初中数学竞赛指导:《分式》竞赛专题训练(含答案)
七年级分式竞赛题精选1

a b c ab a 1 bc b 1 ca c 1
17, 已 知 — 列 数 a1 、 a 2 、 a 3 、 a 4 、 a 5 、 a 6 、 a 7 , 且 a1 =8 , a 7 =5832 ,
a1 a 2 a 3 a 4 a 5 a 6 ,则 a 5 为( a 2 a3 a 4 a5 a6 a7
七年级分式竞赛题精选 1
1,关于 x 的方程 A.a>-1 C.a<-1 2,若解分式方程 A. 1或 2 3, 已知 A、5
2x a x 1
1 的解是正数,则 a 的取值范围是(
B.a>-1 且 a≠0 D.a<-1 且 a≠-2
)
2x m 1 x 1 2 产生增根,则 m 的值是( x 1 x x x
6,已知
23 1 4 3 ( y x) 的值是______________. ,则 3 x 2 y y x 2x 1
ab bc ca (a b)(b c)(c a ) ,则 c a b abc 1 1 5 x xy 5 y 8,已知 3 ,则 值为( ) x y x xy y 7 7 2 2 A、 B、 C、 D、 7 2 2 7 1 1 1 2 2 2 9、已知 =O,a +b +c =1,则 a+b+c 的值等于( ). a b c
(1)若
40,已知
2 x 2 x 11 A B C ,其中 A,B,C 为常数.求 A+B+C 的值. 2 2 x x 1 x x x 1
41,(全国初中数学竞赛试题)已知对于任意正整数 n,都有 a1+a2+…+an=n ,求
3
+
人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
【八年级数学代数培优竞赛专题】专题8 分式的运算技巧【含答案】

专题8 分式的运算技巧知识引入一天,数学家觉得自己受够了数学,于是他跑到消防队去宣布他想当消防员。
消防队长说:“您看上去不错,可是我得先给您一个测试.”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管.消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭.”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着.”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。
”这则笑话看起来很荒谬,但却道出了解决数学问题的重要思想,那就是转化思想,转化思想在数学中有着广泛的应用,比如在进行分式除法运算的时候,首先要运用除法法则,将除法运算转化为乘法运算,然后再解决。
知识解读1.分式乘除法运算的一般步骤:(1)利用除法法则,先将除法运算转化为乘法运算;(2)运用分式的乘法法则,用分子的积作为积的分子,用分母的积作为积的分母;(3)把分式的分子、分母分别写成它们的公因式与另一因式的积的形式,如果分式的分子、分母为多项式时,先要进行因式分解;(4)约分,得到最后的结果.2.异分母分式加减法的步骤:(1)正确地找出各分式的最简公分母;(2)准确地得出各分式的分子、分母应乘的因式;(3)通分后,进行同分母分式的加减运算;(4)公分母保持积的形式,将各分子展开;(5)将得到的结果化成最简分式。
3.正确进行分式的混合运算,需弄清以下各要点:(1)分清运算级别,按照“从高到低,从左到右,括号从小到大”的运算顺序进行;(2)将各分式的分子、分母分解因式后再进行运算;(3)遇到除法运算时,可以先化成乘法运算;(4)注意处理好每一步运算中遇到的符号;(5)最后结果要注意化简;(6)在运算过程中,每进行一步都要检验一下,不要到最后才检验。
分式专题(含答案)

.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
初中数学竞赛指导:《分式》竞赛专题训练(含答案)

《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x--有意义? (2)当x 为何值时,分式22211x x--的值为零? 解题策略(1) 要使分式22211x x--有意义,应有分母不为零这个分式有两个分母x 和11x -,它们都不为零,即0x ≠且110x -≠,于是当0x ≠且1x ≠时,分式22211x x--有意义, (2) 要使分式22211x x--的值为零,应有2220x -=且110x -≠,即1x =±且1x ≠,于是当1x =-时,分式22211x x--的值为零 画龙点睛1. 要使分式有意义,分式的分母不能为零.2. 要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1. (1)要使分式24x x -有意义的x 的取值范围是( ) (A)2x = (B) 2x ≠ ( C)2x =- (D)2x ≠-(2)若分式的的值为零,则x 的值为( )(A)3 (B)3或3- (C) 3- (D)0 2. (1)当x 时,分式23(1)16x x -+-的值为零;(2) 当x 时,分式2101x x +≥- 3. 已知当2x =-时,分式x b x a -+无意义;当4x =时,分式的值x b x a -+为零,求a b +.融会贯通4.0≤,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题 若2731x x x =-+,求2421x x x ++的值 解题策略 因为2731x x x =-+,所以0x ≠ 将等式2731x x x =-+的左边分子、分母同时除以x ,得1713x x=-+,所以有 1227x x += 因此242222211149112214351()1()17x x x x x x x ====+++++-- 画龙点睛 对于含有1x x+形式的分式,要注意以下的恒等变形: 22211()2x x x x+=++ 22211()2x x x x-=+- 2211()()4x x x x+--= 举一反三1. (1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b c a b c -+++(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a a a ---+ 2. 已知13xy x y =--,求2322x xy y x y xy +---的值.3. 已知13x x+=,求2421x x x ++的值.融会贯通4. 已知3a b b a+=,求22224a ab b a ab b ++++的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x y x y x y x y x y x y--+-÷+--+- 解题策略 原式2222()4()43()()8x y y x y x x y x y xy x y x y x y--+-+--=÷-+- ()(3)(3)()(3)(3)x y x y x y y x x y x y x y x y x y +-+--=-++- y x =-画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1. 先化简,再求值:262393m m m m -÷+--,其中2m =-.2. 计算:322441124a a a b a b a b a b+++-+++= 3. (1)已知实数a 满足2280a a +-=,求22213211143a a a a a a a +-+-⨯+-++的值(2)已知a 、b 为实数,且1ab =,设11a b M a b =+++,1111N a b =+++,试比较M 、 N 的大小关系.融会贯通4. 甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法 我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x x x x -+=---- 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B AB B A ±=±,111(1)1n n n n =-++ 经典例题已知54(1)(21)121x A B x x x x -=-----,求A 、B 的值 解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x ----=-=------(2)(1)(21)A B x B A x x -+-=--,可得254A B B A -=⎧⎨-=-⎩,解得13A B =⎧⎨=-⎩ 画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B 的值即可.举一反三1. 若在关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=,求M ,N .2. 化简:222211113256712x x x x x x x x ++++++++++3. 计算:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+融会贯通 4. 已知21(2)(3)23x b c a x x x x -=++----,当1,2,3x ≠时永远成立,求以a 、b -、c 为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决.经典例题已知x y z x y z x y z z y x +--+-++==,且()()()1x y y z z x xyz +++=-,求x y z ++的值解题策略 由x y z x y z x y z z y x+--+-++== 得111x y x z y z z y x +++-=-=- 从而x y x z y z z y x+++== 设x y x z y z k z y x+++===,则x y kz +=,x z ky +=,y z kx +=三式相加得2()()x y z k x y z ++=++,即()(2)0x y z k ++-=,所以0x y z ++=,或2k =若0x y z ++=,则1x y x z y z z y x+++•=-,符合条件; 若2k =,则()()()81x y y z z x xyz+++=≠-与题设矛盾,所以2k =不成立 因此0x y z ++=画龙点睛1. 将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2. 在得到等式2()()x y z k x y z ++=++后.不要直接将等式的两边除以x y z ++,因为此式可能等于0. 3. 在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1. (1)已知275x y z ==,求值①x y z z ++;②x y z +;③x y z x +-(2)已知2310254a b b c c a +-+==,求56789a b c a b +-+的值2. 