《光纤光学教学课件》第二讲
合集下载
《光纤光学教学课件》第三讲

优点:简单直观,适合于分析芯径较粗的多模光纤。
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
14.11.2020
.
2
© HUST 2012
14.11.2020
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发,通过求解电磁波所遵 从的麦克斯韦方程,导出电磁波的场分布。
2 (x ,y ,z) k2 (x ,y ,z) 0
ke /V p2/n0k
14.11.2020
.
© HUST 2012
12 14.11.2020
2.2 程函方程与射线方程
一、程函方程:光程函数方程
设上述的标量场方程的解有如下形式: 0 ( x, y, z)eik0Q( x, y,z)
Q(x,y,z) 是光程函数,代入亥姆赫兹方程得:
由 Q2 n2
.
n
14 14.11.2020
单位矢量相等:
u ndr Q
n ds
又有:
d dxi dr•
ds i dsxi ds
对式 Q2 n2 ,求导数得:
2 Q Q 2 n n
nddrsQnn
14.11.2020
.
© HUST 2012
15 14.11.2020
nd Qnn
ds ddsnddrsn
光线方程
14.11.2020
.
© HUST 2012
16 14.11.2020
光线方程的物理意义:
当光线与z 轴夹角很小时,有:
物理意义:
ddznddrznr
• 将光线轨迹(由r描述)和空间折射率分布(n)联系起来;
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
14.11.2020
.
2
© HUST 2012
14.11.2020
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发,通过求解电磁波所遵 从的麦克斯韦方程,导出电磁波的场分布。
2 (x ,y ,z) k2 (x ,y ,z) 0
ke /V p2/n0k
14.11.2020
.
© HUST 2012
12 14.11.2020
2.2 程函方程与射线方程
一、程函方程:光程函数方程
设上述的标量场方程的解有如下形式: 0 ( x, y, z)eik0Q( x, y,z)
Q(x,y,z) 是光程函数,代入亥姆赫兹方程得:
由 Q2 n2
.
n
14 14.11.2020
单位矢量相等:
u ndr Q
n ds
又有:
d dxi dr•
ds i dsxi ds
对式 Q2 n2 ,求导数得:
2 Q Q 2 n n
nddrsQnn
14.11.2020
.
© HUST 2012
15 14.11.2020
nd Qnn
ds ddsnddrsn
光线方程
14.11.2020
.
© HUST 2012
16 14.11.2020
光线方程的物理意义:
当光线与z 轴夹角很小时,有:
物理意义:
ddznddrznr
• 将光线轨迹(由r描述)和空间折射率分布(n)联系起来;
光纤光学PPT课件02

按材料分:
石英 纯度高, 通信 塑料 成本低,损耗大 红外光纤 极低理论损耗,用于跨洋通信等
特种光纤:
保偏(单偏振)光纤;有源光纤;晶体光纤 零/非零色散位移光纤;负色散光纤; 特殊涂层光纤;耐辐射光纤;发光光纤
1-2 光纤光学的基本方程
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
模式的场分量
模式场分布由六个场分量唯一决定: Ex Ey Ez Hx Hy Hz Er Ef Ez Hr Hf Hz
场的横向分量可由纵向分量来表示: 纵横关系式(1.2.25-1.2.28)—直角坐标系 (1.2.29-1.2.32)—直角坐标系
Ez 和 Hz 总是独立满足波导场方程。
模式命名
“芯 / 包”结构 凸形折射率分布,n1>n2 低传输损耗
光纤的分类(1)按用途分
通信光纤 传感光纤 传光光纤 传像光纤
光纤的分类(2)按折射率分布
光纤的分类(3)按光纤传输模式分
模式: 光场在光纤横截面上的分布, 横模 单模光纤: 针对给定的光波长,只允许一个模式传输
光纤的分类(4)按材料分
刘海荣 (Dr. Liu Hairong)
第一章 光纤光学的基本理论
光纤光学所涉及的基本问题
(1)模式的激励 (光的入射) (2) 模式的分布 (光线传播轨迹) (3)传输损耗 (损耗) (4)光信号的畸变 (色散) (5) 模式耦合
光纤技术所涉及的基本问题
(1)参数的测试技术 (2)自聚焦,准直技术 (3)光纤间连接技术,光纤与光源间的耦合技术 (4)光隔离滤波技术 (5)光的放大技术
根据场的纵向分量Ez和Hz的存在与否,可将模式命 名为:
(1)横电磁模(TEM): Ez=Hz=0;
石英 纯度高, 通信 塑料 成本低,损耗大 红外光纤 极低理论损耗,用于跨洋通信等
特种光纤:
保偏(单偏振)光纤;有源光纤;晶体光纤 零/非零色散位移光纤;负色散光纤; 特殊涂层光纤;耐辐射光纤;发光光纤
1-2 光纤光学的基本方程
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
模式的场分量
模式场分布由六个场分量唯一决定: Ex Ey Ez Hx Hy Hz Er Ef Ez Hr Hf Hz
场的横向分量可由纵向分量来表示: 纵横关系式(1.2.25-1.2.28)—直角坐标系 (1.2.29-1.2.32)—直角坐标系
Ez 和 Hz 总是独立满足波导场方程。
模式命名
“芯 / 包”结构 凸形折射率分布,n1>n2 低传输损耗
光纤的分类(1)按用途分
通信光纤 传感光纤 传光光纤 传像光纤
光纤的分类(2)按折射率分布
光纤的分类(3)按光纤传输模式分
模式: 光场在光纤横截面上的分布, 横模 单模光纤: 针对给定的光波长,只允许一个模式传输
光纤的分类(4)按材料分
刘海荣 (Dr. Liu Hairong)
第一章 光纤光学的基本理论
光纤光学所涉及的基本问题
(1)模式的激励 (光的入射) (2) 模式的分布 (光线传播轨迹) (3)传输损耗 (损耗) (4)光信号的畸变 (色散) (5) 模式耦合
光纤技术所涉及的基本问题
(1)参数的测试技术 (2)自聚焦,准直技术 (3)光纤间连接技术,光纤与光源间的耦合技术 (4)光隔离滤波技术 (5)光的放大技术
根据场的纵向分量Ez和Hz的存在与否,可将模式命 名为:
(1)横电磁模(TEM): Ez=Hz=0;
第5章-光纤光学ppt课件光纤的特征参数与测试技术

对于 1 Gbps速率的光脉冲,脉宽约为 1 ns. 如果脉冲展宽 达到脉宽的20%,则系统将不能工作。上述情形显然不适 合于1 Gbps速率,因为脉冲展宽已经达到100%;但是对 于 155 Mbps速率系统没有问题,因为 其脉冲宽度为 6.5 ns,20%的展宽为1300ps。
如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲展 宽值为 : D = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
显然这种情形下, 1 Gbps速率光通信系统没有任何问题。
课堂测验(7)
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功率
为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55μm的波长损耗比1.3μm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤的损耗
§5.1.1 光纤材料的吸收损耗
光纤的损耗谱
不断拓展的光纤窗口波长
2004年
7
§5.1.2 散射损耗
特点:不可能消除的损耗
散射损耗
特点:非线性散射
产生新的频率分量
散射
机理: 光
新光波长+声子
§ 5.1.3 光纤的弯曲损耗
物理机制
光纤发生弯曲
全反射条件破坏
约束能力下降
导摸转化为辐射摸
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零?
习题:5.4~5.11
如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲展 宽值为 : D = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
显然这种情形下, 1 Gbps速率光通信系统没有任何问题。
课堂测验(7)
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功率
为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55μm的波长损耗比1.3μm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤的损耗
§5.1.1 光纤材料的吸收损耗
光纤的损耗谱
不断拓展的光纤窗口波长
2004年
7
§5.1.2 散射损耗
特点:不可能消除的损耗
散射损耗
特点:非线性散射
产生新的频率分量
散射
机理: 光
新光波长+声子
§ 5.1.3 光纤的弯曲损耗
物理机制
光纤发生弯曲
全反射条件破坏
约束能力下降
导摸转化为辐射摸
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零?
