人教版初中八年级数学上册分式的化简练习题精选28
分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

【专题】分式化简求值(50题)一、解答题1.先化简,再求值:(1−1a 1)÷aa 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4aa 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a=π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3.5.先化简,再求值:a−1a 22a 1÷a−1a 1−1a−1,其中6.÷(3a 1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+),其中x =−2.8.先化简,再求值:)÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x2−xx2−6x9,其中x=2.10.先化简再求值:−1x)÷1x1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(xx−1−1),其中x=-212.2xx2x2−1,其中x=3.13.先化简,再代入求值:x2x−2·(4x+x−4),其中x2−2x−2=014.先化简,再求值:(1+1x−2)÷x−1x2−2x+4,其中x=6.15.÷a2−aba−2a b,其中a=2,b=﹣1.16.先化简,再求值:(xx1+1x−1)÷1x2−1,其中x是6的平方根.17.先化简,再求值:+1)÷−2x ,其中x =4.18.先化简,再求值:(1x 1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值:÷(x +2﹣5x−2 ),其中x = −12 .20.先化简,再求值:(2m 2−4m 2−1)其中m =(12)−1+(3.14−π)0.21.先化简 1a 1÷a a 22a 1 ,然后在0,1,-1中挑选一个合适的数代入求值. 22.÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 22a 1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a 2)2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.÷(1−3x 1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a 1 ÷(a ﹣1﹣ 2a−1a 1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值 30.先化简,再求值: −a−1a 2−4a 4)÷a−4a ,其中a 满足 a 2−4a +1=0 . 31.先化简,再求值:(1−2x−1)÷,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a 2)÷,其中a = 2−1+(π−2022)0 . 33.先化简,再求值 : (1−1a 1)÷aa 2−1 并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值: mm 2−9÷[(m +3)0+3m−3] ,其中 m =−2 . 35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简:÷ ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值. 37.先化简:x−3x 2−1⋅−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(aa2+9−4aa2−4)÷a−3a−2,其中a是已知两边分别为2和3的三角形的第三边长,且a是整数.39.先化简,再求值:+1−aa2−4a4)÷a−4a,并从0<a<4中选取合适的整数代入求值.40.先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab b2+ab−a),其中a=−2,b=13.41.先化简,再求值:(1+1x2)÷ x2−9x−3,其中x=﹣2.42.先化简x2−2xx2−4÷(x−2−2x−4x2),然后从-2,2,5中选取一个的合适的数作为x的值代入求值.43.先化简,再求值:(2a−4aa−2)÷a−4a2−4a4,其中a与2,3构成△ABC的三边长,且a为整数.44.有一道题:“先化简,再求值:(x−2x 2+4xx 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:÷−2x x 为不等式组2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a 1−a−1)÷,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值. 47.先化简,再求值: ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解. 48.先化简分式:(1﹣ xx−1 )÷ ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2x −1)÷x 2−1x 22x 1 ,其中x 的值从不等式组 −x ≤12x−1<4 的整数解中选取.50.有这样一道题:先化简再求值,÷x−1x2x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。