若a b c d b c a a ===,求a b c d a b c d -+-+-+的值3. 已知实数a 、b 、c 满足0a b c ++≠,并且a b c k b c c a a b===+++,则直线3y kx =-一定通过( )(A)第一、二、三象限 (B)第一、二、四象限(C)第二、三、四象限 (D)第一、三、四象限 融会贯通 4. 已知9p q r ++=,且222p q r x yz y zx z xy ==---,求px qy rz x y z++++的值6 整数指数幂一般地,当n 是正整数时,1(0)n n a a a-=≠,这就是说(0)n a a -≠是n a 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2m x-=,3n y =,求24()m n x y ---的值解题策略 242(4)(4)84()m n m n m n x y x y x y -------==848481()()23256m n x y ---==⨯=画龙点睛将所求的代数式转化为以m x-、n y 为底的乘方,进而代入相应的值进行计算. 举一反三1. 计算(1)222242(2)()a b a b a b ----÷(2)541321111(1)()()()()21023----++-+-⨯-(3)10222(510)(0.210)(200)⨯÷-⨯⨯-2. 水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310-⨯kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510-⨯kg ,求一个氢原子的质量.3. 已知2310a a -+=,求(1)1a a -+;(2)22a a -+;(3)44a a -+融会贯通4. 如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答.经典例题解方程52432332x x x x --=-- 解题策略解法一 去分母,得(52)(32)(43)(23)x x x x --=--2215610486129x x x x x x --+=--+所以1x =-验根知1x =-为原方程的解.解法二 方程两边加1,得5243112332x x x x --+=+-- 即222332x x =-- 所以2332x x -=-解得1x =-验根知1x =-为原方程的解.解法三 原式可化为22112332x x -=--- 所以222332x x =-- 以下同解法二画龙点睛1. 通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2. 除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3. 解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1. (1)解方程2227461x x x x x +=+--(2)解方程2222112x x x x x x x x -++=--+-2. (1)解方程22252571061268x x x x x x x x x --+=+----+(2)解方程253336237456x x x x x x x x ----+=+----3. 若解方程61(1)(1)1m x x x -=+--是会有增根,求它的增根融会贯通4. 已知方程11x c x c +=+ (c 是常数,0c ≠)的解是c 或1c,求方程2131462a a x x a+++=- (a 是常数,且0a ≠)的解.8 列分式方程解应用题和整式中的一元一次方程一样,列分式方程所解的应用题也包括工程问题、行程问题、经济问题等,本节介绍列分式方程解应用问题的方法.经典例题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月多6立方米,求该市今年居民用水的价格.解题策略设该市去年居民用水价格为x 元/m 3,则今年用水价格为(125%)x +元/m 3.根据题意得:36186(125%)x x-=+,解得: 1.8x = 经检验: 1.8x =是原方程的解.所以(125%) 2.25x +=所以该市今年居民用水的价格为2. 25元/m 3.画龙点睛列分式方程解应用题的步骤与列一元一次方程解应用题步骤基本上是一致的:审查题意,设未知数;找出等量关系,列出方程;解分式方程并验根;写出答案.举一反三1. 某服装厂准备加工300套演出服,加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,请问:该厂原来每天加工多少套演出服?2. 便民服装店的老板在株洲看到一种夏季衫,就用8000元购进若干件,以每件58元的价格出售,很快售完.又用17 600元购进同种衬衫,数量是第一次的2倍,每件进价比第一次贵了4元,服装店仍按每件58元出售,全部售完.问该服装店这笔生意共盈利多少元?3. 从甲地到乙地共50 km ,其中开始的10 km 是平路,中间的20 km 是上坡路,余下的20 km 又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路上和上坡路上保持匀速).融会贯通4. 某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.参考答案1 分式的概念1. (1)B (2) C2. (1)3x =- (2) 12x ≤-或1x > 3. 64. 21a -≤<2分式的基本性质1. (1)1561561510a b c a b c -+++(2)3211a a a --+ 2. 由已知,得3x y xy -=-,所以 原式2()36333()23255x y xy xy xy xy x y xy xy xy xy -+-+-====----- 3. 242222211111113181()1x x x x x x x====++-+++- 4. 将22224a ab b a ab b ++++分子和分母同时除以ab ,得13143474a b b a a b b a +++==+++3 分式的四则运算1. 262393m m m m -÷+-- 633(3)(3)2m m m m m -=-++- 33m m -=+ 当2m =-时,原式3235323m m ---===-+-+ 2. 322441124a a a b a b a b a b +++-+++ 3222244224a a a a b a b a b =++-++ 33444444a a a b a b =+-+ 7884a a b=- 3. (1) 22213211143a a a a a a a +-+-⨯+-++ 213(1)1(1)(1)(1)(3)a a a a a a a +-=-⨯++-++2111(1)a a a -=-++ 22(1)a =+ 由2280a a +-=知2(1)9a += 所以原式222(1)9a ==+ (2)11()()1111a b M N a b a b -=+-+++++ 111111a b a a b b =-+-++++ 1111a b a b --=+++ (1)(1)(1)(1)(1)(1)a b b a a b -++-+=++ (1)(1)(1)(1)ab a b ab b a a b +--++--=++ 220(1)(1)ab a b -==++ 所以M N =4. 设两次购买肥料的单价分别为a 元/千克和b 元/千克(a 、b 为正数,且a b ≠),则 甲两次购买肥料的平均单价为:8008008008002a b a b ++=+ (元/千克). 乙两次购买肥料的平均单价为:6006002600600ab a b a b +=++ (元/千克). 因为22()2()a b ab a b a b a a b +--=++,又a b ≠,0a >,0b >,所以2()0()a b a a b ->+ 所以甲的平均单价比乙的高,所以乙的购货方式更合算一些4 分式的运算技巧——裂项法1. 222(2)22()()()()Mx N x b cx ca c x b ca x x x a x b x a x b ++---+-==+-++++ 且22(1)(2)x x x x +-=-+,a b >所以2a =,1b =-,1c a b =+=从而可得21M x =-=,24N b ca =-=-2. 原式1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x =++++++++++ 111111*********x x x x x x x x =-+-+-+-+++++++ 114x x =-+ 3. 原式()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-=++------ 111111a c a b b a b c c b c a=+++++------ 0=4. 因为23b c a x x ++-- (2)(3)(3)(2)(2)(3)a x xb xc x x x --+-+-=-- 25632(2)(3)ax ax a bx b cx c x x -++-+-=-- 所以2215632x ax ax a bx b cx c -=-++-+-所以1a =,50a b c -++=,6321a b c --=-解得1a =,3b =-,8c =所以四边形的第四边d 的取值范围应满足138d ++>,138d ++>,182d ++>,381d ++>,解得412d <<5 含有几个相等分式问题的解法1. (1)设275x y z k ===,则2,7,5x k y k z k === ① 2751455x y z k k k z k ++++== ② 27955x y k k z k ++== ③ 27522x y z k k k x k+-+-== (2)设2310254a b b c c a k +-+===则2253104a b k b c k c a k +=⎧⎪-=⎨⎪+=⎩解得2a k b k c k =⎧⎪=⎨⎪=-⎩56756(14)25898917a b c k k k a b k k +-+--==++ 2. 设a b c d k b c a a==== 则234,,,d ak c dk ak b ck ak a bk ak =======所以41k =,得1k =±当1k =时,a b c d ===,原式0=当1k =-时,a b c d =-==-,原式2=-3. (),(),()k a b c k b c a k c a b +=+=+=于是2()k a b c a b c ++=++因为0a b c ++≠ 所以12k =直线132y x =-的图象经过第一、三、四象限 故选择D4. 