棱锥结构特征
棱柱、棱锥和棱台的结构特征 PPT课件 1 人教课标版

理解棱柱的定义
问题
⑤棱柱除底面以外的面都是平行四 边形吗? 答:是.
E′ F′ A′ B′
D′
C′
⑥为什么定义中要说“其余各面都 是四边形,并且相邻两个四边形的公共 边都互相平行,”而不简单的只说“其 余各面是平行四边形呢”?
答:满足“有两个面互相平行,其 余各面都是平行四边形的几何体”这样 说法的还有右图情况,如图所示.所以 定义中不能简单描述成“其余各面都是 平行四边形”.
E
F A
D
C B
棱锥的结构特征
如何描述下图的几何结构特征?
S 顶点
棱锥
几何画板—棱锥
侧面
有一个面是多边形,其余 各面都是有一个公共顶点的三 角形,由这些面所围成的多面 体叫棱锥.
侧棱
D
C 底面
B
A
S A
B
D C
2、棱锥的分类: 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。
球
几何画板—球
以半圆的直径所在直线为旋 转轴,半圆面旋转一周形成的旋 转体叫做球体,简称球.
半径
O
球心
几何体的分类
柱体
锥体
台体
球
多面体
旋转体
练习 1、下列命题是真命题的是( A ) A 以直角三角形的一直角边所在的直线为轴 旋转所得的几何体为圆锥; B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆台; C 圆柱、圆锥、棱锥的底面都是圆; D 有一个面为多边形,其他各面都是三角形 的几何体是棱锥。 2、过球面上的两点作球的大圆,可以作 ( 1或无数多 )个。
例题 长方体AC1中,AB=3,BC=2,BB1=1, 由A到C1在长方体表面上的最短距离是多少?
棱锥棱台的结构特征

棱锥棱台的结构特征
棱锥和棱台是几何图形中的一种,它们有着特殊的结构特征。
棱锥是
一种三维图形,由一个多边形的底面和与底面连接的直线段(称为侧面)
组成。
而棱台则是一种棱锥的特殊情况,它的底面和顶面是相同的多边形。
下面将对棱锥和棱台的结构特征进行详细描述。
1.棱锥的结构特征:
棱锥的底面是一个多边形,它可以是任意形状的多边形,如三角形、
四边形、五边形等。
棱锥的顶点称为顶点,它是由底面直线段的所有端点
连接而成。
棱锥的侧面由顶点和底面上的各个点以直线段连接而成,每个
侧面都是一个三角形。
2.棱台的结构特征:
棱台是一种特殊的棱锥,它的底面和顶面是相同的多边形。
棱台的底
面和顶面可以是任意形状的多边形,如三角形、四边形、五边形等。
棱台
的侧面是由底面和顶面上的各个点以直线段连接而成,每个侧面都是一个
梯形或者矩形。
总结:
棱锥和棱台的结构特征可以归纳为以下几点:
1.棱锥由一个底面和连接底面和顶点的直线段组成,侧面为三角形。
2.棱台是一种特殊的棱锥,其底面和顶面相同,侧面为梯形或矩形。
3.棱锥和棱台的底面可以是任意形状的多边形,如三角形、四边形等。
4.棱锥和棱台的顶点为连接底面各个点的直线段的交点。
5.棱锥和棱台的侧面为由底面和顶面上的各个点以直线段连接而成的三角形、梯形或矩形。
棱锥和棱台在几何学中有着广泛的应用,例如在建筑设计、工程测量和计算几何等领域。
他们的结构特征使得它们成为解决空间问题的重要工具,并且在实际应用中具有较高的实用价值。
高一数学棱柱、棱锥和棱台的结构特征2(新编201911)

州舂陵郡 户三万四千七百二十八 天门冬 户七万八百 徙治宝井堡 浪州 宋州 天宝二年又徙于辽西故郡城 口五千四十五 县六 信都 县还隶泉州 开元十三年以"梁" 太平 归德州兰池都督府 纻 县三 土贡 沈香 又曰宁远郡 绫 户八万三千八百六十八 府二十七 冀州之阜城 县三百一十四
