八年级数学培优辅导讲义竞赛训练导学案 分式的运算 分式的化简与求值 含答案解析
【八年级数学代数培优竞赛专题】专题8 分式的运算技巧【含答案】

专题8 分式的运算技巧知识引入一天,数学家觉得自己受够了数学,于是他跑到消防队去宣布他想当消防员。
消防队长说:“您看上去不错,可是我得先给您一个测试.”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管.消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭.”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着.”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。
”这则笑话看起来很荒谬,但却道出了解决数学问题的重要思想,那就是转化思想,转化思想在数学中有着广泛的应用,比如在进行分式除法运算的时候,首先要运用除法法则,将除法运算转化为乘法运算,然后再解决。
知识解读1.分式乘除法运算的一般步骤:(1)利用除法法则,先将除法运算转化为乘法运算;(2)运用分式的乘法法则,用分子的积作为积的分子,用分母的积作为积的分母;(3)把分式的分子、分母分别写成它们的公因式与另一因式的积的形式,如果分式的分子、分母为多项式时,先要进行因式分解;(4)约分,得到最后的结果.2.异分母分式加减法的步骤:(1)正确地找出各分式的最简公分母;(2)准确地得出各分式的分子、分母应乘的因式;(3)通分后,进行同分母分式的加减运算;(4)公分母保持积的形式,将各分子展开;(5)将得到的结果化成最简分式。
3.正确进行分式的混合运算,需弄清以下各要点:(1)分清运算级别,按照“从高到低,从左到右,括号从小到大”的运算顺序进行;(2)将各分式的分子、分母分解因式后再进行运算;(3)遇到除法运算时,可以先化成乘法运算;(4)注意处理好每一步运算中遇到的符号;(5)最后结果要注意化简;(6)在运算过程中,每进行一步都要检验一下,不要到最后才检验。
第初中数学竞赛五讲有条件的分式的化简与求值(含答案)

第五讲 有条件的分式的化简与求值给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化筒后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1.恰当引入参数;2.取倒数或利用倒数关系; 3.拆项变形或拆分变形; 4.整体代入;5.利用比例性质等. 例题求解 【例1】若a d d c cb b a ===,则dc b a dc b a +-+-+-的值是 . (第12届“希望杯”邀请赛试题)思路点拨 引入参数,利用参数寻找a 、b 、c 、d 的关系. 注:解数学题是运用巳知条件去探求未知结论的一个过程.如何运用已知条件是解题顺畅的重要前提,对巳知条件的运用有下列途径: (1)直接运用条件; (2) 变形运用条件; (3) 综合运用条件; (4)挖掘隐含条件.在解某些含多个字母的代数式问题时,如果已知与未知之间的联系不明显,为了沟通已知与未知之间的联系,则可考虑引入一个参数,参数的引入,可起到沟通变元、消元的功能.【例2】如果11=+b a ,12=+c b ,那么ac 2+等于( ) A .1 B .2 C .3 D .4(2002年全国初中数学联赛武汉选拔赛) 思路点拨 把c 、a 用b 的代效式表示.【例3】已知1=xyz ,2=++z y x ,16222=++z y x ,求代数式yzx x yz z xy 212121+++++的值. (2003年北京市竞赛题)思路点拨 直接通分,显然较繁,由x+y+z=2,得z=2-x -y ,x=2-y -z ,z =2-x -y ,从变形分母入手.【例4】不等于0的三个数a 、b 、c 满足cb ac b a ++=++1111,求证a 、b 、c 中至少有两个互为相反数.(天津市竞赛题)思路点拨 要证a 、b 、c 中至少有两个互为相反数,即要证明(a+b)(b+c)(c+a)=0,使证明的目标更加明确.【例5】 (1)已知实数a 满足a 2-a -1=0,求487-+a a 的值.(2003年河北省竞赛题) (2)汜知1325))()(())()((=+++---a c c b b a a c c b b a ,求ac cc b b b a a +++++的值. (“北京数学科普日”攻擂赛试题) 思路点拨 (1)由条件得a 2=a+1,11=-aa ,通过不断平方,把原式用较低的多项式表示是解题的关键.(2)已知条件是b a b a +-、cb c b +-、a c ac +-三个数的乘积,探求这三个数的和与这三个数的积之间的关系,从而求出b a b a +-+c b c b +-+ac ac +-的值是解本例的关键.学历训练1.已知032=-+x x ,那么1332---x x x = . (2003年淄博市中考题)2.已知712=+-x x x ,则1242++x x x = .3.若a 、b 、c 满足a+b +c=0,abc>0,且c c b b a a x ++=,y=)11()11()11(ba c a cbc b a +++++,则xy y x 32++= . (“祖冲之杯”邀请赛试题) 4.已知43322a c c b b a -=-=+,则ba cb a 98765+-+= .(第12届“五羊杯”竞赛题) 5.