设222p q r k x yz y zx z xy===---, 故222(),(),()p k x yz q k y zx r k z xy =-=-=-所以222()9p q r k x y z yz zx xy ++=++---=又px qy rz ++=333()k x xyz y xyz z xyz -+-+-333()k x y z xyz xyz xyz =++--- 222()()k x y z x y z yz zx xy =++++---9()x y z =++所以px qy rz x y z++++9= 6 整数指数幂1. (1)424b a(2)149(3)12510⨯2. 232.6710⨯个 271.67510-⨯ kg 3. (1)因为2310a a -+=,且0a ≠所以213a a += 所以2113a a a a -++== (2) 2212()27a aa a --+=+-= (3)44222()247a a a a --+=+-=4. 1M 表示的数为310.110100-⨯= 1N 表示的数为3511010100--⨯= 1P 5711010100--⨯= 37P 表示的数为637 3.710-=⨯7 分式方程的解法1. (1)原方程分母因式分解为746(1)(1)(1)(1)x x x x x x +=+-+- 去分母得7(1)4(1)6x x x -++= 解得35x =检验知35x =为原方程的根(2) 原方程式变形为22221112x x x x +=+--+- 整理得2212x x x x --=+- 解得12x =检验知12x =为原方程的根 2. (1) 原方程分母因式分解为525710(3)(2)(4)(3)(2)(4)x x x x x x x x x --+=+--+-- 去分母得5(4)(25)(2)(710)(3)x x x x x x -+--=-+解得1x =检验知1x =为原方程的根(2)原方程化为2(7)93(4)93(5)92(6)97456x x x x x x x x -+-+-+-++=+---- 999923327456x x x x +++=+++---- 11117456x x x x +=+---- 11117654x x x x -=----- (6)(7)(4)(5)(7)(6)(5)(4)x x x x x x x x ------=---- 11(7)(6)(5)(4)x x x x =---- 22111342920x x x x =-+-+ 422x = 解得112x = 检验把112x =代入最简公分母(7)(4)(5)(6)0x x x x ----≠,所以112x =是原方程的根3. 去分母,得6(1)(1)(1)m x x x -+=+-如果增根为1x =,则6(11)0m -+=,3m =如果增根为1x =-,则6(11)0m --+=,无解,所以3m =4. 将方程2131462a a x x a+++=-整理得 112323x a x a+=++- 112323x a x a -+=+- 所以23x a -=,或123x a -=故32a x +=或312a x a +=8 列分式方程解应用题1. 设服装厂原来每天加工x 套演出服.根据题意,得603006092x x -+= 解得20x =经检验20x =是原方程的根.2. 设原进价为x 元一件,则第二次进价为(4)x +元一件,依题意得176********x x =+ 解得40x = 经检验40x =是原方程的根 服装店这笔生意第一次购进8000200x =件,第二次购进176004004x =+件,服装店这笔生意共盈利200(5840)400(5844)9200⨯-+⨯-=(元). 3. 设小明在平路上的速度是x km/h ,根据题意,得131011203()66x x -=-, 解得15x =经检验15x =是原方程的根,且符合题意.4. (1)设规定的时间是x 天,则甲单独完成需要(30)x +天,乙单独完成需要(12)x +,由题意,得11120()(20)1301230x x x x ++⨯-=+++, 解得24x =经检验24x =是原方程的根,所以规定的时间是24天;(2)由题意,因为规定时间是24天,所以甲单独完成需要243054+=(天),乙单独完成需要241236+=(天).留下甲完成需要的时间是:51151()(1)65436654÷++-÷189=+ 27=24>,不能在规定时间完成任务;留下乙完成需要的时间是:51151()(1)1862465436636÷++-÷=+= 能在规定时间完成任务.所以留下乙组好.。
第初中数学竞赛五讲有条件的分式的化简与求值(含答案)

第五讲 有条件的分式的化简与求值给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化筒后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1.恰当引入参数;2.取倒数或利用倒数关系; 3.拆项变形或拆分变形; 4.整体代入;5.利用比例性质等. 例题求解 【例1】若a d d c cb b a ===,则dc b a dc b a +-+-+-的值是 . (第12届“希望杯”邀请赛试题)思路点拨 引入参数,利用参数寻找a 、b 、c 、d 的关系. 注:解数学题是运用巳知条件去探求未知结论的一个过程.如何运用已知条件是解题顺畅的重要前提,对巳知条件的运用有下列途径: (1)直接运用条件; (2) 变形运用条件; (3) 综合运用条件; (4)挖掘隐含条件.在解某些含多个字母的代数式问题时,如果已知与未知之间的联系不明显,为了沟通已知与未知之间的联系,则可考虑引入一个参数,参数的引入,可起到沟通变元、消元的功能.【例2】如果11=+b a ,12=+c b ,那么ac 2+等于( ) A .1 B .2 C .3 D .4(2002年全国初中数学联赛武汉选拔赛) 思路点拨 把c 、a 用b 的代效式表示.【例3】已知1=xyz ,2=++z y x ,16222=++z y x ,求代数式yzx x yz z xy 212121+++++的值. (2003年北京市竞赛题)思路点拨 直接通分,显然较繁,由x+y+z=2,得z=2-x -y ,x=2-y -z ,z =2-x -y ,从变形分母入手.【例4】不等于0的三个数a 、b 、c 满足cb ac b a ++=++1111,求证a 、b 、c 中至少有两个互为相反数.(天津市竞赛题)思路点拨 要证a 、b 、c 中至少有两个互为相反数,即要证明(a+b)(b+c)(c+a)=0,使证明的目标更加明确.【例5】 (1)已知实数a 满足a 2-a -1=0,求487-+a a 的值.(2003年河北省竞赛题) (2)汜知1325))()(())()((=+++---a c c b b a a c c b b a ,求ac cc b b b a a +++++的值. (“北京数学科普日”攻擂赛试题) 思路点拨 (1)由条件得a 2=a+1,11=-aa ,通过不断平方,把原式用较低的多项式表示是解题的关键.(2)已知条件是b a b a +-、cb c b +-、a c ac +-三个数的乘积,探求这三个数的和与这三个数的积之间的关系,从而求出b a b a +-+c b c b +-+ac ac +-的值是解本例的关键.学历训练1.已知032=-+x x ,那么1332---x x x = . (2003年淄博市中考题)2.已知712=+-x x x ,则1242++x x x = .3.若a 、b 、c 满足a+b +c=0,abc>0,且c c b b a a x ++=,y=)11()11()11(ba c a cbc b a +++++,则xy y x 32++= . (“祖冲之杯”邀请赛试题) 4.已知43322a c c b b a -=-=+,则ba cb a 98765+-+= .(第12届“五羊杯”竞赛题) 5.已知a 、b 、c 、d 都是正数,且d c b a <,给出下列4个不等式:①d c c b a a +>+;②dc cb a a +<+;③d c d b a b +>+;④ dc db a b +<+,其中正确的是( ) (2002年山东省竞赛题) A .①③ B .①④ C .②④ D .②③ 6.设a 、b 、c 是三个互不相同的正数,如果abb ac b c a =+=-,那么( ) A . 3b=2c B .3a=2b C .2b=c D .2a=b. (“祖冲之杯”邀请赛试题) 7.若4x —3y 一6z=0,x+2y -7z=0(xyz ≠0),则代数式222222103225z y x z y x ---+的值等于( ).A . 21-219- C .-15 D . -13. (2003年全国初中数学竞赛题) 8.设轮船在静水中速度为v ,该船在流水(速度为u <v )中从上游A 驶往下游B ,再返回A ,所用时间为T ,假设u =0,即河流改为静水,该船从A 至B 再返回B ,所用时间为t , 则( )A .T=tB .T<tC .T>tD .不能确定T 、t 的大小关系9.(1)化简,求值:24)44122(22+-÷++--+-a a a a a a a a ,其中a 满足0122=-+a a ; (2002年山西省中考题)(2)设0=++c b a ,求abc c ac b b bc a a +++++222222222的值.10.已知xz z y y x 111+=+=+,其中x 、y 、z 互不相等,求证:x 2y 2z 2=1.11.若0≠abc ,且b ac a c b c b a +=+=+,则abca c cb b a ))()((+++= . 12.已知a 、b 、c 满足1222=++c b a ,3)11()11()11(-=+++++ba c c abc b a ,那么 a+b+c 的值为 . 13.已知1=+y x xy ,2=+z y yz ,3=+xz zx,则x 的值为 . 14.已知x 、y 、z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 . (2003年全国初中数学竞赛题)15.设a 、b 、c 满足abc ≠0,且c b a =+,则abc b a ca b a c bc a c b 222222222222-++-++-+的值为A .-1B .1C .2D .3 (2003年南通市中考题) 16.已知abc=1,a+b+c=2,3222=++c b a ,则111111-++-++-+b ca a bc c ab 的值为( ) A .-1 B .21-C .2D .32- (大原市竞赛题) 17.已知—列数1a 、2a 、3a 、4a 、5a 、6a 、7a ,且1a =8,7a =5832,766554433221a a a a a a a a a a a a =====,则5a 为( ) A .648 B . 832 C .1168 D .194418.已知0199152=--x x ,则代数式)2)(1(1)1()2(24----+-x x x x 的值为( )A .1996B .1997C .1998D .1999 19.(1)已知ac b =2,求)111(333333222cbacb ac b a ++⋅++的值;(2)已知x 、y 、z 满足1=+++++y x z x z y z y x ,求代数式yx z x z y z y x +++++222的值. (2002年北京市竞赛题)20.设a 、b 、c 满足c b a c b a ++=++1111,求证:当n 为奇数时,n n n n n n cb ac b a 1111++=++ (波兰竞赛题)21.已知012=--a a ,且1129322322324-=-++-axa a xa a ,求x 的值. (2000年上海市高中理科班招生试题)22.某企业有9个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A,B两组检验员,其中A组有8名检验员,他们先用2天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再检验第三、四两个车间的所有成品,又用去了3天时间,同时,用这5天时间,B组检验员也检验完余下的5个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.(2001年天津市中考题) 答案:。