习题:5.4~5.11
光纤光学-第二章

第12页
《光纤光学》第二章
光纤光学基本方程
在光的传播方向上,各点的光矢量在确定的平面内,这种光称 为平面偏振光。也由于在垂直于传播方向的平面内,平面偏 振的光矢量端点的轨迹为一直线,又称为线偏振光。
E
振动面
符号表示
v
3)圆偏振光与椭圆偏振光 传播方向相同、振动方向相互垂直、相位差恒定的两线偏振 光叠加(或组合)可合成光矢量有规则变化的圆偏振光或椭 圆偏振光。
2 2 2 2 2 2 x y z
2
1 1 2 (r ) 2 2 2 r r r r z
2
直角坐标系
第7页
圆柱坐标系
《光纤光学》第二章
光纤光学基本方程
自由介质中的单色均匀平面波
i (t kr ) E (r , t ) E0e
y 右旋 E 左旋 Ey
O
Ex
x
第15页
《光纤光学》第二章
光纤光学基本方程
第16页
《光纤光学》第二章
光纤光学基本方程
§1-2 波导方程
矩形波导
圆波导
微带线
电磁波在纵向(轴向)以“行波”的形式存在,在横向以“驻波” 的形式存在。
第17页
《光纤光学》第二章 一、波导方程
光纤光学基本方程
E 2 E E 0 2 t
第13页
《光纤光学》第二章
光纤光学基本方程
设电场强度的瞬时值为
E x ( z, t ) e x Exm sin( t kz)
在空间任一固定点,电场强度矢量的端点随时 间的变化轨迹为与 x 轴平行的直线。因此,这种极 化特性称为线极化,其极化方向为 x 方向。
光纤光学-第二章

T - Transverse
第10页
《光纤光学》第二章
光纤光学基本方程
导电介质中的平面波
Ex
E(r, t ) E0 ( x, y)ei (t kz z ) E0 ( x, y)e
z i (t z )
e
z
衰减因子
Hy
第11页
《光纤光学》第二章
光纤光学基本方程
§1-2 波导方程
纵横关系式
式中: 2 k 2 2 2 2
第18页 推导
《光纤光学》第二章
光纤光学基本方程
返回框图
类似地,对于圆柱坐标,可得:
ez 1 hz er i r r hz 1 ez 2 e i r r
《光纤光学》第二章
光纤光学基本方程
第24页
《光纤光学》第二章
光纤光学基本方程
1-3 模式及其基本性质 (以平板波导为例)
从物理量随着指标变化来看,平板波导只与X、Z两 个指标有关。又可称平板波导为二维波导。
x
电磁场沿z方向传输,z 方向波导的几何形状不 变。在 y 方向波导是无 限延伸的,同时由于对 称性,场分量在 y 方向 没有变化,即:
z y film n1 n3 cover n2 substrate d
平板波导结构图
If n2= n3, 对称波导(Symmetrical waveguide) n2>n3, 非对称波导(Asymmetrical waveguide)
第21页
《光纤光学》第二章
光纤光学基本方程
1-3 模式及其基本性质
第17页
i A x Ax
第10页
《光纤光学》第二章
光纤光学基本方程
导电介质中的平面波
Ex
E(r, t ) E0 ( x, y)ei (t kz z ) E0 ( x, y)e
z i (t z )
e
z
衰减因子
Hy
第11页
《光纤光学》第二章
光纤光学基本方程
§1-2 波导方程
纵横关系式
式中: 2 k 2 2 2 2
第18页 推导
《光纤光学》第二章
光纤光学基本方程
返回框图
类似地,对于圆柱坐标,可得:
ez 1 hz er i r r hz 1 ez 2 e i r r
《光纤光学》第二章
光纤光学基本方程
第24页
《光纤光学》第二章
光纤光学基本方程
1-3 模式及其基本性质 (以平板波导为例)
从物理量随着指标变化来看,平板波导只与X、Z两 个指标有关。又可称平板波导为二维波导。
x
电磁场沿z方向传输,z 方向波导的几何形状不 变。在 y 方向波导是无 限延伸的,同时由于对 称性,场分量在 y 方向 没有变化,即:
z y film n1 n3 cover n2 substrate d
平板波导结构图
If n2= n3, 对称波导(Symmetrical waveguide) n2>n3, 非对称波导(Asymmetrical waveguide)
第21页
《光纤光学》第二章
光纤光学基本方程
1-3 模式及其基本性质
第17页
i A x Ax
chapter光纤光学ppt课件

Pin(dBm)=10log10[Pin(mW)/1mW] =10log10[200×10-3mW/1mW]=-7dBm
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。
光纤光学-1-6课件
Ur cos(m -1)
J m+1 (
a
)
sin(m +1)
-
Jm-1(
a
)
sin(m -1)
EyI
A Jm (U )
Ur cos m
Jm(
a
)
sin m
HxI
-n
0 0
A Ur cos m
Jm (U )
Jm(
a
)
sin m
ExI 0
H
I y
0
2022/10/18
4
线偏振模LPml 的构成(r>a)
EyII
A Km
Wr cos m
Km (
a
)
sin m
H
II x
-n
0 0
A Km
Wr cos m
Km (
a
)
sin m
ExII 0
H
II y
0
2022/10/18
5
LPml模的偏振态:
• LPml模的简并态是以光纤的弱导近似为前提的。实 际上,n1和n2不可能相等,因此HEm+1,l模与EHm-1,l模的 传播常数β不可能绝对相等,即两者的相速并不完全 相同。随着电磁波的向前传播,场将沿z轴作线偏振 波-椭圆偏振波-园偏振波-椭园偏振波-线偏振 波的周期性变化。场形变化一周期所行经的z向距离, 即差拍距离为:
Jm(U)
Km(W)
2022/10/18
8
LPml模式本征值
• 模式的截止与远离截止:
– 远离截止: W→∞, 场在包层中不存在 – 临近截止: W=0 , 场在包层中不衰减
• 截止与远离截止条件:
光纤光学-1-3公开课获奖课件
• GIOF带宽敞于SIOF!
2024/10/1
14
角向运动
分析φ分量方程: n dr d d nr d 0
dS dS dS dS
有:
I =n r2dφ/dz
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
2024/10/1
15
角向运动特点
• 光线旳角动量:
10
园柱坐标系与光线入射条件
(dr/dS) |r0 =sinθz(r0)sinθφ(r0)
z
ez
e
(r dφ/dS)|r0 =sinθz(r0)cosθφ(r0)
(dz/dS)|r0 = cosθz(r0)
r
rrˆ
zzˆ
x
r
z
er
r0
r0d
z dz
ds
r0
dr
y
e
er
2024/10/1
2
nr
0 rr1 rl1 rg1
a rg 2 rl 2
rl 3
2024/10/1
r
20
约束光线
条件:
n2<n(r0) cosθz(r0)<n1
光线存在区域: rg1 < r < rg2
内散焦面半径:rg1 外散焦面半径:rg2
2024/10/1
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
r2ω=r2dφ/dt=
Ic/
2n 恒为常数
• 这表白,光线角向运动速度将取决于光线
轨迹到纤轴距离r:在最大旳r处光线转动最
2024/10/1
14
角向运动
分析φ分量方程: n dr d d nr d 0
dS dS dS dS
有:
I =n r2dφ/dz
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
2024/10/1
15
角向运动特点
• 光线旳角动量:
10
园柱坐标系与光线入射条件
(dr/dS) |r0 =sinθz(r0)sinθφ(r0)
z
ez
e
(r dφ/dS)|r0 =sinθz(r0)cosθφ(r0)
(dz/dS)|r0 = cosθz(r0)
r
rrˆ
zzˆ
x
r
z
er
r0
r0d
z dz
ds
r0
dr
y
e
er
2024/10/1
2
nr
0 rr1 rl1 rg1
a rg 2 rl 2
rl 3
2024/10/1
r
20
约束光线
条件:
n2<n(r0) cosθz(r0)<n1
光线存在区域: rg1 < r < rg2
内散焦面半径:rg1 外散焦面半径:rg2
2024/10/1
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
r2ω=r2dφ/dt=
Ic/
2n 恒为常数
• 这表白,光线角向运动速度将取决于光线
轨迹到纤轴距离r:在最大旳r处光线转动最
光纤光学教学课件-第二讲
(limited by CD and PMD - see next slides)
n
1.465 1.460
2019/10/31 © HUST 2012
r
2019/10/31
光纤的设计与制作
2019/10/31 © HUST 2012
2019/10/31
1、光纤的设计
如何改善光纤的传输特性:减少OH- ,降低损耗; 改变芯经和结构参数,色散位移; 改变折射率分布,降低非线性。
2019/10/31 © HUST 2012
2019/10/31
forbidden range of angles
Cartoon picture of light guidance in BGF
forbidden range of angles
forbidden range of angles
2019/10/31 © HUST 2012
2019/10/31 © HUST 2012
2019/10/31
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发, 通过求解电磁波所遵从的麦克斯韦方程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适用于 各种折射率分布的单模和多模光纤。 缺点:分析过程较为复杂。
光纤芯径远大于光波波长λ0时, 可以近似认为λ0→0,从而将 光波近似看成由一根一根光线所构成, 因此可采用几何光学方法来分 析光线的入射、传播(轨迹) 以及时延(色散) 和光强分布等特性,这 种分析方法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。 缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
光纤光学第二章
第22页,本讲稿共39页
d ds
n
r
dr ds
n
r
1. 在均匀折射率介质中,光线轨迹为直线传播。
2. 设R是光线弯曲的曲率半径,N为光线法向单位
矢量,则:
1 R
1
nr
N
n r
