图形的初步认识精选习题

合集下载

图形认识初步练习题

图形认识初步练习题

图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。

图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。

以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。

练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。

A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。

A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。

A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。

通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。

初一数学图形的初步认识练习题及答案

初一数学图形的初步认识练习题及答案

一、填空题 (每题3分,共30分)1、三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、42.79= 度 分 秒;4、 假如∠α=29°35′,那么∠α的余角的度数为 ;5、如图2,从家A 上学时要走近路到学校B ,最近的路途为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;7.如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD =8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为 ;10. 经过平面内四点中的随意两点画直线,总共可以画 条直线;二选择题(每题3分,共24分)题号12345 6789CBAD E F(1(2(3图2图3 图图A B C D7、 将一个直角三角形绕它的直角边旋转一周得到的几何体是( )12、 假如与互补,与互余,则与的关系是( ) A.=B. C.D.以上都不对13、 对于直线,线段,射线,在下列各图中能相交的是( )14、 下面图形经折叠后可以围成一个棱柱的有( )A. 1个B. 2个C. 3个D. 4个15、 已知M 是线段AB 的中点,那么,①AB=2AM ;②BM=12AB ;③AM=BM ;④AM+BM=AB 。

上面四个式子中,正确的有 ( ) A .1个 B .2个 C .3个 D .4个16、 在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、 如右图,AB 、CD交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( )A .120°B .130°C .140°D .150°答案18、图中(1)-(4)各图都是正方体的外表绽开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保存作图痕迹)20、根据要求,在图中画出表示下列方向的射线:(1)南偏东300(2)北偏西600(3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。

七年级数学人教版图形认识初步(点、线、面、体)练习题

七年级数学人教版图形认识初步(点、线、面、体)练习题

图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。

精品 七年级数学上册 图形认识初步综合练习题

精品 七年级数学上册 图形认识初步综合练习题

图形认识初步图形认识初步一三视图:主视图、左视图、俯视图直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。

射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;②用一个小写字母表示。

射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

线段:直线上两点和它们之间的部分叫做线段。

线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。

线段的基本性质:两点的所有连线中,线段最短。

简称,两点之间线段最短。

两点的距离:连接两点间的线段的长度叫做这两点的距离。

线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。

线段大小的比较方法:(1)叠合法;(2)度量法;(3)估测法。

若线段上有n个点(含两个端点),则共有2)1(-nn条线段。

若线段内有n个点(不含端点),则共有2)1(+nn条线段。

例1.棱长为1的正方体,横放成如图所示的形状,现请回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,请求出该物体的表面积.(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.例2.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.例3.将线段AB 延长至C ,使BC=31AB ,延长BC 至点D ,使CD =31BC ,延长CD 至点E ,使DE=31CD ,若CE=8㎝,求AB 的长。

图形认识初步练习题

图形认识初步练习题

图形认识初步练习题一、选择题1. 一个正方形有几条边?A. 2B. 3C. 4D. 52. 下列哪个图形不是平面图形?A. 三角形B. 圆形C. 立方体D. 长方形3. 一个正五边形的内角是多少度?A. 90度B. 108度C. 120度D. 135度4. 一个圆的周长与直径的比值称为什么?A. 半径B. 直径C. 圆周率D. 面积5. 两个全等三角形可以组成哪种图形?A. 三角形B. 四边形C. 五边形D. 六边形二、填空题6. 一个正六边形的内角和为________度。