分式竞赛题
分式训练一、选择题(共4小题)1、若交换代数式中的任意两个字母,代数式不变,则称这个代数式为完全对称式,如a+b+c就是一个完全对称式.已知三个代数式:①a(b+c)+b(a+c)+c(a+b);②a2bc+b2ac+c2ab;③a2+b2+c2﹣ab﹣bc﹣ac.其中是完全对称式的()A、只有①②B、只有①③C、只有②③D、有①②③2、已知,,,则的值是()A 、B 、C 、D 、3、如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是()A、672B、688C、720D、7504、设,则4S的整数部分等于()A、4B、5C、6D、7二、填空题(共8小题)5、已知正数a,b,c,d,e,f 满足=4,=9,=16,=;=,=,则(a+c+e)﹣(b+d+f)的值为_________.6、已知bc﹣a2=5,ca﹣b2=﹣1,ac﹣c2=﹣7,则6a+7b+8c=_________.7、设2(3x﹣2)+3=y,2(3y﹣2)+3=z,2(3z﹣2)+3=u且2(3u﹣2)+3=x,则x=_________.8、化简:=_________.9、若数组(x,y,z )满足下列三个方程:、、,则xyz=_________.10、设x、y、z是三个互不相等的数,且x+=y+=z+,则xyz=_________.11、先求和,思考当n越来越大时,这个和趋向一个数,这个数是_________;那么的和趋向的一个数是_________.12、已知对于任意正整数n,都有a1+a2+…+a n=n3,则=_________.三、解答题(共12小题)13、设实数a,b,c 满足:,求证:14、证明以下各式:(1);(2)x,y,z是互不相等的三个实数则:15、设a、b、c满足,求证:当n为奇数时,.16、设x,y,z为互不相等的非零实数,且.求证:x2y2z2=1.17、已知a,b,c,x,y,z都是非零实数,且a2+b2+c2=x2+y2+z2=ax+by+cz,求证:==18、求证:++=.19、设a>0,b>0,c>0,且满足a2=b(b+c),b2=c(c+a),求证:20、若x+y=m+n,且x2+y2=m2+n2.求证:x2001+y2001=m2001+n2001.21、已知a、b、c是实数.若之和恰等于1,求证:这三个分数的值有两个为1,一个为﹣1.22、已知,求证:.23、若,记,证明:A是一个整数.答案与评分标准一、选择题(共4小题)1、若交换代数式中的任意两个字母,代数式不变,则称这个代数式为完全对称式,如a+b+c就是一个完全对称式.已知三个代数式:①a(b+c)+b(a+c)+c(a+b);②a2bc+b2ac+c2ab;③a2+b2+c2﹣ab﹣bc﹣ac.其中是完全对称式的()A、只有①②B、只有①③C、只有②③D、有①②③考点:对称式和轮换对称式。
初中培优竞赛 第5讲 分式
第5讲分式一、选择题1.(2、3)(数学、初中数学竞赛、选择题、分式、整体代换)已知a2−3a+1=0,则4 a2−9a−2+91+a2的值为()A . 3 B.5 C. 35 D. 65解析:显然a≠0,由题设得a+1a =3,所求式子=4a2−3a+3a−2+93a=−4+3×3−2=3.答案:A .技巧:通过对题设等式的整体变形,能整体求值的就整体求值代换,这样能简化运算,达到快捷解题的目的。
易错点:代换过程中容易变形失误而致错。
2. (3、4)(数学、初中数学竞赛、选择题、分式)若4x−3y−6z=0,x+2y−7z=0(xyz≠0),则代数式5x2+2y2−z22x2−3y2−10z2的值为( )A.−12B.−192C.-15D.-13解析:由题意得4x−3y=6zx+2y=7z,解得x=3zy=2z,代人5x2+2y2−z22x−3y−10z得5×9z2+2×4z2−z22×9z−3×4z−10z=−13.答案:D.技巧:将三元化为一元,然后合并同类项再约分是解这类题的常用技巧。
易错点:这类题型在换元的时候容易计算错误。
3. (3、4)(数学、初中数学竞赛、选择题、分式)已知x ,y ,,z 满足2x=3y −z=5z+x,则5x −y y+2z的值为( )A.1B. 13C.−12D. 12解析:由2x=3y −z=5z+x得2(z +x )=5x ,2(y −z )=3x ,解之得y =3x ,z =32x . 所以5x −y y+2z=5x −3x 3x+3x=13⋅答案:B.技巧:将三元化为一元,然后合并同类项再约分是解这类题的常用技巧。
易错点:这类题型在换元的时候容易计算错误。
二、填空题4. (3、4)(数学、初中数学竞赛、填空题、分式)方程16+1x=1y有 组正整数解.解析:由原方程可得y =6x x+6=6−36x+6⋅ 又因为y 是正整数,所以x +6=9,12,18,36,得x =3,6,12,30,都是正整数. 故原方程共有4组解. 答案:4.技巧:将一个未知数用另一个未知数表示出来,再根据题设的限制条件(正整数解)来分析可能的正确解。
初中数学竞赛指导:《分式》竞赛专题训练(含答案)
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x有意义?(2)当x 为何值时,分式22211x x的值为零?解题策略(1)要使分式22211x x有意义,应有分母不为零这个分式有两个分母x 和11x,它们都不为零,即0x 且110x,于是当0x 且1x 时,分式22211x x有意义,(2)要使分式22211x x的值为零,应有2220x且110x,即1x 且1x ,于是当1x 时,分式22211x x的值为零画龙点睛1.要使分式有意义,分式的分母不能为零.2.要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1.(1)要使分式24x x 有意义的x 的取值范围是()(A)2x (B) 2x ( C)2x (D)2x (2)若分式的的值为零,则x 的值为() (A)3(B)3或3(C)3(D)02.(1)当x时,分式23(1)16x x 的值为零;(2) 当x时,分式2101x x 3.已知当2x 时,分式x b xa无意义;当4x时,分式的值x b xa为零,求a b .融会贯通4.若201a a ,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题若2731x xx ,求2421x xx 的值解题策略因为2731x xx ,所以0x 将等式2731x xx 的左边分子、分母同时除以x ,得1713x x,所以有1227xx因此242222211149112214351()1()17xx xxxxx画龙点睛对于含有1xx 形式的分式,要注意以下的恒等变形:22211()2x x x x 22211()2x xx x 2211()()4xxxx举一反三1.(1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b ca b c(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a aa 2.已知13xy xy,求2322x xy y xyxy的值.3.已知13xx,求2421x xx 的值.融会贯通4.已知3a b ba,求22224a ab baabb的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x yx yx y xyxyxy解题策略原式2222()4()43()()8xy y x y xxy x y xyx y x yx yg()(3)(3)()(3)(3)x y x y x y yx xy x y x y xy xy ggyx画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1.先化简,再求值:262393m m mm ,其中2m .2.计算:322441124a aa babab ab3.(1)已知实数a 满足2280aa ,求22213211143a aa a aaa的值(2)已知a 、b 为实数,且1ab ,设11a b Ma b ,1111Na b ,试比较M 、N 的大小关系.融会贯通4.甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x xx x 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B ABBA,111(1)1n n nn 经典例题已知54(1)(21)121x A B x x x x ,求A 、B 的值解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x (2)(1)(21)A B x B Ax x ,可得254A B BA,解得13A B画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B的值即可. 举一反三1.若在关于x 的恒等式222Mx N c xxxax b中,22Mx N xx 为最简分式,且有a b ,abc ,求M ,N .2.化简:222211113256712xxxx xx xx 3.计算:222222a b c b c a c a b aabacbcbabbcaccacbcab融会贯通4.已知21(2)(3)23xb c ax x x x ,当1,2,3x时永远成立,求以a 、b 、c为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决. 