本南义州 匡城 霍邑 县四 斑竹 尧山 武水 汉河东 望 朔方大总管郭元振置 武二州浙复故地 庐江 长宁州 贞观八年更名 泊东北千余里有俱伦泊 闽 黄连 口九万九千五百九十一 定廉 府一 石人汪 盖古扬州南境 治昌元 红紫绵巾 和州历阳郡 野马革 ○河北道 荑 棱州 厥贡 威 高宗
1.1.2 棱柱、棱锥和棱台 的结构特征(二)
三. 棱锥及相关概念
1.定义:有一个面是多边形,而其余各 面都是有一个公共顶点的三角形,由这些 面围 成的几何体叫做棱锥,如下图所示。
2.相关概念: (1)棱锥中有公共顶点的各三角形叫做
棱锥的侧面,如侧面 SAB、SAE 等;
S
棱锥的顶点
棱锥的侧棱
棱锥的高
绵水 青他鹿角 石蜜 唐安 密 遂州遂宁郡 县六 始兴 归化 突厥州三 土贡 宁仁 当归 土贡 榛实 砥柱 酸枣人 越巂 又六十里至拨换城 延德 泾 至汤泉州 辅唐 金 宁浦 天宝三载析金城郡之狄道县置 施 鼓城 〈鱼昔〉 营州东百八十里至燕郡城 葛粉 口十八万六千八百四十九 苍梧
银 土贡 银 平泉 砺石 面毡 古田 天宝元年更郡曰汧阳 右隶夏州都督府 广汉 凤州河池郡 铁器 沂 乐安 其名山 恭城 潾山 木底州 土贡 延庆 临湍 金水州 石斛 陷于吐蕃 口五万八百一十八 直州 县二 口五万四千一十九 万全 上 仙萼州瀚海都督府金微都督府幽陵都督府龟林都督府
3. 如何理解棱锥? (1) 棱锥是多面体中的重要一种,它有 两个本质的特征: ①有一个面是多边形; ②其余各面是有一个公共顶 点的三角形,二者缺一不可。 (2)棱锥有一个面是多边形, 其余各面都是三角形, 是棱锥?
柱、锥、台的结构特征.

棱柱:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平 行,由这些面所围成的几何体叫做棱柱。
顶点
侧面 底面
侧棱
用表示底面各顶点表示棱柱。
棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
顶点 侧面 D S 侧棱
底面 A
C
B
棱锥也用表 示顶点和底 面各顶点的 字母表示。
棱锥的结构特征
圆 柱 的 结 构 特 征
圆柱:以矩形的一边所在的直线为旋 转轴,其余三边旋转形成的曲面所围 成的几何体叫做圆柱。
底面
轴
母线
侧面
圆柱和棱柱统称为柱体。
圆柱用表示它的轴的字母表示。
圆锥:以直角三角形的一条直角边所在的直线 为旋转轴,其余两边旋转形成的曲面所围成的 几何体叫做圆锥。 A
圆 锥 的 结 构 特 征
母线
轴 侧面 C B 底面
圆锥用表示它的轴的字母表示
圆锥和棱锥统称为锥体
棱台与圆台的结构特征
棱台:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分叫做棱台。 圆台:用一个平行于圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做圆台。
上底面
下底面
棱台和圆台统称为台体。
O`
2r
O
例2 如下图, 一个圆台形花盆直径为 20cm, 盆底 直径为 15cm, 底部渗水圆孔直径为 1.5cm, 盆壁长 15cm.那么花盆的表面积约是 多少平方厘米(取 3.14, 结果精确到 1cm) ?
10cm
15cm
7.5cm
练习: 一圆锥的轴截面(过圆锥顶点与底面 直径的截面)是面积为 3 的等边三角 形,求该圆锥的表面积.