八年级数学上册分式加减运算计算题练习(含答案)(最新整理)

八年级数学上册 分式加减运算 计算题练习1、化简:.2、化简:. 2(2222abb a b a b a ++÷--421444122++--+-x x x x x 3、化简:. 4、化简:.a a a a 21222-÷-+a a ---1115、化简:.6、化简:. 2222)2(nm mnm m n mn m --⋅++1224422-+÷--x x x x 7、化简:. 8、化简:.)111(111(2+-÷-+a a 1)12111(2-÷+-+-+x xx x x x 9、化简:. 10、化简:.a a a a a -+-÷--2244)111(14414(2-+-÷---x x x x x x 11、化简:. 12、化简:.962966322--+++⋅+a a a a a a 112222+---x xx x x 13、化简:. 14、化简:.1231621222+-+÷-+-+x x x x x x x 12)121(22+-+÷-+x x xx x 15、化简:. 16、化简:.)111(12+-÷-x x x 44211(22+++÷+-x x xx x 17、化简:. 18、化简:.11221(223+-+--÷--x xx x x x x x x 24)2122(--÷--+x x x x 19、化简:. 20、化简:.1112221222-++++÷--x x x x x x 11131332+-+÷--x x x x x 21、化简:. 22、化简:.9)3132(2-÷-++x x x x 12242(2++÷-+-x x x x x23、化简:. 24、化简:.x x x x x x x x -⋅+----+444122(22344)3392(2--+-÷+-+-x x x x x x 25、化简:. 25、化简:. 121441222+-÷-+-+-a a a a a a 2422(2+÷---m m m m m m 27、化简:. 28、化简:.222a b ab b a a b a b --++-x x x x x x -+⋅+÷++-21)2(1242229、化简:. 30、化简:12412122++-÷+--x x x x x )111(1222+-+÷+-x x x x x 31、化简:. 32、化简:.1221122+-+÷--+a a a a a a ba ba b a b b a b a +-÷--+-2)2(33、化简:. 34、化简:.121)121(2+-+÷-+x x x x 11211222---+--⨯+-x aax a a a a a a 35、化简:. 36、化简:. 41)2212(216822+++-+÷++-x x x x x x x xa x x a 221(-÷-37、化简:. 38、化简:.1)11(22-÷---x xx x x 1)112(2-÷+--a a a a a a 39、化简:421211(2--÷-+x x x参考答案1、原式=.2、原式=.3、原式=a 2+2a.4、原式=.5、原式=m+n.b a ab +2)2(24--x x 122--a a6、原式=.7、原式=.8、原式=.9、原式=. 10、原式=.x x -1a a 1+1-x x 2-a a 22-+x x 11、原式=. 12、原式=. 13、原式=3x-7. 14、原式=. 15、原式=.a 21+x x x x 1-11-x 16、原式=1+. 17、原式=. 18、原式=-x-4. 19、原式=.2x x +-2122-x x20、原式=. 21、原式=. 22、原式=x+1. 24、原式=. x x +21x x 9-2)2(1--x 25、原式=. 26、原式=. 27、原式=. 28、原式=. 2-x x 1-a a 2-m m b a ba -+29、原式=. 30、原式=. 31、原式=. 32、原式=.11+-x 21+x 11-x 21+a 33、原式=. 34、原式=x ﹣1. 35、原式=0. 36、原式=.b a a -2x x 442+37、原式=. 38、原式=. 39、原式=a+3. 40、原式=.a x +1x x 1+12+x。
人教版八年级数学上册_分式的化简求值同步习题 (2022年最新)

.
将分式 化为带分式;
若分式 的值为整数,求 的整数值;
当 ________时, 有最小值,求出这个最小值.
参考答案与试题解析
15.2 分式的化简求值
一、 选择题
1.【答案】B
2.【答案】B
3.【答案】B
4.【答案】A
5.【答案】D
6.【答案】A
7.【答案】A
8.【答案】B
9.【答案】C
10.【答案】C
【详解】添加一个条件是∠CAE=∠DAE.(答案不唯一)
理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE,
∴∠ABC=∠ABD,
在△ABC和△ABD中,
,
∴△ABC≌△ABD(ASA),
8.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有__个.
20.先化简 ,然后从不等组 的解集中,选取一个你认为符合题意的 的值代入求值.
21.已知 ,计算 的值.
22.阅读材料并解答以下问题,我们知道,假分数可以化为带分数.例如: .在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如: , ,这样的分式就是假分式; ,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).