经典例题已知x y z x y z x y zzyx,且()()()1x y y z z x xyz,求x y z 的值解题策略由x y z x y z x y zzyx得111x yx zy zz y x 从而xy x z yz z yx设x yxz y zk zyx,则x y kz ,x z ky ,y z kx三式相加得2()()x yz k xyz ,即()(2)0x y z k ,所以0xy z ,或2k若0xy z ,则1x y xz y zzy x g,符合条件;若2k ,则()()()81x y y z zx xyz与题设矛盾,所以2k 不成立因此0x yz画龙点睛1.将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2.在得到等式2()()x yz k x y z 后.不要直接将等式的两边除以x y z ,因为此式可能等于0.3.在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1.(1)已知275x y z ,求值①x y zz;②x yz;③x y zx(2)已知2310254a b b c c a,求56789a b cab的值2.若a b c d bcaa,求a b c d abcd的值3.已知实数a 、b 、c 满足0a b c,并且a b c k bccaab,则直线3y kx 一定通过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限融会贯通4.已知9pq r ,且222p qrxyzyzxzxy,求px qy rz xyz的值6 整数指数幂一般地,当n 是正整数时,1(0)nnaaa,这就是说(0)na a是na 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2mx ,3ny,求24()mn xy 的值解题策略242(4)(4)84()mn m n mnxy xyxyg g 848481()()23256mn xy 画龙点睛将所求的代数式转化为以mx、ny 为底的乘方,进而代入相应的值进行计算.举一反三1.计算(1)222242(2)()ab a b a b g (2)541321111(1)()()()()21023(3)10222(510)(0.210)(200)2.水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510kg ,求一个氢原子的质量.3.已知2310aa ,求(1)1a a ;(2)22aa ;(3)44aa融会贯通4.如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答. 经典例题解方程52432332x x x x 解题策略解法一去分母,得(52)(32)(43)(23)x x x x 2215610486129xxxxxx所以1x 验根知1x 为原方程的解.解法二方程两边加1,得5243112332x x x x 即222332x x 所以2332x x 解得1x 验根知1x 为原方程的解.解法三原式可化为22112332x x所以222332xx以下同解法二画龙点睛1.通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2.除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3.解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1.(1)解方程2227461xxxxx。
专题39 分式方程 初中数学学科素养能力培优竞赛试题精选专练含解析卷
专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y, =y 2x+y ;(2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2.【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值.三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本. 【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .22.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−13.已知关于x 的分式方程x x−2−3=k2−x的解为正数,则k 的取值范围是( ) A .k >﹣6 B .k >﹣2 C .k >﹣6且k ≠﹣2 D .k ≥﹣6且k ≠﹣24.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x2−x的解为( ) A .﹣2 B .﹣3 C .13D .345.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 .6.解下列分式方程 (1)x x−2−1−x 2(x−3)(x−2)=2xx−3;(2)x+1x−1−4x 2−1=1;(3)y−2y−3=2−13−y.7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案. (1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天 (2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”. (1)下列式子中,属于“和谐分式”的是 (填序号); ①x+1x;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x÷x 2−1x 2+2x,并求x 取什么整数时,该式的值为整数.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶). (1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?专题39 分式方程一、解复杂分式方程 【典例】计算(1)x 2x+y−x +y ;(2)1x(x+1)+1(x+1)(x+2)+⋯1(x+2005)(x+2006).【解答】解:(1)x 2x+y −x +y ,=x 2x+y −x 2−y 2x+y ,=y 2x+y; (2)1x(x+1)+1(x+1)(x+2)+⋯+1(x+2005)(x+2006),=1x −1x+1+1x+1−1x+2+⋯+1x+2005−1x+2006, =1x −1x+2006, =2006x(x+2006).【巩固】实数x 与y 使得x +y ,x ﹣y ,xy ,xy 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x ,y ).【解答】解:由题意知y ≠0,此时x +y ≠x ﹣y , 依题意,有x +y =xy =xy 或x −y =xy =xy , Ⅰ、当x +y =xy =xy 时, 即{x +y =xy ①xy =x y ② 由②得,y =±1,将y =1代入①得,x +1=x ,此等式不成立, 将y =﹣1代入①得,x ﹣1=﹣x , ∴x =12, 即{x =12y =−1.Ⅱ、当x −y =xy =xy 时,即{x −y =xy(1)xy =xy(2)由(2)得,y =±1,将y =1代入(1)得,x ﹣1=x ,此等式不成立, 将y =﹣1代入(1)得,x +1=﹣x , ∴x =−12, 即{x =−12y =−1故满足条件的数对(x ,y )为(12,﹣1)和(−12,﹣1).二、求分式方程的取值范围 【典例】若以x 为未知数的方程1x−1−a 2−x=2(a+1)x 2−3x+2无解,则a = .【解答】解:去分母得:x ﹣2+a (x ﹣1)=2(a +1) 解得:x =3a+4a+1当a +1=0即a =﹣1时,方程无解. 根据题意得:3a+4a+1=1时,解得a =−32;当3a+4a+1=2时,解得:a =﹣2故答案是﹣1或−32或﹣2. 【巩固】若关于x 的方程k(x−1)x+2k+1x 2+x=1+2kx+1有且只有一个实数根,求实数k 的所有可能值. 【解答】解:k(x−1)x+2k+1x 2+x=1+2kx+1两边同时乘以x (x +1)得:k (x ﹣1)(x +1)+2k +1=x (x +1)+2kx 整理得:(k ﹣1)x 2﹣(2k +1)x +k +1=0 (1)当k =1时,原方程可变为:﹣3x +2=0 解得:x =23经检验,x =23是原分式方程的唯一实数根,符合题意.(2)当k ≠1时,关于x 的方程(k ﹣1)x 2﹣(2k +1)x +k +1=0是一元二次方程, ∵原分式方程有且只有一个实数根, ∴△=[﹣(2k +1)]2﹣4(k ﹣1)(k +1)=0解得k =−54将k =−54代入方程得:−94x 2+32x −14=0 解得:x 1=x 2=13经检验,x =13是原分式方程的唯一实数根,符合题意. 当Δ≠0时,则方程必有一个实数根为0或﹣1.把x =0代入,可得k =﹣1,此时方程为﹣2x 2+x =0,解得x =0或12,经检验x =12是方程的解.把x =﹣1代入,可得k =−14,此时方程为5x 2+2x ﹣3=0, 解得x =﹣1或35,经检验x =35是方程的解,综上,实数k 的所有可能值为1或−54或0或﹣1. 三、分式方程的应用【典例】为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本. (1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【解答】解:(1)设“文学类”图书的单价为x 元/本,则“科普类”图书的单价为(1+20%)x 元/本, 依题意:3600(1+20%)x−20=2700x, 解之得:x =15.经检验,x =15是所列方程的根,且符合题意, 所以(1+20%)x =18.答:科普类书单价为18元/本,文学类书单价为15元/本; (2)设“科普类”书购a 本,则“文学类”书购(100﹣a )本, 依题意:18a +15(100﹣a )≤1600, 解之得:a ≤1003. 因为a 是正整数, 所以a 最大值=33.答:最多可购“科普类”图书33本.【巩固】某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?【解答】解:(1)设原来每天生产健身器械x 台,则提高工作效率后每天生产健身器械1.4x 台, 依题意得:150x+500−1501.4x=8,解得:x =50,经检验,x =50是原方程的解,且符合题意. 答:原来每天生产健身器械50台.