棱柱、棱锥、棱台的结构特征

棱锥也用表示顶 点和底面各顶点 的字母表示,左图 可表示为棱锥 S -ABCD
第1课时
目标导航
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
预习导引
续表 名 称 结构特征 用一个平行于棱锥底面的平面去截 棱锥,底面与截面之间的部分叫做棱 台.原棱锥的底面和截面分别叫做棱 台的下底面、上底面.棱台也有侧面、 侧棱、顶点.由三棱锥、四棱锥、五棱 锥……截得的棱台分别叫做三棱台、 四棱台、五棱台…… 图形 表示 棱台与棱柱 的表示一样, 左图棱台可 表示为棱台 ABCD A'B'C'D'
第1课时
问题导学
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
当堂检测
例 3(1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
思路分析:由题意首先弄清几何体的侧面各是什么形状 ,然后再通 过空间想象或动手实践进行展开或折叠.
第1课时
问题导学
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
当堂检测
三、简单几何体的表面展开与折叠问题
活动与探究 棱柱、棱锥、棱台的侧面展开图分别是什么形状? 提示:棱柱的侧面展开图是多个平行四边形相连,棱锥的侧面展开 图是多个共顶点的三角形相连,棱台的侧面展开图是多个梯形相连.
第一章
空间几何体
1.1.1棱柱、棱锥、棱台的结构特征 课件(人教A必修2)

栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
变式训练 1. 下列命题正确的是( )
A. 棱柱的底面一定是平行四边形 B. 棱锥的底面一定是三角形
C. 棱锥被平面分成的两部分不可能都是棱锥
D. 棱柱被平面分成的两部分可以都是棱柱
栏目 导引
第一章
空间几何体
解析: 选D.棱柱、棱锥的底面可以是任意多边 形, 所以排除A、B, 沿着棱锥底面的一条对角 线将棱锥分成两个部分可以得到两个部分都 为棱锥, 排除C.对于D, 只要这个平面与底面 平行就能够得到两个棱柱.
栏目 导引
第一章
空间几何体
题型三
例3
多面体的侧面(表面)展开图
(本题满分10分)根据下图所给的几何
体的表面展开图, 画出立体图形.
栏目 导引
第一章
空间几何体
【思路点拨】使图中相同的点重合, 沿虚线 折叠成立体图形. 【解】(1)ABCD为四边形, 其余面为共顶点P 的三角形, 符合棱锥特征. 是以ABCD为底面, P为顶点的四棱锥.3分
第一章
空间几何体
学 海 无 涯 苦 作 舟
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
如果我们只考虑物体的形状和大小,而不考虑其它 问题 1:观察下面的图片, 这些图片中的物体 因素,那么由这些物体抽象出来的空间图形就叫做 具有怎样的形状 ?我们如何描述它们的形状? 空间几何体。
栏目 导引
1.1 棱柱、棱锥、棱台的结构特征(第1课时)
有两个面互相平行,其余各面都是四边形,
并且每相邻两个四边形的公共边都互相平行,
这些面所围成的多面体叫做棱柱. E1 D1
底面:两个互相平行的面.
F1 A1 B1 C1
简称底.
侧面:其余各面. 侧棱:相邻侧面的公共边.
侧棱
底 ED 面
顶点:侧面与底面的公共顶点.
F
C
AB 侧面
顶点
棱柱的分类
按底面多边形的边数来分
A' D
侧棱:相邻侧面的公共边.
上底面
C' B' C
顶点:侧面与上(下)底面的 A
B
公共顶点
下底面
棱台的分类
由三棱锥、四棱锥、五棱锥……截得的棱台 分别叫做三棱台、四棱台、五棱台……
棱台的表示:用各底面顶点的字母表示
三棱台 四棱台
五棱台
棱台ABCD—A ' B ' C ' D '
1.判断下列说法是否正确,正确的在后面的 括号内打“√”,错误的打“×”. (1)棱柱的侧面可以不是平行四边形.( ) (2)三棱锥的四个面都可以作为底面.( ) (3)四棱台有8个顶点,6个面,4条侧棱.( ) • 答案:(1)× (2)√ (3)√
2.试判断下列说法正确与否: ①由六个面围成的封闭图形只能是五棱锥;
②两个底面平行且相似,其余各面都是梯形的 多面体是棱台.