已知a 、b 、c 、d 都是正数,且d c b a <,给出下列4个不等式:①d c c b a a +>+;②dc cb a a +<+;③d c d b a b +>+;④ dc db a b +<+,其中正确的是( ) (2002年山东省竞赛题) A .①③ B .①④ C .②④ D .②③ 6.设a 、b 、c 是三个互不相同的正数,如果abb ac b c a =+=-,那么( ) A . 3b=2c B .3a=2b C .2b=c D .2a=b. (“祖冲之杯”邀请赛试题) 7.若4x —3y 一6z=0,x+2y -7z=0(xyz ≠0),则代数式222222103225z y x z y x ---+的值等于( ).A . 21-219- C .-15 D . -13. (2003年全国初中数学竞赛题) 8.设轮船在静水中速度为v ,该船在流水(速度为u <v )中从上游A 驶往下游B ,再返回A ,所用时间为T ,假设u =0,即河流改为静水,该船从A 至B 再返回B ,所用时间为t , 则( )A .T=tB .T<tC .T>tD .不能确定T 、t 的大小关系9.(1)化简,求值:24)44122(22+-÷++--+-a a a a a a a a ,其中a 满足0122=-+a a ; (2002年山西省中考题)(2)设0=++c b a ,求abc c ac b b bc a a +++++222222222的值.10.已知xz z y y x 111+=+=+,其中x 、y 、z 互不相等,求证:x 2y 2z 2=1.11.若0≠abc ,且b ac a c b c b a +=+=+,则abca c cb b a ))()((+++= . 12.已知a 、b 、c 满足1222=++c b a ,3)11()11()11(-=+++++ba c c abc b a ,那么 a+b+c 的值为 . 13.已知1=+y x xy ,2=+z y yz ,3=+xz zx,则x 的值为 . 14.已知x 、y 、z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 . (2003年全国初中数学竞赛题)15.设a 、b 、c 满足abc ≠0,且c b a =+,则abc b a ca b a c bc a c b 222222222222-++-++-+的值为A .-1B .1C .2D .3 (2003年南通市中考题) 16.已知abc=1,a+b+c=2,3222=++c b a ,则111111-++-++-+b ca a bc c ab 的值为( ) A .-1 B .21-C .2D .32- (大原市竞赛题) 17.已知—列数1a 、2a 、3a 、4a 、5a 、6a 、7a ,且1a =8,7a =5832,766554433221a a a a a a a a a a a a =====,则5a 为( ) A .648 B . 832 C .1168 D .194418.已知0199152=--x x ,则代数式)2)(1(1)1()2(24----+-x x x x 的值为( )A .1996B .1997C .1998D .1999 19.(1)已知ac b =2,求)111(333333222cbacb ac b a ++⋅++的值;(2)已知x 、y 、z 满足1=+++++y x z x z y z y x ,求代数式yx z x z y z y x +++++222的值. (2002年北京市竞赛题)20.设a 、b 、c 满足c b a c b a ++=++1111,求证:当n 为奇数时,n n n n n n cb ac b a 1111++=++ (波兰竞赛题)21.已知012=--a a ,且1129322322324-=-++-axa a xa a ,求x 的值. (2000年上海市高中理科班招生试题)22.某企业有9个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A,B两组检验员,其中A组有8名检验员,他们先用2天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再检验第三、四两个车间的所有成品,又用去了3天时间,同时,用这5天时间,B组检验员也检验完余下的5个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.(2001年天津市中考题) 答案:。
第15章 分式的计算与化简求值 人教版八年级上册数学讲义

第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
2020-2021学年数学人教版八年级培优和竞赛二合一讲炼教程-13-分式总复习

例2. 计算: a 1
a3
分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“
分离分式法”简化计算。
a(a 1) 1 a(a 3) 1
解:原式
a 1
a3
a 1 (a 1 )
a 1
a3
11
a 1 a3
(a 3) (a 1)
(a 1)(a 3)
2a 2
当 x 2 时,分母 x 2 3x 2 0 ,原分式无意义。
例2.已知 x 2 3x 2 0 ,那么代数式
x 1
的值是_________。
分析:先化简所求分式,发现把 x 2 3x 看成整体代入即可求的结果。 解:原式 (x 1)2 (x 1) x 2 2x 1 x 1 x 2 3x x2 3x 2 0 x2 3x 2
(a 1)(a 3)
例3.