(2)设使用m 辆大货车,使用n 辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输, ∴50m +20n ≥500, ∴n ≥25−52m .又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元, ∴{m <101500m +800n ≤16000,即{m <101500m +800(25−52m)≤16000, 解得:8≤m <10. 又∵m 为整数, ∴m 可以为8,9.当m =8时,n ≥25−52m =25−52×8=5; 当m =9时,n ≥25−52m =25−52×9=52, 又∵n 为整数, ∴n 的最小值为3. ∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元), 方案2所需费用为1500×9+800×3=15900(元). ∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.巩固练习1.若数a 使关于x 的不等式组{x−12<1+x3,5x −2≥x +a有且只有四个整数解,且使关于y 的分式方程y+a y−1+2a y−1=1的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2【解答】解:解不等式x−12<1+x 3,得x <5.解不等式5x ﹣2≥x +a ,得x ≥a+24.由不等式组有且仅有4个整数解,得到0<a+24≤1,解得﹣2<a ≤2. 解分式方程y+a y−1+2a 1−y=2,得y =2﹣a (y ≠1,即a ≠1).∵关于y 的方程y+a y−1+2a 1−y=2的解为非负数,∴2﹣a ≥0, ∴a ≤2,∴满足条件的a 的值为﹣1、0、2,∴满足条件的整数a 的值之和是﹣1+0+2=1. 故选:C .2.若关于x 的方程x +2x =c +2c 的两个解是x =c ,x =2c ,则关于x 的方程的x +2x−1=a +2a−1的解是( ) A .a ,2aB .a ﹣1,2a−1C .a ,2a−1D .a ,a+1a−1【解答】解:x +2x−1=a +2a−1即x ﹣1+2x−1=a ﹣1+2a−1则x ﹣1=a ﹣1或2a−1解得:x 1=a ,x 2=2a−1+1=a+1a−1故选:D . 3.已知关于x 的分式方程x x−2−3=k 2−x 的解为正数,则k 的取值范围是( ) A .k >﹣6B .k >﹣2C .k >﹣6且k ≠﹣2D .k ≥﹣6且k ≠﹣2 【解答】解:分式方程x x−2−3=k 2−x , 去分母得:x ﹣3(x ﹣2)=﹣k ,去括号得:x ﹣3x +6=﹣k ,解得:x =6+k 2,由分式方程的解为正数,得6+k 2>0,且6+k 2≠2, 解得:k >﹣6且k ≠﹣2.故选:C .4.对于两个不相等的实数a ,b ,我们规定符号min {a ,b }表示a ,b 中较小的数,如:min {3,5}=3.按照这个规定,方程min {﹣2,﹣3}=3x−2−x 2−x 的解为( ) A .﹣2 B .﹣3C .13D .34 【解答】解:由题意:﹣3=3x−2−x 2−x ,两边乘x ﹣2得到:﹣3x +6=3+x解得:x =34,经检验:x =34是分式方程的解.故选:D .5.已知关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,则a 的值为 . 【解答】解:x−1x−2−x x+1=ax+1x 2−x−2,(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1,∵关于x 的方程x−1x−2−x x+1=ax+1x 2−x−2无解,∴x ﹣2=0或x +1=0,把x =2代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:3=2a +1,解得a =1,把x =﹣1代入(x +1)(x ﹣1)﹣x (x ﹣2)=ax +1中可得:﹣3=﹣a +1,解得a =4,∴a 的值为1或4,故答案为:1或4.6.解下列分式方程(1)x x−2−1−x 2(x−3)(x−2)=2x x−3; (2)x+1x−1−4x 2−1=1; (3)y−2y−3=2−13−y .【解答】解:(1)两边同时乘以(x ﹣2)(x ﹣3)得:x (x ﹣3)﹣(1﹣x 2)=2x (x ﹣2),解得x =1,经检验,x =1是原方程的解,∴x =1;(2)两边同时乘以(x ﹣1)(x +1)得:(x +1)2﹣4=(x ﹣1)(x +1),解得x =1,经检验,x =1是原方程的增根,∴原方程无解;(3)两边同时乘以(y ﹣3)得:y ﹣2=2(y ﹣3)+1,解得y =3,经检验,y =3是原方程的增根,∴原方程无解;7.如图,某小区有一块长为4a 米(a >1),宽为(4a ﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a +1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A 型绿化方案,对正中间的长方形采用B 型绿化方案.(1)用含a 的代数式表示采用A 型绿化方案的四个正方形边长是 米,B 型绿化方案的长方形的另一边长是 米.(2)请你判断使用A 型,B 型绿化方案的面积哪个少?并说明理由.(3)若使用A 型,B 型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多540(2a−1)2元,求a 的值.【解答】解:(1)A 型绿化方案的四个正方形边长是(a −12)米,B 型绿化方案的长方形的另一边长是(2a ﹣1)米;故答案为:(a −12);(2a ﹣1);(2)记A 型面积为S A ,B 型面积为S B ,根据题意得:S A =4(a −12)2=4a 2﹣4a +1,S B =(2a +1)(2a ﹣1)=4a 2﹣1, ∴S A ﹣S B =﹣4a +2,∵4a ﹣2>0,∴﹣4a +2<0,即S A ﹣S B <0,则S A <S B ;(3)由(2)得S A <S B ,∴1350S A −1350S B =540(2a−1)2,即1350(2a−1)2−1350(2a+1)(2a−1)=540(2a−1)2,解得:a =2,经检验a =2是分式方程的解.8.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【解答】解:(1)设乙队单独完成这项工程需x 天,由题意得:136×30+15x=1, 解得:x =90,经检验x =90是分式方程的解;答:乙队单独完成这项工程需90天;(2)设甲队每天的施工费为m 万元,乙队每天的施工费为n 万元,由题意得:{30(m +n)+15n =81036(m +n)=828, 解得:{m =15n =8; 答:甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)∵乙队单独完成这项工程需90天,甲、乙合作完成此项工程共需36天, ∴甲队单独完成这项工程的天数为1136−190=60, 设乙队施工a 天,甲队施工b 天,由题意得:{a 90+b 60=1①15b +8a ≤840②, 由①得:b =60−23a ,把b =60−23a 代入②得:15×(60−23a )+8a ≤840,解得:a ≥30,即乙队最少施工30天;答:乙队最少施工30天.9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1,2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+−5x+1,则x+1x−1和2x−3x+1都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是 (填序号);①x+1x ;②2+x 2;③x+2x+1;④y 2+1y 2(2)将“和谐分式”a 2−2a+3a−1化成一个整式与一个分子为常数的分式的和的形式为:a 2−2a+3a−1= + ;(3)应用:先化简3x+6x+1−x−1x ÷x 2−1x 2+2x ,并求x 取什么整数时,该式的值为整数. 【解答】解:(1)①x+1x =1+1x ,是和谐分式;③x+2x+1=x+1+1x+1=1+1x+1,是和谐分式;④y 2+1y 2=1+1y 2,是和谐分式; 故答案为:①③④;(2)a 2−2a+3a−1=a 2−2a+1+2a−1=(a−1)2+2a−1=a ﹣1+2a−1,故答案为:a ﹣1、2a−1;(3)原式=3x+6x+1−x−1x •x(x+2)(x+1)(x−1) =3x+6x+1−x+2x+1=2x+4x+1 =2(x+1)+2x+1=2+2x+1,∴当x +1=±1或x +1=±2时,分式的值为整数,此时x =0或﹣2或1或﹣3,又∵分式有意义时x ≠0、1、﹣1、﹣2,∴x =﹣3.10.某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?【解答】解:(1)设扶梯露在外面的部分有x 级,乙每分钟走动的级数为a 级,则甲每分钟走动的级数为2a 级,扶梯每分钟向上运动b 级.由题意得:{242a =x 2a+b ①16a=x a+b ②, ①÷②得:34=a+b 2a+b ,整理得:b =2a ,代入②得x =48.答:扶梯露在外面的部分有48级;(2)设追上乙时,甲扶梯走了m 遍,楼梯走了n 遍,则乙走扶梯(m ﹣1)遍,走楼梯(n ﹣1)遍.由题意得:48m 4a +48n 2a =48(m−1)3a +48(n−1)a ,整理得:m +6n =16,这里m ,n 中必有一个是整数,且0≤m ﹣n ≤1.①若m 为整数,则n =16−m 6,∴{m =1n =52(不合,舍去),{m =2n =73(不合,舍去){m =3n =136(符合条件){m =4n =2(不合,舍去){m =5n =116(不合,以后均不合,舍去) ②若n 为整数,m =16﹣6n ,∴{n =1m =10,{n =2m =4,{n =3m =−2⋯,这些均不符合要求,∴{m =3n =136,此时,甲在楼梯上. 他已走动的级数是(48m 4a +48n 2a )×2a =24m +48n =72+104=176(级).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x--有意义? (2)当x 为何值时,分式22211x x--的值为零? 解题策略(1) 要使分式22211x x--有意义,应有分母不为零这个分式有两个分母x 和11x -,它们都不为零,即0x ≠且110x -≠,于是当0x ≠且1x ≠时,分式22211x x--有意义, (2) 要使分式22211x x--的值为零,应有2220x -=且110x -≠,即1x =±且1x ≠,于是当1x =-时,分式22211x x--的值为零 画龙点睛1. 要使分式有意义,分式的分母不能为零.2. 