7. 一个圆的面积公式为________。

8. 一个等腰三角形的两个底角相等,其顶角为________度。

9. 一个直角三角形的两条直角边长度相等,这种三角形称为________三角形。

10. 一个平行四边形的对角线将平行四边形分成两个________三角形。

三、判断题11. 所有正多边形的外角和都是360度。

()12. 一个圆的半径增加1倍,其面积增加2倍。

()13. 所有等边三角形的内角都是60度。

()14. 一个矩形的对角线相等,这个矩形一定是正方形。

()15. 一个正二十边形的中心角是18度。

()四、简答题16. 描述一个圆的对称性。

17. 解释什么是相似图形,并给出两个相似图形的例子。

18. 为什么说三角形是最稳定的图形?19. 说明什么是黄金分割,并给出一个自然界中的例子。

20. 描述如何使用勾股定理来解决一个直角三角形的问题。

五、计算题21. 已知一个圆的半径为7厘米,求这个圆的周长和面积。

22. 如果一个等腰三角形的底边长为10厘米,高为8厘米,求其周长。

23. 一个长方形的长为15厘米,宽为10厘米,求其面积和对角线的长度。

24. 已知一个正六边形的边长为5厘米,求其周长和面积。

25. 如果一个直角三角形的两条直角边分别为3厘米和4厘米,求其斜边的长度。

六、作图题26. 画一个边长为5厘米的正方形,并标出其四个顶点。

图形的初步认识练习题

图形的初步认识练习题

图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。

7. 一个圆的周长公式是________。

8. 直角三角形的两个锐角之和等于________。

9. 一个平行四边形的对边是________。

10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。

三、判断题11. 所有的正方形都是矩形。

()12. 两条平行线永远不会相交。

()13. 一个圆的直径是半径的两倍。

()14. 一个三角形的内角和总是180°。

()15. 一个多边形的外角和总是360°。

()四、简答题16. 描述什么是平面图形,并给出两个例子。

17. 解释什么是对称图形,并给出一个例子。

18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。

20. 什么是图形的相似比?请给出计算相似比的公式。

五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。

22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。

23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析微探究小专题4与角平分线有关的计算

所以2∠ BMA1+2∠ CMD1=180°-∠1.
°−°
所以∠ BMA1+∠ CMD1=
=75°.

所以∠ BMC =∠ BMA1+∠1+∠ CMD1=30°+75°=105°.
思路点拨
此题主要考查折叠的性质,角平分线的性质,将∠ BMA1+∠ CMD1
看成一个整体求解,运用了整体思想.
(2)受兴趣小组的启发,智慧小组将一个直角三角尺中60°角的顶点放
在点 O 处(如图3),即当∠ COD =60°时,请你求出∠ MOC +∠ DON
的度数;
数学思考:(3)请你在图1中,求∠ MOC +∠ DON 的度数(用含有α的式
第二章
几何图形的初步认识
微探究小专题4
与角平分线有关的计算
微探究小专题4
类型1
与角平分线有关的计算
与角的和差倍分有关的计算
1. 如图,直线 AB , CD 相交于点 O ,∠ DOE =90°, OF 平分
∠ BOD ,∠ AOE =24°,则∠ DOF 的度数是(
A. 24°
B. 33°
1
2
B
)

所以∠ BOD = ∠ AOB =15°.

因为∠ BOC =50°,
所以∠ DOC =∠ BOC -∠ BOD =35°.
综上所述,∠ DOC 的度数为35°或65°.
1
2
3
4
5
6
7
8
9
微探究小专题4
与角平分线有关的计算
4. 在同一平面内,若∠ BOA =50°,∠ BOC =30°, OM 平分
1
2
3
4
5
6
7
8

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析章末整合集训


且 MC ∶ CB =1∶2,则线段 AC 的长度为(
A. 8 cm
B. 6 cm
A
)
C. 4 cm
D. 2 cm
【解析】因为长度为12 cm的线段 AB 的中点为 M ,所以 AM = BM =6 cm.
因为点 C 将线段 MB 分成 MC ∶ CB =1∶2,所以 MC =2 cm, CB =4 cm.
A. 2个
1
B. 3个
2
3
4
5
C. 4个
6
7
8
9
10
D. 5个
11
12
13
14
15
16
17
章末整合集训
【解析】柱体包括圆柱、棱柱,所以柱体的两个底面一样大,故①说法
正确;
圆柱、圆锥的底面都是圆,故②说法正确;
棱柱的底面可以为任意多边形,故③说法错误;
长方体符合柱体的特征,一定是柱体,故④说法正确;
因为 AB =60, BC =48,所以 AC =12.

因为 AE = AC ,所以 AE =3, CE =9.

因为 CF =2 FB , BC = BF + CF ,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
章末整合集训
所以 BF =16, CF =32.
因为 EF = EC + CF ,所以 EF =41;
线,故②说法正确;
三条直线两两相交时,可能有1个交点,也可能有3个交点,故③说
法错误;
两点之间线段最短,所以 AB < AC + BC ,故④说法正确.

