.a 3-D.a 3 2.(2007·烟台)观察下列各式:312311=+,413412=+,514513=+,…,请将你发现的规律用含自然数()1≥n n 的等式表示出来: . 【自我检测】见《数学中考复习一课一练》.第一单元综合测试(数与式)班级 学号 姓名 得分 . 一、选择题(本题有10小题,每小题4分,共40分)1. 如果水库的水位高于标准水位3m 时,记作+3m ,那么低于标准水位2m 时,应记作( ) A. -2m B. -1m C. +1m D. +2m2. 2007年我国某省国税系统完成税收收入为3.45065×1011元,也就是收入了( ) A. 345.065亿元 B. 3450.65亿元 C. 34506.5亿元 D. 345065亿元 3. 若整式()16322+-+x m x 是一个完全平方式,那么m 的值是( )A. -5B. 7C. -1D. 7或 -1 4. 估计88的大小应在( )A. 9.1~9.2之间B. 9.2~9.3之间C. 9.3~9.4之间D. 9.4~9.5 5. 如图1,点A ,B 在数轴上对应的实数分别是m ,n ,那么A ,B 两点间的距离是( ) A.m n + B.m n - C.n m - D.n m -- 6. 下列运算中,错误的是( ) A.()0a ac c b bc =≠ B.1a b a b --=-+ C.0.55100.20.323a b a b a b a b ++=-- D.x y y xx y y x--=++ 7. 某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是( ) A. 31个 B. 33个 C.35个 D.37个8. 如果代数式2346x x -+的值为9,则代数式2463x x -+的值为( ) A. 7 B. 9 C. 12 D. 18 9. 如图2,图中阴影部分的面积是( ) A.5xy B.9xy C.8.5xy D.7.5xy10.已知m ,n 是两个连续自然数(m <n ),且q mn =,设p =p 的值是( )A.奇数B.偶数C.奇数或偶数D.有理数或无理数二、填空题(本题有6小题,每小题5分,共30分) 11.写出一个小于2的无理数: .12.列代数式表示:“数a 的2倍与10的和的二分之一”应为 . 13.已知7x y +=,且12xy =,则当x y <时,代数式11x y-的值为 . 14.一个矩形的面积是()29x -米2,它的一条边为()3x +米,那么它的另一边为 米.15.数学家发现一个魔术盒,当任意实数对...(),a b 进入时,会得到一个新的实数:21a b ++.例如把(3,-2)放入其中后,就会得到32+(-2)+1=8. 现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(),1m 放入其中后,得到的实数是 .16.如果2007个整数1a ,2a ,…,2007a 满足下列条件:10a =,212a a =-+,322a a =-+,…,200720062a a =-+,则1232007a a a a ++++= .三、解答题(本题有7小题,共80分)17.(10()012sin 452 3.14π--+- .18.(10分)先化简代数式:22221244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的a ,b 值代入求值.19.(10分)观察下面一列数,探求其中的规律: 1-,12,13-,14,15-,16, , , ,… (1)请在上面的横线上填出第7,8,9个数;(2)第2008个数是什么?第n 个数是什么?如果这一列数无限地排列下去,那么与哪个数越来越接近?20.(10分)分解因式:(1)44x y - (2)2484xy xy x -+21.(12分)2007年4月18日是全国铁路第六次大提速的第一天. 这一天,小明爸爸因要出差,于是他到火车站查询列车的开行时间,下表是他从火车站带回家的最新时刻表:2007年4月18日起××次列车时刻表小明爸爸找出了以前同一车次的时刻表如下:2006年3月20日××次列车时刻表比较了两张时刻表后,小明爸爸提出了下面两个问题,请你帮小明解答: (1)现在该次列车的运行时间比以前缩短了多少小时?(2)如果该次列车提速后的平均时速为200千米/小时,那么该次列车原来的平均时速为多少?(结果精确到个位)22.(14分)下面的图(1)是由边长为a 的正方形剪去一个边长为b 的小正方形后余下的图形.把图(1)剪开后,再拼成一个四边形,可以用来验证公式:22()()a b a b a b -=+-. (1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求:①拼成的图形是四边形;②在图(1)上画出剪裁线(用虚线表示); ③在拼出的图形上标出已知的边长.(2)选择其中的一种拼法写出验证上述公式的过程.23.(14分)设22131a =-,22253a =-,…,()()222121n a n n =+--(n ≥ 0的自然数). (1)探究:n a 是8的倍数吗?请说明理由,并用文字语言表述你所获得的结论; (2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出1a ,2a ,…,n a ,…,这一列数中从小到大排列的前4个完全平方数,并求:当n 满足什么条件时,n a 为完全平方数?aabb图(1)2.1 一次方程(组)【教学目标】1.理解方程、方程组,以及方程和方程组的解的概念.2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解.3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性. 【重点难点】重点:解一元一次方程和二元一次方程组的一般步骤与方法.难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组. 【考点例解】例1 (1)若关于x 的一元一次方程12332=---kx k x 的解是1-=x ,则k 的值是( ) A. 72 B. 1 C.1713- D. 0.(2)若二元一次方程组⎩⎨⎧=-=+433by x ay x 的解为⎩⎨⎧==12y x ,则b a -的值为( )A. 1B. 3C. -1D. -3 分析:本题主要考查方程和方程组的概念,以及一元一次方程和二元一次方程组的解法. 