要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1. (1)要使分式24x x -有意义的x 的取值范围是( ) (A)2x = (B) 2x ≠ ( C)2x =- (D)2x ≠-(2)若分式的的值为零,则x 的值为( )(A)3 (B)3或3- (C) 3- (D)0 2. (1)当x 时,分式23(1)16x x -+-的值为零;(2) 当x 时,分式2101x x +≥- 3. 已知当2x =-时,分式x b x a -+无意义;当4x =时,分式的值x b x a -+为零,求a b +.融会贯通4.0≤,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题 若2731x x x =-+,求2421x x x ++的值 解题策略 因为2731x x x =-+,所以0x ≠ 将等式2731x x x =-+的左边分子、分母同时除以x ,得1713x x=-+,所以有 1227x x += 因此242222211149112214351()1()17x x x x x x x ====+++++-- 画龙点睛 对于含有1x x+形式的分式,要注意以下的恒等变形: 22211()2x x x x+=++ 22211()2x x x x-=+- 2211()()4x x x x+--= 举一反三1. (1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b c a b c -+++(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a a a ---+ 2. 已知13xy x y =--,求2322x xy y x y xy +---的值.3. 已知13x x+=,求2421x x x ++的值.融会贯通4. 已知3a b b a+=,求22224a ab b a ab b ++++的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x y x y x y x y x y x y--+-÷+--+- 解题策略 原式2222()4()43()()8x y y x y x x y x y xy x y x y x y--+-+--=÷-+- ()(3)(3)()(3)(3)x y x y x y y x x y x y x y x y x y +-+--=-++- y x =-画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1. 先化简,再求值:262393m m m m -÷+--,其中2m =-.2. 计算:322441124a a a b a b a b a b+++-+++= 3. (1)已知实数a 满足2280a a +-=,求22213211143a a a a a a a +-+-⨯+-++的值(2)已知a 、b 为实数,且1ab =,设11a b M a b =+++,1111N a b =+++,试比较M 、 N 的大小关系.融会贯通4. 甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法 我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x x x x -+=---- 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B AB B A ±=±,111(1)1n n n n =-++ 经典例题已知54(1)(21)121x A B x x x x -=-----,求A 、B 的值 解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x ----=-=------(2)(1)(21)A B x B A x x -+-=--,可得254A B B A -=⎧⎨-=-⎩,解得13A B =⎧⎨=-⎩ 画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B 的值即可.举一反三1. 若在关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=,求M ,N .2. 化简:222211113256712x x x x x x x x ++++++++++3. 计算:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+融会贯通 4. 已知21(2)(3)23x b c a x x x x -=++----,当1,2,3x ≠时永远成立,求以a 、b -、c 为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决.经典例题已知x y z x y z x y z z y x +--+-++==,且()()()1x y y z z x xyz +++=-,求x y z ++的值解题策略 由x y z x y z x y z z y x+--+-++== 得111x y x z y z z y x +++-=-=- 从而x y x z y z z y x+++== 设x y x z y z k z y x+++===,则x y kz +=,x z ky +=,y z kx +=三式相加得2()()x y z k x y z ++=++,即()(2)0x y z k ++-=,所以0x y z ++=,或2k =若0x y z ++=,则1x y x z y z z y x+++•=-,符合条件; 若2k =,则()()()81x y y z z x xyz+++=≠-与题设矛盾,所以2k =不成立 因此0x y z ++=画龙点睛1. 将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2. 在得到等式2()()x y z k x y z ++=++后.不要直接将等式的两边除以x y z ++,因为此式可能等于0. 3. 在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1. (1)已知275x y z ==,求值①x y z z ++;②x y z +;③x y z x +-(2)已知2310254a b b c c a +-+==,求56789a b c a b +-+的值2. 若a b c d b c a a ===,求a b c d a b c d -+-+-+的值3. 已知实数a 、b 、c 满足0a b c ++≠,并且a b c k b c c a a b===+++,则直线3y kx =-一定通过( )(A)第一、二、三象限 (B)第一、二、四象限(C)第二、三、四象限 (D)第一、三、四象限 融会贯通 4. 已知9p q r ++=,且222p q r x yz y zx z xy ==---,求px qy rz x y z++++的值6 整数指数幂一般地,当n 是正整数时,1(0)n n a a a-=≠,这就是说(0)n a a -≠是n a 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2m x-=,3n y =,求24()m n x y ---的值解题策略 242(4)(4)84()m n m n m n x y x y x y -------==848481()()23256m n x y ---==⨯=画龙点睛将所求的代数式转化为以m x-、n y 为底的乘方,进而代入相应的值进行计算. 举一反三1. 计算(1)222242(2)()a b a b a b ----÷(2)541321111(1)()()()()21023----++-+-⨯-(3)10222(510)(0.210)(200)⨯÷-⨯⨯-2. 水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310-⨯kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510-⨯kg ,求一个氢原子的质量.3. 已知2310a a -+=,求(1)1a a -+;(2)22a a -+;(3)44a a -+融会贯通4. 如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答.经典例题解方程52432332x x x x --=-- 解题策略解法一 去分母,得(52)(32)(43)(23)x x x x --=--2215610486129x x x x x x --+=--+所以1x =-验根知1x =-为原方程的解.解法二 方程两边加1,得5243112332x x x x --+=+-- 即222332x x =-- 所以2332x x -=-解得1x =-验根知1x =-为原方程的解.解法三 原式可化为22112332x x -=--- 所以222332x x =-- 以下同解法二画龙点睛1. 通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2. 除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3. 解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1. (1)解方程2227461x x x x x +=+--(2)解方程2222112x x x x x x x x -++=--+-2. (1)解方程22252571061268x x x x x x x x x --+=+----+(2)解方程253336237456x x x x x x x x ----+=+----3. 若解方程61(1)(1)1m x x x -=+--是会有增根,求它的增根融会贯通4. 已知方程11x c x c +=+ (c 是常数,0c ≠)的解是c 或1c,求方程2131462a a x x a+++=- (a 是常数,且0a ≠)的解.8 列分式方程解应用题和整式中的一元一次方程一样,列分式方程所解的应用题也包括工程问题、行程问题、经济问题等,本节介绍列分式方程解应用问题的方法.经典例题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月多6立方米,求该市今年居民用水的价格.解题策略设该市去年居民用水价格为x 元/m 3,则今年用水价格为(125%)x +元/m 3.根据题意得:36186(125%)x x-=+,解得: 1.8x = 经检验: 1.8x =是原方程的解.所以(125%) 2.25x +=所以该市今年居民用水的价格为2. 25元/m 3.画龙点睛列分式方程解应用题的步骤与列一元一次方程解应用题步骤基本上是一致的:审查题意,设未知数;找出等量关系,列出方程;解分式方程并验根;写出答案.