图形初步认识练习题

图形初步认识练习题在学习图形的初步认识中,我们需要通过实际操作和练习题来加深对各种图形的理解。

下面是一些图形初步认识的练习题,通过解答这些题目,你能更好地掌握图形相关知识。

题目一:根据图形特征,判断下列图形的名称。

1. 该图形是由四条相等长度的线段构成,且相邻的两条线段之间夹角为90度。

图形名称:正方形。

2. 该图形是由三条线段以其中两条线段为基边,通过连接这两条线段的中点而形成的一个三角形。

图形名称:等腰三角形。

3. 该图形是由四条不相交的线段构成,其中两条相对的线段长度相等,且两两夹角均为90度。

图形名称:长方形。

题目二:判断下列说法的正确性。

正确的写“√”,错误的写“×”。

1. 正方形的特点是四个角都是直角。

√2. 所有的长方形都是正方形。

×3. 任意两条线段长度相等的四边形一定是正方形。

×4. 等边三角形的三个内角都是直角。

×5. 长方形和正方形的特点是两对对边相等。

√题目三:判断下列图形是否是多边形。

是的写“是”,不是的写“不是”。

1. 圆形不是2. 五角星是3. 梯形是4. 椭圆不是5. 正多边形是题目四:判断下列图形是否为全等图形。

是的写“是”,不是的写“不是”。

1. 正方形和长方形是2. 三角形和四边形不是3. 等腰三角形和等边三角形是4. 长方形和平行四边形不是5. 圆和椭圆不是题目五:根据图形特征,填写下列空格中的数字。

1. 正方形的内角和是____。

答案:360度。

2. 正三角形的内角和是____。

答案:180度。

3. 长方形的内角和是____。

答案:360度。

4. 五边形的内角和是____。

答案:540度。

5. 六边形的内角和是____。

答案:720度。

通过以上练习题的解答,相信你对图形的初步认识会更加深入。

继续进行类似的练习,并多进行实际操作,操练各种图形的绘画和测量,可以更好地巩固所学内容。

希望你能在图形认识的学习中取得更好的成绩!。

图形的初步认识单元测试题

54西东北北西东AB第4章 图形的初步认识单元测试题一、选择题:(每小题4分,共48分)1.如图所示哪个图形不能折成一个正方体表面?( )A B CD2.下图中所示的三视图是什么立体图形?( )正视图左视图俯视图GOAE D B(第8题) A.棱锥 B.圆柱 C.圆锥 D.圆柱与圆锥组合体3.如上图所示,OE ⊥AB 于O.OC 、OD 分别是∠AOE 、∠BOE 的平分线,图中互余的角共有( )A.3对B.4对C.5对D.6对4.如果两个角两条边对应平行,其中一个角为34度,则另一个角为______度. A.34° B.56° C.34°或56° D.34°或146°5.下列4种说法中,正确的说法有( )(1)相等且互补的两个角都是直角; (2)两个角互补,则它们的角平分线互相垂直(3)两个角互为邻补角,则它们的角平分线互相垂直; (4)一个角的两个邻补角是对顶角. A.1个 B.2个 C.3个 D.4个6.∠A 与∠B 互为补角,且∠A>∠B,那么∠B 的余角等于( )A. 12(∠A-∠B)B. 12(∠A+∠B)C. 12∠AD. 12∠B7.如图所示的立方体,如果把它展开的图形是( )8.如图,由B 测A 的方向是( )A.北偏西36°B.北偏西54°C.南偏东36°D.南偏东54° 9.平行于同一直线的两条直线( )3题O C A D BA.平行B.垂直C.相交D.平行或重合10.将线段AB 延长至C,再将AB 反向延长至D,则图中共有( )条线段. A.3 B.4 C.5 D.611.已知∠AMB=45°,∠BMC=30°,则∠AMC=( )A.45°B.15°或30°C.75°D.15°或75° 二、填空题:(每小题3分,共12分)12.若一个角的补角相等于这个角的余角的6倍,则这个角为______度.第12题O CADB13.如图所示,已知∠AOB=160°,∠AOC=∠BOD=90°,则∠COD=_____度.14.如图所示,已知直线AB 、CD 相交于O,OE 平分∠AOC,∠AOE=25°,则∠BOD= ____度. 15. 计算:180°-23°13′6″=__________. 三、解答题:16,如图,OC 平分∠AOB,∠AOB=60°,∠AOD=50°,求∠COD 的度数.17. 若线段AB=16cm,在直线AB 上有一点C,且BC=8cm,M 是线段AC 的中点,求AM 的长.第13题 OCA E DB13题 114题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