3. 球面对称媒质中的光线都是平面曲线,位于通过原
点的某一平面上
第23页,本讲稿共39页
5. 波导场方程与模式
亥姆霍兹方程: 2 x, y, z k 2 x, y, z 0
优点:具有理论上的严谨性,未做任何前提近似,因此 适用于各种折射率分布的单模及多模光纤
缺点:分析过程较为复杂
第4页,本讲稿共39页
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法
d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法
d 模式 波导场方程 边值问题 模式分布
n2k0 n1k0
•β实际上是等相位面沿z轴的变化率;
•β数值分立,对应一组导模;
•不同的导模对应于同一个β数值,则称这些导模简并
2
r
n12n22为实数 包层 : 为纯虚数
第28页,本讲稿共39页
3. 归一化频率(V)
对于给定的光纤,其传输的导模由其结构参数限定。 光纤的结构参数可由其归一化频率V表征:
E0, H0是振幅, k0Q是相位,Q是光程
E E0 ik0Q E0 expik0Q
当0 0或k0 时
k0Q很大, 上式右方的第一项可略去(几何近似),可得:
第14页,本讲稿共39页
E ik0Q E0 expik0Q
同理:
H ik0Q H0 expik0Q
d ds
n
r
dr ds
n
r
1. 在均匀折射率介质中,光线轨迹为直线传播。
2. 设R是光线弯曲的曲率半径,N为光线法向单位
矢量,则:
1 R
1
nr
N
n r
3. 球面对称媒质中的光线都是平面曲线,位于通过原
点的某一平面上
第23页,本讲稿共39页
5. 波导场方程与模式
亥姆霍兹方程: 2 x, y, z k 2 x, y, z 0
优点:具有理论上的严谨性,未做任何前提近似,因此 适用于各种折射率分布的单模及多模光纤
缺点:分析过程较为复杂
第4页,本讲稿共39页
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法
d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法
d 模式 波导场方程 边值问题 模式分布
n2k0 n1k0
•β实际上是等相位面沿z轴的变化率;
•β数值分立,对应一组导模;
•不同的导模对应于同一个β数值,则称这些导模简并
2
r
n12n22为实数 包层 : 为纯虚数
第28页,本讲稿共39页
3. 归一化频率(V)
对于给定的光纤,其传输的导模由其结构参数限定。 光纤的结构参数可由其归一化频率V表征:
E0, H0是振幅, k0Q是相位,Q是光程
E E0 ik0Q E0 expik0Q
当0 0或k0 时
k0Q很大, 上式右方的第一项可略去(几何近似),可得:
第14页,本讲稿共39页
E ik0Q E0 expik0Q
同理:
H ik0Q H0 expik0Q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cladding
Core
02.11.2020 © HUST 2012
Primary coating (e.g., soft plastic)
ppt课件
2 02.11.2020
纤芯与包层构成光波导
• 光波导:约束光波传输的媒介 • 导波光:受到约束的光波 • 光波导三要素:
–“芯 / 包”结构 –凸形折射率分布,n1>n2 –低传输损耗
ppt课件
9 02.11.2020
1.2 光纤的分类
• 按用途进行分类 • 按纤芯的折射率分布进行分类 • 按光纤中的传输模式进行分类
02.11.2020 © HUST 2012
ppt课件
10 02.11.2020
光纤按用途分类:
• 通信用光纤、色散管理光纤、大 有效面积光纤、光子晶体光纤、多包层光纤 ……
⑧ 模式的耦合。
02.11.2020
ppt课件
© HUST 2012
4 02.11.2020
b.光纤技术所涉及到的方面:
① 参数测试技术; ② 自聚焦、准直技术(聚焦透镜); ③ 连接、耦合技术(光纤—光纤、半导体器件、耦合 器); ④ 隔离、偏振控制技术(隔离器、偏振控制器); ⑤ 传感技术(传感器)。
High Index Silica Core
ppt课件
12 02.11.2020
Bandgap Guiding Fiber
Acrylate-Coating
Bendgap Silica-Air Cladding
02.11.2020 © HUST 2012
Low Index Air Core
ppt课件
Typical Dimension for Silica Fibers: SMF: 8 mm core, 125 mm cladding MMF: 50, 62.5, 100 mm core, 125 mm cladding
Index profile: Step vs. Graded vs. multi-step…
13 02.11.2020
Bandgap Guiding Fiber
1915
Cartoon picture of light guidance in BGF
nlow nhigh
Bragg law
(1st order)
2sin
Judicious choice of nlow, nhigh and
Constructive interference
1.1 引言
1、什么是光纤光学?