举一反三1. 某服装厂准备加工300套演出服,加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,请问:该厂原来每天加工多少套演出服?2. 便民服装店的老板在株洲看到一种夏季衫,就用8000元购进若干件,以每件58元的价格出售,很快售完.又用17 600元购进同种衬衫,数量是第一次的2倍,每件进价比第一次贵了4元,服装店仍按每件58元出售,全部售完.问该服装店这笔生意共盈利多少元?3. 从甲地到乙地共50 km ,其中开始的10 km 是平路,中间的20 km 是上坡路,余下的20 km 又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路上和上坡路上保持匀速).融会贯通4. 某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.参考答案1 分式的概念1. (1)B (2) C2. (1)3x =- (2) 12x ≤-或1x > 3. 64. 21a -≤<2分式的基本性质1. (1)1561561510a b c a b c -+++(2)3211a a a --+ 2. 由已知,得3x y xy -=-,所以 原式2()36333()23255x y xy xy xy xy x y xy xy xy xy -+-+-====----- 3. 242222211111113181()1x x x x x x x====++-+++- 4. 将22224a ab b a ab b ++++分子和分母同时除以ab ,得13143474a b b a a b b a +++==+++3 分式的四则运算1. 262393m m m m -÷+-- 633(3)(3)2m m m m m -=-++- 33m m -=+ 当2m =-时,原式3235323m m ---===-+-+ 2. 322441124a a a b a b a b a b +++-+++ 3222244224a a a a b a b a b =++-++ 33444444a a a b a b =+-+ 7884a a b=- 3. (1) 22213211143a a a a a a a +-+-⨯+-++ 213(1)1(1)(1)(1)(3)a a a a a a a +-=-⨯++-++2111(1)a a a -=-++ 22(1)a =+ 由2280a a +-=知2(1)9a += 所以原式222(1)9a ==+ (2)11()()1111a b M N a b a b -=+-+++++ 111111a b a a b b =-+-++++ 1111a b a b --=+++ (1)(1)(1)(1)(1)(1)a b b a a b -++-+=++ (1)(1)(1)(1)ab a b ab b a a b +--++--=++ 220(1)(1)ab a b -==++ 所以M N =4. 设两次购买肥料的单价分别为a 元/千克和b 元/千克(a 、b 为正数,且a b ≠),则 甲两次购买肥料的平均单价为:8008008008002a b a b ++=+ (元/千克). 乙两次购买肥料的平均单价为:6006002600600ab a b a b +=++ (元/千克). 因为22()2()a b ab a b a b a a b +--=++,又a b ≠,0a >,0b >,所以2()0()a b a a b ->+ 所以甲的平均单价比乙的高,所以乙的购货方式更合算一些4 分式的运算技巧——裂项法1. 222(2)22()()()()Mx N x b cx ca c x b ca x x x a x b x a x b ++---+-==+-++++ 且22(1)(2)x x x x +-=-+,a b >所以2a =,1b =-,1c a b =+=从而可得21M x =-=,24N b ca =-=-2. 原式1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x =++++++++++ 111111*********x x x x x x x x =-+-+-+-+++++++ 114x x =-+ 3. 原式()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-=++------ 111111a c a b b a b c c b c a=+++++------ 0=4. 因为23b c a x x ++-- (2)(3)(3)(2)(2)(3)a x xb xc x x x --+-+-=-- 25632(2)(3)ax ax a bx b cx c x x -++-+-=-- 所以2215632x ax ax a bx b cx c -=-++-+-所以1a =,50a b c -++=,6321a b c --=-解得1a =,3b =-,8c =所以四边形的第四边d 的取值范围应满足138d ++>,138d ++>,182d ++>,381d ++>,解得412d <<5 含有几个相等分式问题的解法1. (1)设275x y z k ===,则2,7,5x k y k z k === ① 2751455x y z k k k z k ++++== ② 27955x y k k z k ++== ③ 27522x y z k k k x k+-+-== (2)设2310254a b b c c a k +-+===则2253104a b k b c k c a k +=⎧⎪-=⎨⎪+=⎩解得2a k b k c k =⎧⎪=⎨⎪=-⎩56756(14)25898917a b c k k k a b k k +-+--==++ 2. 设a b c d k b c a a==== 则234,,,d ak c dk ak b ck ak a bk ak =======所以41k =,得1k =±当1k =时,a b c d ===,原式0=当1k =-时,a b c d =-==-,原式2=-3. (),(),()k a b c k b c a k c a b +=+=+=于是2()k a b c a b c ++=++因为0a b c ++≠ 所以12k =直线132y x =-的图象经过第一、三、四象限 故选择D4. 设222p q r k x yz y zx z xy===---, 故222(),(),()p k x yz q k y zx r k z xy =-=-=-所以222()9p q r k x y z yz zx xy ++=++---=又px qy rz ++=333()k x xyz y xyz z xyz -+-+-333()k x y z xyz xyz xyz =++--- 222()()k x y z x y z yz zx xy =++++---9()x y z =++所以px qy rz x y z++++9= 6 整数指数幂1. (1)424b a(2)149(3)12510⨯2. 232.6710⨯个 271.67510-⨯ kg 3. (1)因为2310a a -+=,且0a ≠所以213a a += 所以2113a a a a -++== (2) 2212()27a aa a --+=+-= (3)44222()247a a a a --+=+-=4. 1M 表示的数为310.110100-⨯= 1N 表示的数为3511010100--⨯= 1P 5711010100--⨯= 37P 表示的数为637 3.710-=⨯7 分式方程的解法1. (1)原方程分母因式分解为746(1)(1)(1)(1)x x x x x x +=+-+- 去分母得7(1)4(1)6x x x -++= 解得35x =检验知35x =为原方程的根(2) 原方程式变形为22221112x x x x +=+--+- 整理得2212x x x x --=+- 解得12x =检验知12x =为原方程的根 2. (1) 原方程分母因式分解为525710(3)(2)(4)(3)(2)(4)x x x x x x x x x --+=+--+-- 去分母得5(4)(25)(2)(710)(3)x x x x x x -+--=-+解得1x =检验知1x =为原方程的根(2)原方程化为2(7)93(4)93(5)92(6)97456x x x x x x x x -+-+-+-++=+---- 999923327456x x x x +++=+++---- 11117456x x x x +=+---- 11117654x x x x -=----- (6)(7)(4)(5)(7)(6)(5)(4)x x x x x x x x ------=---- 11(7)(6)(5)(4)x x x x =---- 22111342920x x x x =-+-+ 422x = 解得112x = 检验把112x =代入最简公分母(7)(4)(5)(6)0x x x x ----≠,所以112x =是原方程的根3. 去分母,得6(1)(1)(1)m x x x -+=+-如果增根为1x =,则6(11)0m -+=,3m =如果增根为1x =-,则6(11)0m --+=,无解,所以3m =4. 将方程2131462a a x x a+++=-整理得 112323x a x a+=++- 112323x a x a -+=+- 所以23x a -=,或123x a -=故32a x +=或312a x a +=8 列分式方程解应用题1. 设服装厂原来每天加工x 套演出服.根据题意,得603006092x x -+= 解得20x =经检验20x =是原方程的根.2. 设原进价为x 元一件,则第二次进价为(4)x +元一件,依题意得176********x x =+ 解得40x = 经检验40x =是原方程的根 服装店这笔生意第一次购进8000200x =件,第二次购进176004004x =+件,服装店这笔生意共盈利200(5840)400(5844)9200⨯-+⨯-=(元). 3. 设小明在平路上的速度是x km/h ,根据题意,得131011203()66x x -=-, 解得15x =经检验15x =是原方程的根,且符合题意.4. (1)设规定的时间是x 天,则甲单独完成需要(30)x +天,乙单独完成需要(12)x +,由题意,得11120()(20)1301230x x x x ++⨯-=+++, 解得24x =经检验24x =是原方程的根,所以规定的时间是24天;(2)由题意,因为规定时间是24天,所以甲单独完成需要243054+=(天),乙单独完成需要241236+=(天).留下甲完成需要的时间是:51151()(1)65436654÷++-÷189=+ 27=24>,不能在规定时间完成任务;留下乙完成需要的时间是:51151()(1)1862465436636÷++-÷=+= 能在规定时间完成任务.所以留下乙组好.。