【详解】解:∵∠E=∠F=90°,∠B=∠C,AE=AF
∴△ABE≌△ACF
∴BE=CF
∠BAE=∠CAF
∠BAE-∠BAC=∠CAF-∠BAC
初中数学-分式的化简练习

初中数学-分式的化简一.填空题(共9小题)1.(•呼和浩特)若x2﹣3x+1=0,则的值为_________.2.(•莆田)当时,代数式的值为_________.4.(•甘孜州)已知a与b互为相反数,且|a+2b|=2,b>0,则代数式的值是_________.4.(•凉山州)已知:x2﹣4x+4与|y﹣1|互为相反数,则式子的值等于_________.5.(•连云港)若ab=1,则的值为_________.6.(•扬州)当x=2005时,代数式﹣1的值为_________.7.(•龙岩)若a、b满足,则的值为_________.8.(1998•温州)若a、b都是正实数,且,则=_________.二.解答题(共21小题)9.(•珠海)先化简,再求值:,其中.10.(•重庆)先化简,再求值:,其中x是不等式组的整数解.11.(•云南)化简求值:,其中.12.(•岳阳)先化简,再求值:(﹣)÷,其中x=.13.(•永州)先化简,再求代数式的值,其中a=2.14.(•营口)在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子的计算结果”.请你说出其中的道理.15.(•扬州)先化简:,再选取一个合适的a值代入计算.16.(•随州)先化简再求值:,其中x=.17.(•苏州)先化简,再求值:,其中,a=+1.18.(•南通)先化简,再求值:,其中x=6.19.(•南京)化简代数式,并判断当x满足不等式组时该代数式的符号.20.(•龙岩)(1)计算:|﹣5|+60﹣2×+(﹣1)2012;(2)先化简,再求值:(3a3﹣6a2+3a),其中a=7.21.(•广西)(1)计算:π0+2﹣1﹣﹣|﹣|;(2),其中x=4,y=﹣2.22.(•抚顺)先化简,再求值.﹣÷,其中m=﹣1.23.(•鄂尔多斯)(1)先化简,再求代数式()÷的值,其中.(2)解不等式组,并将解集表示在数轴上.24.(•鄂州)先化简,再在0,﹣1,2中选取一个适当的数代入求值.25.(•鞍山)先化简,再求值:,其中x=+1.26.(•宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.27.(•上海).28.(•南通)计算:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1(2)÷﹣×+.29.(•泉州)计算:×+|﹣4|﹣9×3﹣1﹣20120.参考答案与试题解析一.填空题(共9小题)1.(•随州)设a2+2a﹣1=0,b4﹣2b2﹣1=0,且1﹣ab2≠0,则=﹣32.考点:因式分解的应用;分式的化简求值.分析:根据1﹣ab2≠0的题设条件求得b2=﹣a,代入所求的分式化简求值.解答:解:∵a2+2a﹣1=0,b4﹣2b2﹣1=0,∴(a2+2a﹣1)﹣(b4﹣2b2﹣1)=0,化简之后得到:(a+b2)(a﹣b2+2)=0,若a﹣b2+2=0,即b2=a+2,则1﹣ab2=1﹣a(a+2)=1﹣a2﹣2a=﹣(a2+2a﹣1),∵a2+2a﹣1=0,∴﹣(a2+2a﹣1)=0,与题设矛盾∴a﹣b2+2≠0,∴a+b2=0,即b2=﹣a,∴==﹣=﹣()5=﹣25=﹣32.故答案为﹣32.点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意1﹣ab2≠0的运用.2.(•呼和浩特)若x2﹣3x+1=0,则的值为.考点:分式的化简求值.分析:将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式.解答:解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======故答案为.点评:解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活3.(•莆田)当时,代数式的值为1.考点:分式的化简求值.专题:计算题.分析:将所求式子第一项分子提取2,并利用平方差公式分解因式,约分后去括号,合并后得到最简结果,然后将a的值代入化简后的式子中计算,即可得到所求式子的值.解答:解:﹣2=﹣2=2(a+1)﹣2=2a,当a=时,原式=2×=1.故答案为:1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(•甘孜州)已知a与b互为相反数,且|a+2b|=2,b>0,则代数式的值是0.考点:分式的化简求值.专题:计算题.分析:由a与b互为相反数,得到a+b=0,即a=﹣b,再由a+2b的绝对值为2,得到a+2b为2或﹣2,及b大于0,求出a与b的值,代入所求式子中计算,即可求出值.解答:解:∵a与b互为相反数,∴a+b=0,即a=﹣b,又|a+2b|=2,即a+2b=2或a+2b=﹣2,b>0,∴b=2,a=﹣2,则==0.