1
解方程:
x2
1 7x
6
x2 x2
5x 5 5x 6
分析:因为 x 2 7x 6 (x 1)(x 6) , x 2 5x 6 (x 2)(x 3) ,所以最简公分
母为: (x 1)(x 6)(x 2)(x 3) ,若采用去分母的通常方法,运算量较大。由
x 0 经检验, x 0 是原方程的根。
3. 在代数求值中的应用
例4. 已知 a 2 6a 9 与 |b 1| 互为相反数,求代数式
( a2
4 b2
a ab 2
b a
2b
)
a 2 ab 2b2 a 2b 2ab2
b a
的值。
分析:要求代数式的值,则需通过已知条件求出a、b的值,又因
x2 y2
x y ,则M=__________。
八年级数学尖子生培优竞赛专题辅导专题09 分式化简与求值

②求 的最小值.
(2)如果 的值为整数,求x的整数值.
素养提升
1.已知: - = ,则 的值是()
A. B.- C.3D.-3
2.已知: - =3,则 的值是()
A.- B.- C. D.
3.当x分别取-2018、-2017、-2016、……、-2、-1、0、1、 、 、……、 、 、 时,计算分式 的值,再将所得结果相加,其和等于()
求证: <M< .
15.+ ,若A=B,求a、b之间的关系式;
(2)已知a、b、c都是正数,P= + + ,Q= + + ,若P=Q,那么a、b、c之间有什么关系?试证明你的结论.
专题09分式化简与求值
思维索引】
例1.由已知可得2x-y=2,故
例2.因 ,所以 ,故 ,所以
(2)请你用文字叙述(1)中结论的含义__________________________________;
(3)如图所示,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的小路,原来的绿地与现在铺过小路后的绿地的长与宽的比值是否相等.
14.有一列按一定顺序和规律排列的数:
第一个数是 ;第二个数是 ;第三个数是 ;…对任何正整数n,第(n+1)个数
A.-1B.1C.0D.2018
4.已知a+ = +2b≠0,则 的值()
A.-1B.1C.-2D.2
5.实数a、b、m、n满足a<b、-1<n<m,若M= ,N= ,则M与N的大小关系是()
A.M>NB.M=NC.M<ND.M≥N
6.化简: ÷(1- )的值为__________.
7.已知若x=2 +1,则分式 的值等于__________.