研究光波在光纤中传播特性的科学。 内容包括:基本原理、技术及其相关的器件
2、什么是光纤?
介质圆柱光波导,充分约束光波的横向传输(横向没 有辐射泄漏),纵向实现长距离传输。
基本结构:纤芯、包层、套塑层
02.11.2020 © HUST 2012
ppt课件
1 02.11.2020
• 非通信用的光纤
传感光纤、传光光纤、传像光纤、特殊用途光纤
02.11.2020 © HUST 2012
ppt课件
11 02.11.2020
Index-Guiding Fiber
Acrylate-Coating
Low Index Silica-Air Cladding
02.11.2020 © HUST 2012
forbidden range of angles
forbidden range of angles
forbidden range of angles
02.11.2020 © HUST 2012
ppt课件
15 02.11.2020
forbidden range of angles
Cartoon picture of light guidance in BGF
02.11.2020 © HUST 2012
ppt课件
7 02.11.2020
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发, 通过求解电磁波所遵从的麦克斯韦方程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适用于 各种折射率分布的单模和多模光纤。 缺点:分析过程较为复杂。
02.11.2020 © HUST 2012
ppt课件
3 02.11.2020
3、光纤光学所涉及的基本问题
a.理论研究所涉及到的方面: ① 光纤模式的激励(光的入射);
② 光纤中的模式分布(光线传播轨迹);
③ 模式的传播速度(光线的延迟):
④ 模式沿横截面的分布;
⑤ 光信号的畸变;
⑥ 传输损耗;
⑦ 模式的偏振特性;
Multi-stack mirror is 1D photonic bandgap device Total reflection for Δ centred around
02.11.2020 © HUST 2012
ppt课件
14 02.11.2020
Bandgap Guiding Fiber Cartoon picture of light guidance in BGF
02.11.2020 © HUST 2012
ppt课件
8 02.11.2020
光纤光学的研究方法比较
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法 d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法 d 模式 波导场方程 边值问题 模式分布
02.11.2020 © HUST 2012
几何光学方法:
光纤芯径远大于光波波长λ0时, 可以近似认为λ0→0,从而将 光波近似看成由一根一根光线所构成, 因此可采用几何光学方法来分 析光线的入射、传播(轨迹) 以及时延(色散) 和光强分布等特性,这 种分析方法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。 缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
forbidden range of angles
02.11.2020 © HUST 2012
ppt课件
5 02.11.2020
c.光纤器件所涉及到的方面:
①自聚焦透镜; ② 光纤耦合器; ③ 光学隔离器、光学环形器; ④ 光纤光栅; ⑤ 光纤放大器与光纤激光器。
02.11.2020 © HUST 2012
ppt课件
6 02.11.2020
光纤光学的研究方法
Core
02.11.2020 © HUST 2012
Primary coating (e.g., soft plastic)
ppt课件
2 02.11.2020
纤芯与包层构成光波导
• 光波导:约束光波传输的媒介 • 导波光:受到约束的光波 • 光波导三要素:
–“芯 / 包”结构 –凸形折射率分布,n1>n2 –低传输损耗
ppt课件
9 02.11.2020
1.2 光纤的分类
• 按用途进行分类 • 按纤芯的折射率分布进行分类 • 按光纤中的传输模式进行分类
02.11.2020 © HUST 2012
ppt课件
10 02.11.2020
光纤按用途分类:
• 通信用光纤、色散管理光纤、大 有效面积光纤、光子晶体光纤、多包层光纤 ……
⑧ 模式的耦合。
02.11.2020
ppt课件
© HUST 2012
4 02.11.2020
b.光纤技术所涉及到的方面:
① 参数测试技术; ② 自聚焦、准直技术(聚焦透镜); ③ 连接、耦合技术(光纤—光纤、半导体器件、耦合 器); ④ 隔离、偏振控制技术(隔离器、偏振控制器); ⑤ 传感技术(传感器)。
High Index Silica Core