解答:(1)B ; (2)C. 例2 已知方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组()()()()⎩⎨⎧=-++=--+9.301523131322y x y x 的解是 .分析:本题主要考查一元一次方程或二元一次方程组的解法和整体代换的思想. 在解答时,既可以直接求方程组的解,也可以利用整体思想,分别把2+x 和1-y “看作”a 和b ,通过解一元一次方程来解决.解答:⎩⎨⎧==2.23.6y x .例3 陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还剩余418元.…”王老师算了一下说:“你肯定搞错了”.(1)王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释.(2)陈老师连忙拿出购物发票进行核对,发现自己的确是弄错了,因为他还买了一个笔记本. 但笔记本的单价已经模糊不清了,只能辨认出应该是小于10元的整数. 问:笔记本的单价可能是多少元?分析:本题考查了列一元一次方程解应用题. 列方程(组)解应用题的一般步骤是:审题、设元、列方程、解方程、检验和作答. 在检验时,不仅要检验所求得的结果是否是所列方程的解,而且还要检验方程的解是否符合实际问题.解答:(1)设单价为8元的书买了x 本,则单价为12元的书买了()x -105本.由题意得 ()4181500105128-=-+x x .解这个方程,得 5.44=x .因为书的本数一定是正整数,所以5.44=x (本)不合题意,因此陈老师错了.(2)设笔记本的单价为y 元,则由题意得 ()y x x --=-+4181500105128. 解这个关于y 的方程,得 1784-=x y .∵ 100<<y , ∴ 1017840<-<x , 解得 41884178<<x . 又∵ x 为正整数, ∴x 可以取45、46.当45=x 时,21784541784=-⨯=-=x y (元); 当46=x 时,61784641784=-⨯=-=x y (元). 答:笔记本的单价可能是2元或6元.例4 新星学校的一间阶梯教室内,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位.(1)请你在下表的空格内填写一个适当的代数式:(2)已知第4排有18个座位,第15排的座位数是第5排的座位数的2倍,则第21排有多少个座位?分析:本题考查了列二元一次方程组解应用题. 解答本题的关键是会从表中数据的变化中寻找出一定的规律,再利用规律求出a 和b 的值.解答:(1)3a b +.(2)根据题意,得 ()3181424a b a b a b +=⎧⎪⎨+=+⎪⎩,解得 122a b =⎧⎨=⎩. ∴ 1220252+⨯=.答:第21排有52个座位.【考题选粹】1.(2007·济宁)甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m ,甲、乙两人上山的速度比是6:4,并且甲、乙两人下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是 .2.(2007·北京)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a 元的奖励. 另外,种植的果树,从下一年起,每年每棵平均将有b 元的果实收入. 下表是某农户在头两年通过开荒种树每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+果实收入)【自我检测】见《数学中考复习一课一练》.2.2 分式方程【教学目标】1.了解分式方程的概念,能将实际问题中的等量关系用分式方程表示出来.2.会解可化为一元一次方程(或一元二次方程)的分式方程,体验转化的数学思想;了解增根的概念,会进行分式方程的验根.3.能根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解可化为一元一次方程(或一元二次方程)的分式方程的一般步骤与方法. 难点:根据实际问题中的数量关系,列出分式方程,并检验解的合理性.【考点例解】例1 如果关于x 的分式方程1133a x x -=++无解,那么a 的值是( ) A. 1 B. -1 C. 3 D. -3.分析:本题主要考查分式方程的增根概念. 需要注意的是:分式方程的增根应该满足变形后的整式方程,但不满足原分式方程.解答:A.例2 解分式方程:21124x x x -=--. 分析:本题主要考查分式方程的解法. 在解答时,应按照解分式方程的一般步骤进行,并注意验根.解答:去分母,得 ()()()2221x x x x +-+-=去括号,得 22241x x x +-+=移项,合并同类项,得 23x =-方程两边同时除以2,得 32x =-经检验,32x =-是原方程的解. 例3 某公司投资某个项目,现有甲、乙两个工程队有能力承包这个项目. 公司经调查发现:乙工程队单独完成工程所需的时间是甲工程队单独完成工程所需时间的2倍,;甲、乙两队合作完成工程需要20天,甲队每天的工作费用为1000元,乙队每天的工作费用为550元. 根据以上信息,从节约资金的角度考虑,该公司应选择哪个工程队来承包这个项目?公司应付出的费用为多少元?分析:本题考查了列分式方程解应用题. 解答本题的关键是根据题意求出甲、乙两队单独完成工程所需的时间,进而求出各自的总费用.解答:设甲队单独完成工程需要x 天,则乙队单独完成工程需要2x 天. 根据题意,得 112012x x ⎛⎫+= ⎪⎝⎭解得 30x = 经检验,30x =是原方程的解,且30x =和260x =都符合题意.∴ 应付甲工程队的费用为:30100030000⨯=(元),应付乙工程队的费用为:30255033000⨯⨯=(元).∵ 3000033000<, ∴ 该公司应选择甲工程队,需付出的总费用为30000元. 答:该公司应选择甲工程队,需付出的总费用为30000元.【考题选粹】1.(2007·青岛)某市在旧城改造过程中,需要整修一段全长2400米的道路. 为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务. 若设原计划每小时修路x 米,则根据题意可得方程 .2.(2007·怀化)解方程:25231x x x x +=++. 【自我检测】见《数学中考复习一课一练》.。