西
图形的初步认识精选题
一、选择题:
1、一条直线上有n 个点,则以这n 个点为端点的射线共有( )
A.n 条
B.)1(+n 条
C.)2(+n 条
D.n 2条
2.一条直线上有n 个点,则以这n 个点为端点的射线共有( )
A.n 条
B.)1(+n 条
C.)2(+n 条
D.n 2条
3.一个角的余角和这个角的补角也互为补角,这个角的度数等于( )
A 、900
B 、750
C 、450
D 、150
4.下列关于角的说法正确的个数是( )
①角是由两条射线组成的图形;②角的边越长,角越大;
③在角一边延长线上取一点D;
④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4

5.如图所示哪个图形不能折成一个正方体表面?(
)
A
B
C
D
6.下图中所示的三视图是什么立体图形?( )
正视图左视图俯视图
(第8题)
A.棱锥
B.圆柱
C.圆锥
D.圆柱与圆锥组合体
7.∠A 与∠B 互为补角,且∠A>∠B,那么∠B 的余角等于( ) A.
12
(∠A-∠B) B.
12
(∠A+∠B) C.
12
∠A D.
12
∠B
8.如图,由B 测A 的方向是( )
O
A
B
A
B
C
D E F
1
2
3
A.北偏西36°
B.北偏西54°
C.南偏东36°
D.南偏东54° 9.平行于同一直线的两条直线( )
A.平行
B.垂直
C.相交
D.平行或重合
10.将线段AB 延长至C,再将AB 反向延长至D,则图中共有( )条线段. A.3 B.4 C.5 D.6 二、填空题:
11.若一个角的补角相等于这个角的余角的6倍,则这个角为______度.
第12题
O C
A
D
B
12.如图所示,已知∠AOB=160°,∠AOC=∠BOD=90°,则∠COD=_____度.
13.如图所示,已知直线AB 、CD 相交于O,OE 平分∠AOC,∠AOE=25°,则∠BOD= ____度.
14.四条直线两两相交时,交点个数最多有 个.
15. 计算:180°-23°13′6″=__________.
三、解答题:
16.如图所示,已知AB ∥CD,∠A=∠C 试判断AD 与BC 的位置关系并加以说
明.
C
A
D B
17题 18题 19题
17. 如图,直线AB 、CD 被EF 所截,如果1115,265
∠=∠=
,就可以说明,AB //CD .
请把下面说明过程补充完整.
因为265∠= ( ),
第13
题 O
C
A E
D
B
14题 15题
O
C A
D B
所以3∠= .又因为1115,∠=
所以13∠=∠,
所以 // ( ,两直线平行).
18.如图,已知∠AOB ,请你画出它的余角、补角及对顶角.
19,如图,OC 平分∠AOB,∠AOB=60°,∠AOD=50°,求∠COD 的度数.
20.已知,CB=4cm,DB=7cm ,D 是线段AC 的中点,,求AC 、 AB 的长。

21.如图11所示,已知∠AOB =90°,∠BOC =60°,OD 是∠AOC 的平分线, 求∠BOD 。

22.如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,
∠COF =34°,求∠BOD 的度数.
23.如图所示是由几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体的主视图和左视图:
22. 若线段AB=16cm,在直线AB 上有一点C,且BC=8cm,M 是线段AC 的中点,求AM 的长.
23已知,如图,直线MN 与直线AB 、CD 相交于M 、N ,且∠3=∠4,试说明∠1=∠2.
C
D
B A
M N
1
3
4 2 C
A
E D
B
23题 24题
24、如图,AB平行于CD,BE与CD交于E点,判断角ABE,角BED。

角CDE的和的大小。

相关文档
最新文档