故答案为:0点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.5.(•凉山州)已知:x2﹣4x+4与|y﹣1|互为相反数,则式子的值等于.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用相反数的定义求出x和y的值,化简式子代入求值.解答:解:∵x2﹣4x+4与|y﹣1|互为相反数,∴x2﹣4x+4+|y﹣1|=0.∴(x﹣2)2+|y﹣1|=0.∴(x﹣2)2=0,|y﹣1|=0.∴x=2,y=1.∴()÷(x+y)=(2﹣)÷(2+1)=.点评:本题考查分式的化简求值,涉及到绝对值等知识点,不是很难.6.(•连云港)若ab=1,则的值为1.考点:分式的化简求值.专题:计算题.分析:对所求的代数式利用分式加减法则化简整理得原式=,然后将ab=1代入即可求出代数式的值.解答:解:原式==,将ab=1代入得,原式=1.填空答案为:1.点评:此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意使用整体代入的方法.7.(•扬州)当x=2005时,代数式﹣1的值为2005.考点:分式的化简求值.专题:计算题.分析:先对x2﹣1分解因式,再进行通分化简求值.解答:解:﹣1===x把x=2005代入得原式=2005.点评:解答此题时不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.8.(•龙岩)若a、b满足,则的值为.考点:分式的化简求值.专题:计算题.分析:对已知代数式整理得=2,即a2+b2=2ab,则将此等式代入所求代数式即可求出其值.解答:解:∵,∴=2,即a2+b2=2ab,则将此等式代入代数式得,原式==.点评:此题考查分式的化简与计算,解决这类题目关键是把握好通分与约分,同时注意整体代入的方法.9.(•温州)若a、b都是正实数,且,则=﹣.考点:分式的化简求值.专题:计算题.分析:对已知等式整理得=,即b2﹣a2=2ab,则代入所求代数式即可求出其值.解答:解:∵,∴=,即b2﹣a2=2ab,则所求代数式==﹣.故填空答案:﹣.点评:此题考查分式的计算化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意整体代入的方法应用.二.解答题(共21小题)10.(•珠海)先化简,再求值:,其中.考点:分式的化简求值.专题:计算题.分析:线将括号内的分式通分,进行加减后再算除法,计算时,要将除法转化为乘法.解答:解:原式=[﹣]×=×=,当x=时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(•重庆)先化简,再求值:,其中x是不等式组的整数解.考点:分式的化简求值;一元一次不等式组的整数解.专题:计算题.分析:将原式括号中的第一项分母利用平方差公式分解因式,然后找出两分母的最简公分母,通分并利用同分母分式的减法法则计算,分子进行合并整理,同时将除式的分母利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到结果,分别求出x满足的不等式组两个一元一次不等式的解集,找出两解集的公共部分确定出不等式组的解集,在解集中找出整数解,即为x的值,将x的值代入化简后的式子中计算,即可得到原式的值.解答:解:(﹣)÷=[﹣]•=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣2,∴不等式组的解集为﹣4<x<﹣2,其整数解为﹣3,当x=﹣3时,原式==2.点评:此题考查了分式的化简求值,以及一元一次不等式的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母是多项式,应先将多项式分解因式后再约分.12.(•云南)化简求值:,其中.考点:分式的化简求值.专题:计算题.分析:根据乘法的分配律展开得出×(x+1)(x﹣1)+×(x+1)(x﹣1),求出结果是2x,代入求出即可.解答:解:原式=×(x+1)(x﹣1)+×(x+1)(x﹣1)=x﹣1+x+1=2x,当x=时,原式=2×=1.点评:本题考查了分式的化简求值的应用,主要考查学生的化简能力,题型较好,但是一道比较容易出错的题目.13.(•岳阳)先化简,再求值:(﹣)÷,其中x=.考点:分式的化简求值.专题:计算题.分析:先把除法化成乘法,再根据乘法分配律展开得出x﹣1+x+1,合并同类项得出2x,代入求出即可.解答:解:原式=(+)×(x+1)(x﹣1)=×(x+1)(x﹣1)+×(x+1)(x﹣1)=x﹣1+x+1=2x,当x=时,原式=2×=1.点评:本题考查了对分式的化简求值的应用,通过做此题培养了学生的计算能力,题目比较典型,是一道具有一定代表性的题目.14.(•永州)先化简,再求代数式的值,其中a=2.考点:分式的化简求值.专题:计算题.