培优专题分式的运算(含答案)

八年级数学培优(一)分式的运算及分式方程班级姓名【知识精读】1. 分式的乘除法法则a bcdacbd ⋅=;a bcdabdcadbc ÷=⋅=当分子、分母是多项式时,先进行因式分解再约分。
2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。
求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。
(2)同分母的分式加减法法则a cbca bc ±=±(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。
3. 分式乘方的法则()a babnnn=(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。
学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。
5.关于分式方程(1)分式方程的定义;(2)解分式方程的基本思想方法;(3)解分式方程的一般方法和步骤;(4)分式方程的增根问题:a.产生增根的原因是 。
验根的方法是 。
(5)列分式方程解应用题的步骤: 。
下面我们一起来学习分式的四则运算。
【分类解析】例1:计算: 12442222+--÷--+n m m n m n m mn n解:原式=---⋅-+-1222m n m n m n m n m n ()()()4 =--+=+-++=+1223m nm nm n m n m nn m n 说明:分式运算时,若分子或分母是多项式,应先因式分解。
例2:(分式通分的六大技巧)(1)逐步通分:(2)整体通分:(3)分组通分(4)分解简化通分:(5)列项相消:(6)活用乘法公式:例3、已知:M x y xy y x yx y x y 222222-=--+-+,则M =_________。
初中数学 人教版八年级上册分式的化简 求值 与证明讲义

分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。
分式培优训练含答案

分式培优训练含答案专训一:分式求值的方法分式的求值是数学方法运用的考查,既要突出式子的化简计算,又要灵活选用方法。
常见的分式求值方法有设参数求值、活用公式求值、整体代入法求值、巧变形法求值等。
直接代入法求值需要先化简,再代入参数求值,例如题目a+2a÷(a+1)(a-1)+2/(a-1),其中a=5.活用公式求值需要熟悉公式,例如题目x2-5x+1=(x2+3xy+y2)/(2xy),求x4+(x4)/(x2+3xy+y2)的值。
整体代入法求值需要将分式整体代入,/(x2y2z2)+4/(x+y+z)=1,且x+y+z≠0,求(x+y)/(z+x)+y/(z+y)的值。
巧变形法求值需要巧妙变形,例如题目4x2-4x+1=1/(2x),求2x+(2x)/(4x2-4x+1)的值。
设参数求值需要设定参数,例如题目x2-y2+/(xy+yz+xz)=2/3,y+z/x+z+x+y=4/3,求x/y的值。
专训二:六种常见的高频考点本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现。
分式方程是中考必考内容之一,一般考查解分式方程,并要求会用增根的意义解题。
考题常以解答题的形式出现,有时也会出现在选择题和填空题中。
分式的概念是指由两个整式相除得到的表达式,分式有意义的条件是分母不能为0.选择题和填空题常考查分式的有、无意义条件。
分式的基本性质包括分式的加减乘除和约分,考试中常以选择题和填空题的形式出现。
1.4x^2 - 2x + 12.分式的有关运算3.下列运算中,正确的个数是(2)4.m^4n^4m^2/n^3 = mnx-y/11 ÷(y-x)/22 = -2mn/(m-n) = n/(m-n)a-b)/(a-2) = 1/25.a-21/2 + 34/a-16.10.计算:(a+1)/(a-2) ÷ 1/(a-1) 的结果是 (B) a-1/a+111.计算:-1/(a+2) + 2/(a^2+2a+2) = -a^2+1/a^2+2a+212.化简:1/(m+1) - 1/(m+2) = -1/(m^2+3m+2)13.(1) (2a^2+2a)/(a-1)^2 + (a-4a^4)/(a-1+a) = (2a^2-2a)/(a-1)2) x^2+2x(1-1/x)/(x-1) = (x+1)/(x-1)选x=3,原式的值为 10/314.先化简:(x^2-1)/(x-1) = x+1整数指数幂15.下列计算正确的是 (B) x^2/x^6 = x^-416.下列说法正确的是 (A) -1/2 + 2 = 3/217.计算(π-3) + (-2)^3 = -1+8 = 718.由2×10^5个直径为5×10^-5cm的圆球体细胞排成的细胞链的长是 5cm19.分式方程 (x+2a)/(x-13) = x-3/(x-3)20.若关于x的方程 (x-1)/(x-2) = 1/a+1 的解为x=3,则a 等于 (C) -221.解分式方程:(x-2)/(x-1) + 1/(x-2) = 1/x,得到 x=322.2x+1/x-3 = 1,得到 x=11.解:原式 = [a/(a+1) + 2/(a-1) - 12/(a+1)(a-1)],化简后得到 (3a+1)/(a+1),再代入a=5,得到原式的值为 2/3.2.解:由 x^2 - 5x + 1 = 0,解出x = (5 + √21)/2,代入 x + 1/x = 5,得到 x^2 + 1/x^2 = 23,代入原式,化简得到 (x^2 + 3)/(x^4 + 1) - 2 = 527/4.3.解:将分子化简得到 xy(x+y)/(x+y)^3,代入 x+y=12,xy=9,得到原式的值为 1/8.4.解:将等式两边同时乘以 (x+y+z),化简得到(xy+yz+zx)/(xyz) + 1 = (x+y+z)/(x+y)(y+z)(z+x),代入已知条件,化简得到 (x+y+z)/(xy+yz+zx) = 0,所以原式的值为 0.5.解:将等式移项得到 4x^2 - 4x + 1 = 0,化简得到 (2x-1)^2 = 0,解得 x = 1/2,代入原式得到 2.6.解:设k ≠ 0,代入已知条件,解出 x = 2k,y = 3k,z = 4k,代入原式化简得到 2.1.B2.A3.A4.B2.(答案不唯一) a+1/(x+y+z) + y(x+y+z)/(z+x) =(a(x+y+z)+y(x+y+z))/(z+x) = (ax+ay+yz+y^2+z^2)/(z+x)3.26.D4.删除此段落5.解:(1) 原式 = (a+2)(a-2)a+2/[(a-2)(2a-2)] = (a+2)/2(a-2) - 1/(a-2) = (a^2-2)/2(a-2) = -3/2 (a=0) (2) 原式 = (x-11)/[(x-1)(2x-1)] = -1/(2x-1) + 3/(x-1) = (4x-3)/(2x-1)(x-1)6.删除此段落7.解:(1) 最简公分母是15m^2n^2.840n/39m * 2/5mn^2 = -8/13m^2n (2) 最简公分母是(a+1)^2(a-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学培优辅导讲义竞赛训练导学案分式的化简与求值典例剖析【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1944(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-. (宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=.