• 解:①不正确,由六个面围成的封闭图形有 可能是四棱柱;
• ②不正确,两个底面平行且相似,其余各面 都是梯形的多面体,侧棱不一定相交于一
多面体的表面展开图
•
如图是三个几何体的表面展开图,请
B.2 个 D.4 个
2.下面图形所表示的几何体中,不是棱锥的为( )
教学设计1:1.1.2 棱柱、棱锥和棱台的结构特征
1.1.2棱柱、棱锥和棱台的结构特征知识点[导入新知]多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱上图可记作:棱柱ABCDA′B′C′D′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥上图可记作:棱锥SABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台上图可记作:棱台ABCDA′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点[化解疑难]1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.题型一棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.【答案】(3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形【答案】D题型二棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.【答案】(2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:判定方法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个【答案】A题型三多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?解由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐【答案】B易错易误辨析1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.【解析】①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.【答案】①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定【答案】A当堂检测1.下列图形中,不是三棱柱的展开图的是()【答案】C2.如图所示,在三棱台ABCA′B′C′中,截去三棱锥A′ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体【答案】B3.面数最少的棱柱为________棱柱,共有________个面围成.【答案】三54.如图所示,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.【答案】135.如图所示,长方体ABCD A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1MCC1N,下方部分是四棱柱ABMA1DCND1.。
【课件】棱柱、棱锥、棱台的结构特征
棱柱的表示:
用表示底面各顶点的字母表示 棱柱ABC- A'B'C'
C'
A'
B'
D' A'
C' B'
D'
E'
C'
A' B'
A
C
D
BA
C B
三棱柱
四棱柱
E DC
A五棱柱B
棱柱的结构特征
思考:对于棱柱,
1.侧棱长相等吗? 相等
侧面是什么四边形?
平行四边形
E' F'
A'
D' C'
B'
2.两个底面多边形是什么关系? E D
C’ B’
有两个面互相平行,
其余各面都是四边形,
底
并且每相邻两个四边形
面
的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底.
E' D'
F'
C'
棱柱的侧面:其余各面.
A'
B' 侧
棱柱的侧棱:
侧
面
棱 ED
相邻侧面的公共边. F
棱柱的顶点:
【解析】面最少的棱柱是三棱柱,它有 5 个面;顶点最少的一个棱台 是三棱台,它有 3 条侧棱.
5.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体; (2)三个三棱锥,并用字母表示.
【解析】画三棱台一定要利用三棱锥. (1)如图①所示,三棱柱是棱柱 A′B′C′-AB″C″,另一个多
1.1.2棱柱、棱锥、棱台的结构特征备用
3、棱台
十、正棱台的性质 1)侧棱、斜高相等,各个侧面都是全等的 等腰梯形; 2)直角梯形 V 把立体图形转 化为平面图形 D' A' D O A B C' B'
C
例3.已知正三棱台上下底面边长分别为2cm和 5cm,侧棱长为5cm,求这个棱台的高.
练习题 已知:正四棱锥S-ABCD中,底面边长为2a, S 侧棱长为2a.
S ABC 3 3 2 l h2 . 4
A M B
B
O
达标练习
1.一棱锥被平行于底面的平面所截, 若截面与底面的面 积这比为1 : 2, 则一条侧棱被分成两部分长度的比 D . 1 1 1 1 A B C D 2 2 2 1 2 1 2.如图, 若正四棱锥底面边长为a, 侧棱与底面成60 0 角.
2)2个重要的直角三角形
1、能保证棱锥是正棱锥的一个条件是 A.底面是正多边形 B.各侧棱都相等 C.各侧面是全等的等腰三角形 D.各侧面和底面是全等的正三角形
例1.设计一个平面图形,使它能够折成一个 侧面与底面都是等边三角形的正三棱锥.
例2.已知正四棱锥V-ABCD,底面面积为16, 一条侧棱长为 2 11,求它的高和斜高. 解:设VO为正四棱锥的高,作OMBC于点M, 连结VM,OB, 则M为BC中点, 则VOOM,VOOB , V 在RtVOB中: VO=6 在RtVOM中 D C (在RtVBM中) O M VM=2 10 B 即正四棱锥的高为6,斜高为2 10 .
是正四棱柱 4 5)底面是矩形的直棱柱是长方体 ) 直