分析:将第一个因式括号中的第一项分母利用平方差公式分解因式,约分化为最简分式,然后通分并利用同分母分式的加法法则计算,第二个因式的分子利用完全平方公式分解因式,约分后得到最简结果,将a的值代入化简后的式子中计算,即可得到原式的值.解答:解:(+1)•=[+1]•=(+)•=•=a﹣1,当a=2时,原式=2﹣1=1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.15.(•营口)在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子的计算结果”.请你说出其中的道理.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再根据化简结果即可得出结论.解答:解:∵原式=÷,=×=x.∴任意说出一个x的值(x≠0,1,2)均可以为此式的计算结果.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.(•扬州)先化简:,再选取一个合适的a值代入计算.考点:分式的化简求值.专题:开放型.分析:先将分式的除法转化为乘法进行计算,然后再算减法,最后找一个使分母不为0的值代入即可.解答:解:原式=1﹣×=1﹣×=1﹣=﹣=﹣,a取除0、﹣2、﹣1、1以外的数,如取a=10,原式=﹣.点评:本题考查了分式的化简求值,不仅要懂得因式分解,还要知道分式除法的运算法则.17.(•随州)先化简再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:先通分计算括号里面的,然后将除法转化为乘法进行计算,化简后将x=代入求值.解答:解:,当时,则原式=.点评:本题考查了分式的化简求值,熟悉分式的加减运算法则是解题的关键.18.(•苏州)先化简,再求值:,其中,a=+1.考点:分式的化简求值.专题:计算题.分析:将原式第二项第一个因式的分子利用完全公式分解因式,分母利用平方差公式分解因式,约分后再利用同分母分式的加法法则计算,得到最简结果,然后将a的值代入化简后的式子中计算,即可得到原式的值.解答:解:+•=+•=+=,当a=+1时,原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先将原式化为最简时再代值.19.(•南通)先化简,再求值:,其中x=6.考点:分式的化简求值.分析:首先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把x=6代入即可求值.解答:解:原式=[1+]•=[+]•=•=x﹣1,把x=6代入得:原式=6﹣1=5.点评:本题主要考查了分式的化简求值,解答本题的关键是把分式通过约分化为最简,然后再代入数值计算.在化简的过程中要注意运算顺序.20.(•南京)化简代数式,并判断当x满足不等式组时该代数式的符号.考点:分式的化简求值;解一元一次不等式组.分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x+1<0,x+2>0,从而求解.解答:解:===,,解不等式①,得x<﹣1.解不等式②,得x>﹣2.所以,不等式组的解集是﹣2<x<﹣1.当﹣2<x<﹣1时,x+1<0,x+2>0,所以,即该代数式的符号为负号.点评:考查了分式的化简求值,解一元一次不等式组,本题的关键是得到化简后的分式中分子和分母的符号.注意分式的化简求值中,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.21.(•龙岩)(1)计算:|﹣5|+60﹣2×+(﹣1)2012;(2)先化简,再求值:(3a3﹣6a2+3a),其中a=7.考点:分式的化简求值;实数的运算;零指数幂.专题:计算题.分析:(1)先根据绝对值的性质、0指数幂及有理数乘方的法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把a=7代入进行计算即可.解答:解:(1)原式=5+1﹣1+1,=6;(2)原式=×3a(a2﹣2a+1),=(a﹣1)2,当a=7时,原式=(7﹣1)2=36.点评:本题考查的是分式的化简求值及实数的运算,熟练掌握绝对值的性质、0指数幂的运算法则、有理数乘方的法则及分式混合运算的法则是解答此题的关键.22.(•广西)(1)计算:π0+2﹣1﹣﹣|﹣|;(2),其中x=4,y=﹣2.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)分别根据0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据有理数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=4,y=﹣2代入进行计算即可.解答:解:(1)原式=1+﹣﹣=1﹣=;(2)原式=×=,当x=4,y=﹣2时,原式==.点评:本题考查的是分式的化简求值及实数的混合运算,熟知0指数幂、负整数指数幂及绝对值的性质是解答此题的关键.23.(•抚顺)先化简,再求值.