(北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131xx x =-+,则24291x x x =-+ . (广东竞赛试题)3.若2221998,1999,2000a x b x c x +=+=++=且24abc =,则111c a b ab bc ac a b c++--- 的值为 .(“缙云杯”竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的 值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211xx mx =-+,则36331x x m x -+的值为( ) A .1 B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c ------++=++.(n 为自然数)(波兰竞赛试题)12.三角形三边长分别为,,a b c .(1)若a a b cb c b c a ++=+-,求证:这个三角形是等腰三角形; (2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z+++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题)(2)596841922119968x x x x x x x x ----+=+----; (“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 . 5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .207.已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( ).A .1996B .1997C .1998D .199998.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)11.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、(天津市竞赛试题)12.设222222222,,222b c a a c b b a c A B C bc ac ab+-+-+-===,当3A B C ++=-时,求证:2002200220023A B C ++=.(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶?(江苏省竞赛试题)专题07 分式的化简求值例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k •••••==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =•••= 例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b c ab ++)①② ③=14-(2+ab ac aabc-+2+bc ab babc-+2ac bc cabc+-)=222 8()4()4abc ab bc ac a b cabc-+++++=28()4[322()]4abc ab bc ac ab bc caabc-+++-++把⑥代入等式中,0=3 16()164abc ab bc acabc-+++=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a 个直角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153. 184.35. A6. C 提示:b 2+c 2-a2=-2bc7.B8. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m39. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)10. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--11. 提示:参见例5得(a+b)(b+c)(a+c)=012. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.13. 3 x=1a,y=1b,c=1z,∴411a++411x+=411a++4111a+=1,∴原式=3.14. (1)x=-11 2(2)x=123 14(3)(x,y,z)=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B级1. 22. -1或8 提示:设a bc+=b ca+=c ab+=k,则k=-1或2 3.1128354. 0 提示:由xy z+=1-yz x+-zx y+,得:14=x-xyz x+-xzx y+5. A6. C7. D 提示:原式=4(2)(2)(1)(2)x x xx x-+---=3(2)1x xx-+-=3261281x x x xx-+-+-=2(1)5(1)8(1)1x x x x xx---+--=x2-5x+88. A 提示:由已知条件得x=3y9. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·ca b-=1+22c ab , ∴同理:(a b c -+b c a -+c ab -)·a bc -=1+22a bc ,(a b c -+b c a -+c a b -)·bc a -=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=910. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.11. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 12. 由A +B +C =-3得(2222b c a bc+-+1)+222222(1)(1)0.22c a b a b c ac ab +-+-+++=即222222()()()0222b c a c a b a b c bc ac ab+-+-+-++=分解因式,得(b +c -a )(a +b -c )(a -b +c )=0b +c -a , a +b -c ,a -b +c 中至少有一个为0,不妨设b +c -a =0,代入式中, A 2002+B 2002+C 2002=(-1)2002+12002+12002=3.13.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则27271818.S x y S xy -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16m n -=,m 分别取值,则有②m =16-6n ,分别取值,则有 显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级. ∴男孩第一次追上女孩时走了198级台阶.。