ppt课件
12 02.11.2020
Bandgap Guiding Fiber
Acrylate-Coating
Bendgap Silica-Air Cladding
02.11.2020 © HUST 2012
Low Index Air Core
ppt课件
Typical Dimension for Silica Fibers: SMF: 8 mm core, 125 mm cladding MMF: 50, 62.5, 100 mm core, 125 mm cladding
Index profile: Step vs. Graded vs. multi-step…
13 02.11.2020
Bandgap Guiding Fiber
1915
Cartoon picture of light guidance in BGF
nlow nhigh
Bragg law
(1st order)
2sin
Judicious choice of nlow, nhigh and
Constructive interference
1.1 引言
1、什么是光纤光学?
研究光波在光纤中传播特性的科学。 内容包括:基本原理、技术及其相关的器件
2、什么是光纤?
介质圆柱光波导,充分约束光波的横向传输(横向没 有辐射泄漏),纵向实现长距离传输。
基本结构:纤芯、包层、套塑层
02.11.2020 © HUST 2012
ppt课件
1 02.11.2020
• 非通信用的光纤
传感光纤、传光光纤、传像光纤、特殊用途光纤
02.11.2020 © HUST 2012
ppt课件
11 02.11.2020
Index-Guiding Fiber
Acrylate-Coating
Low Index Silica-Air Cladding
02.11.2020 © HUST 2012
forbidden range of angles
forbidden range of angles
forbidden range of angles
02.11.2020 © HUST 2012
ppt课件
15 02.11.2020
forbidden range of angles
Cartoon picture of light guidance in BGF
02.11.2020 © HUST 2012
ppt课件
7 02.11.2020
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发, 通过求解电磁波所遵从的麦克斯韦方程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适用于 各种折射率分布的单模和多模光纤。 缺点:分析过程较为复杂。
02.11.2020 © HUST 2012
ppt课件
3 02.11.2020
3、光纤光学所涉及的基本问题
a.理论研究所涉及到的方面: ① 光纤模式的激励(光的入射);
② 光纤中的模式分布(光线传播轨迹);
③ 模式的传播速度(光线的延迟):
④ 模式沿横截面的分布;
⑤ 光信号的畸变;
⑥ 传输损耗;
⑦ 模式的偏振特性;
Multi-stack mirror is 1D photonic bandgap device Total reflection for Δ centred around
02.11.2020 © HUST 2012
ppt课件
14 02.11.2020
Bandgap Guiding Fiber Cartoon picture of light guidance in BGF
02.11.2020 © HUST 2012
ppt课件
8 02.11.2020
光纤光学的研究方法比较
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法 d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法 d 模式 波导场方程 边值问题 模式分布
02.11.2020 © HUST 2012
几何光学方法:
光纤芯径远大于光波波长λ0时, 可以近似认为λ0→0,从而将 光波近似看成由一根一根光线所构成, 因此可采用几何光学方法来分 析光线的入射、传播(轨迹) 以及时延(色散) 和光强分布等特性,这 种分析方法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。 缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
forbidden range of angles
02.11.2020 © HUST 2012
ppt课件
5 02.11.2020
c.光纤器件所涉及到的方面:
①自聚焦透镜; ② 光纤耦合器; ③ 光学隔离器、光学环形器; ④ 光纤光栅; ⑤ 光纤放大器与光纤激光器。
02.11.2020 © HUST 2012
ppt课件
6 02.11.2020
光纤光学的研究方法