﹣÷,其中m=﹣1.考点:分式的化简求值.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再把m的值代入进行计算即可.解答:解:原式=﹣×=﹣=,当m=﹣1时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.(•鄂尔多斯)(1)先化简,再求代数式()÷的值,其中.(2)解不等式组,并将解集表示在数轴上.考点:分式的化简求值;在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:(1)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(1)原式=×=,当a=2﹣时,原式==;(2),由①得,x≥﹣11;由②得,x<3,故此不等式组的解集为:﹣11≤x<3,在数轴上表示为:点评:本题考查的是分式的化简求值及在数轴上表示不等式组的解集,熟知分式混合运算的法则是解答此题的关键.25.(•鄂州)先化简,再在0,﹣1,2中选取一个适当的数代入求值.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再在0,﹣1,2中选取一个适当的数代入求值即可.解答:解:原式=(+)÷=×x(x﹣2)=x(x+3),∵x≠0,x≠2,∴当x=﹣1时,原式=﹣(﹣1+3)=﹣2.点评:本题考查的是分式的化简求值,在解答此题时要注意x≠0,x≠2.26.(•鞍山)先化简,再求值:,其中x=+1.考点:分式的化简求值;负整数指数幂.专题:计算题.分析:先求出x的值,再根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:∵x=+1,∴x=3+1=4,原式=×=,当x=4时,原式==2.点评:本题考查的是分式的化简求值及负整数指数幂,熟知分式混合运算的法则是解答此题的关键.27.(•宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.考点:分式的化简求值;零指数幂;负整数指数幂;二次根式的混合运算.专题:探究型.分析:(1)分别根据负整数指数幂、0指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:(1)原式=﹣2﹣1+1=﹣;(2)原式=•﹣=﹣=当x=2tan45°时,原式=2.点评:本题考查的是实数的运算及分式的化简求值,熟知负整数指数幂、0指数幂、绝对值的性质及分式混合运算的法则是解答此题的关键.28.(•上海).考点:二次根式的混合运算;分数指数幂;负整数指数幂.分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.解答:解:原式===3.点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键.29.(•南通)计算:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1(2)÷﹣×+.考点:二次根式的混合运算;零指数幂;负整数指数幂.分析:(1)根据绝对值、有理数的乘方、零整数指数幂、负整数指数幂的定义分别进行计算,再把所得的结果相加即可;(2)根据二次根式混合运算的顺序和法则分别进行计算,再合并同类二次根式即可.解答:解:(1)|﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1=1+4+1﹣3=3;(2)÷﹣×+=﹣+2=4+.点评:此题考查了二次根式的混合运算,在计算时要注意顺序和法则以及结果的符号.30.(•泉州)计算:×+|﹣4|﹣9×3﹣1﹣20120.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用二次根式的乘法法则•=(a≥0,b≥0)进行计算,第二项利用绝对值的代数意义化简,第三项利用负指数公式化简,最后一项利用零指数公式化简,合并后即可得到结果.解答:解:×+|﹣4|﹣9×3﹣1﹣20120=+4﹣9×﹣1=6+4﹣3﹣1=6.点评:此题考查了二次根式的混合运算,绝对值的代数意义,以及零指数、负指数公式的运用,是一道中考常考的基本题型.。
(完整版)八年级数学上册分式加减运算计算题练习(含答案)

八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222ab b a b a b a ++÷--.2、化简:421444122++--+-x x x x x . 3、化简:a a a a 21222-÷-+. 4、化简:a a ---111.5、化简:2222)2(n m mn m m n mn m --⋅++.6、化简:1224422-+÷--x xx x .7、化简:)111()111(2+-÷-+a a . 8、化简:1)12111(2-÷+-+-+x xx x x x .9、化简:a a a a a -+-÷--2244)111(. 10、化简:144)14(2-+-÷---x x x x x x .11、化简:962966322--+++⋅+a a a a a a . 12、化简:112222+---x x x x x .13、化简:1231621222+-+÷-+-+x x x x x x x . 14、化简:12)121(22+-+÷-+x x x x x .15、化简:)111(12+-÷-x x x . 16、化简:44)211(22+++÷+-x x x x x .17、化简:1122)1(223+-+--÷--x x x x x x x x x . 18、化简:24)2122(--÷--+x xx x .19、化简:1112221222-++++÷--x x x x x x . 20、化简:11131332+-+÷--x x x x x .21、化简:9)3132(2-÷-++x xx x . 22、化简:12)242(2++÷-+-x x x x x .23、化简:xxx x x x x x -⋅+----+4)44122(22. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 25、化简:2)422(2+÷---m mm m m m . 27、化简:222a b abb a a b a b --++-. 28、化简:x x x x x x -+⋅+÷++-21)2(12422. 29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x31、化简:1221122+-+÷--+a a a a a a . 32、化简:ba ba b a b b a b a +-÷--+-2)2(.33、化简:121)121(2+-+÷-+x x x x . 34、化简:11211222---+--⨯+-x a ax a a a a a a .35、化简:41)2212(216822+++-+÷++-x x x x x x x . 36、化简:xa x x a 22)1(-÷-.37、化简:1)11(22-÷---x x x x x . 38、化简:1)112(2-÷+--a a a a a a .39、化简:421)211(2--÷-+x x x参考答案1、原式=ba ab +. 2、原式=2)2(24--x x . 3、原式=a 2+2a. 4、原式=122--a a . 5、原式=m+n.6、原式=x x -1.7、原式=a a 1+.8、原式=1-x x .9、原式=2-a a . 10、原式=22-+x x . 11、原式=a 2. 12、原式=1+x x . 13、原式=3x-7. 14、原式=x x 1-. 15、原式=11-x .16、原式=1+2. 17、原式=x x +-21. 18、原式=-x-4. 19、原式=22-x x.20、原式=x x +21. 21、原式=xx 9-. 22、原式=x+1. 24、原式=2)2(1--x . 25、原式=2-x x . 26、原式=1-a a . 27、原式=2-m m . 28、原式=b a ba -+. 29、原式=11+-x . 30、原式=21+x . 31、原式=11-x . 32、原式=21+a .33、原式=b a a -2. 34、原式=x ﹣1. 35、原式=0. 36、原式=x x 442+.37、原式=a x +1. 38、原式=x x 1+. 39、原式=a+3. 40、原式=12+x .。
人教版八年级数学上册小专题_分式的化简与求值

小专题分式的化简与求值
类型1 分式的运算
1.计算:
(1)
(2)
(甘孜中考)
(7)
(重庆中考)
类型2 分式的化简求值
2.,其中
3.(原黑龙江中考)先化简,再求值:,其中
4.其中
5.(眉山中考)先化简,再求值:,其中满足
6.(广安中考)先化简,并从-1,0,1,2四个数中,
选一个合适的的数代入求值.
7.,其中
8.的非负整数解中选择一
个适当的数代入求值.
9.的范围内选取一个你喜欢的
的值代入求值
10.先化简,,其中
的整数解中选取.
参考答案
1.解:(1)原式=1(2)原式=(3)原式=(4)原式=
(5)原式=(6)原式=(7)原式=8)原式=
(9)原式=
2.解:原式=当时,原式=
3.解:原式=.当时,原式=
4.解:,
原式.当时,原式=
5.解:原式=.则原式=
6.解:原式=且,则原式=-1
7.解:原式=.当时,原式=7
8.解:原式=不等式的非负整数解是0,1,2,且,-2,
.当时,原式=2;当时,原式=
9.解:原式=.当时,原式=4(答案不唯一.注:)
10.解:原式=解得不等式组的整数解为
要使分式有意义,只能取2,原式=-2。
八年级数学上册专题七分式的化简求值习题新版新人教版

−+
先化简,再求值:
÷
−
−
−
(−)
−
【解】原式=
÷
(−)
−
−
(−)
−
=
÷
=
(−)
−
−
,其中 a =4.
(−) −
−
−
· =
,当 a =4时,原式=
= .
(−) −
4. 已知实数 x , y 满足| x -3|+ y2-4 y +4=0,求代数式
【解】
+
−+
+
−+
−
÷
.
++
−
−(−)(+)
(+)
÷
=
·
++
+
(+)(−)
− +
+
(+)(−)
+
=
·
=
·
=-( a +1)=
(+)(−)
(+)(−)
- a -1.
类型2 化简求值——直接代入型
人教版 八年级上
第十五章 分式
专题七 分式的化简求值
类型1 直接化简
1.
−
[2023南通]计算:
· -
.
−+
−
−
−
【解】
· -
=
· -
=
-
−+
初中数学分式的化简与乘除法练习题(附答案)

初中数学分式的化简与乘除法练习题一、单选题 1.计算()22ba a -的结果为( ) A.b B.b -C.abD.b a2.化简221121a a a a a a ++÷--+的结果是( ) A.1a a + B.1a a - C.11a - D.1a a- 3.化简22164244244a a a a a a a --+÷++++,其结果是( ) A.2-B.2C. ()222a -+ D.()222a +4.下列计算正确的有( )①22a a b b ⎛⎫= ⎪⎝⎭;②333622y y x x -⎛⎫= ⎪⎝⎭;③23546x x y y ⎛⎫= ⎪⎝⎭;④222()()a b a b a b a b --⎛⎫= ⎪++⎝⎭;⑤222224x x x y x y ⎛⎫= ⎪++⎝⎭. A.1个B.2个C.3个D.4个5.计算222105a b a bab a b+-的结果为( ) A.2a b - B.a a b - C.b a b -D.2a a b -6.计算221()222a b a b a b-÷⋅-+的结果是( )A.2()4a b -B.21()a b -C.24()a b - D.2()a b + 7.计算32()a b-的结果是( ) A.332a b - B.336a b - C.338a b- D.338a b8.化简1()x y y x x y x y-÷-⋅+-的结果是( ) A.221x y - B.y x x y -+ C.221y x - D.x y x y -+9.计算322222x y y y x x ⎛⎫⎛⎫⎛⎫÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)的结果是( )A.368x yB.368x y -C.2516x yD.2516x y-10.计算24a a b ⎛⎫ ⎪+⎝⎭的结果是( )A.2228a a b+ B. 22216a a b+ C.228()a a b + D.2216()a ab + 11.下列运算结果正确的是( )A.4453m n m n m n=B. 2223344x x y y ⎛⎫= ⎪⎝⎭C. 2222241a a a a b ⎛⎫= ⎪--⎝⎭D.a c ac b d bd÷= 12.计算3222n m mm n n -⋅÷的结果是( )A.22m nB.23m n -C.4nm- D.n - 13.计算a ba b a÷⋅的结果是( ) A.a B.2a C.21aD.2b a14.计算()x y x x y x x y++÷⋅+,其结果是( ) A.x y + B.2x x y + C.1y D.11y+15.计算623993m mm m m ⋅÷+--,其结果是( ) A.21(3)m + B.21(3)m -+ C.21(3)m - D.219m -+ 16.计算221()222a ba b a b-÷⋅-+,其结果是( )A.2()4a b -B.21()a b -C.24()a b - D.2()a b + 二、解答题17.化简:22266(3)(2)443x x x x x x x x-+-÷+⋅⋅--+-. 18.计算: ()322a b ab b a ⎛⎫⎛⎫-⋅-÷- ⎪ ⎪⎝⎭⎝⎭19.计算: 2322222a b ab b c cac ⎛⎫-÷⋅ ⎪⎝⎭ 20.先化简,在求值:2223()()()x y x x y xy x y -÷+⋅-,其中1, 1.2x y =-=- 三、计算题21.()222191691a a a a a a --÷+⨯++-四、填空题22.计算:322x y ⎛⎫-= ⎪⎝⎭.23.化简293242a a a a-+÷--的结果为 . 24.计算:22536c bab a c= . 25.化简422222()()a a b a a b b a b b a-+÷⋅-的结果是 . 参考答案1.答案:A 解析:原式22ba b a ==故选A. 2.答案:D解析:原式()()211111a a a a a a a-+-==-+。