人教版七年级数学第二章课后习题与配套参考答案(已审阅)
人教版数学七年级上册 配套习题 第二章2.2.1(含答案)

2.2整式的加减第1课时合并同类项能力提升1.下列各组式子中为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.下列合并同类项正确的是()①3a+2b=5ab;②3a+b=3ab;③3a-a=3;④3x2+2x3=5x5;⑤7ab-7ab=0;⑥4x2y3-5x2y3=-x2y3;⑦-2-3=-5;⑧2R+πR=(2+π)R.A.①②③④B.⑤⑥⑦⑧C.⑥⑦D.⑤⑥⑦3.若x a+2y4与-3x3y2b是同类项,则(a-b)2 017的值是()A.-2 017B.1C.-1D.2 0174.已知a=-2 016,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2 016D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.当k=时,多项式x2-kxy+xy-8中不含xy项.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.化简:(1)x2y-3xy2+2yx2-y2x;(2)a2b-0.4ab2-a2b+ab2.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.★10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)5a3-3b2-5a3+4b2+2ab,其中a=-1,b=.创新应用★11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一位同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?参考答案能力提升1.D2.B①②④中不存在同类项,不能合并;③中3a-a=(3-1)a=2a;⑤⑥⑦⑧正确.3.C由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2017=(1-2)2017=(-1)2017=-1.4.A把多项式整理,得原式=-ab,当a=-2016,b=时,原式=1.5.52x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,m+n=5.6.多项式中,不含有哪一项就说明这一项的系数为0,但应先合并同类项.x2-kxy+xy-8=x2+-xy-8,所以-k=0,解得k=.7.08.解:(1)原式=(1+2)x2y+[(-3)+(-1)]xy2=3x2y-4xy2.(2)原式=-a2b+-ab2=-a2b-ab2.9.解:由同类项定义得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=(5-5)a3+2ab+(4-3)b2=2ab+b2,当a=-1,b=时,原式=2×(-1)×=-.创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题中给出的条件“a=0.35,b=-0.28”是多余的.。
人教版 七年级数学 上册 第二章 2.1整式 (有答案)有答案

12.1 整式【基础知识梳理】1、代数式的有关概念代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。
说明:代数式书写时需注意:(1)数与字母、字母与字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;(2)带分数与字母相乘时要化成假分数,如:ab 211要写成ab 23的形式;(3)除号要改写成分数线,如:a ÷b 要写成b a ;(4)书写单位时要把代数式用括号括起来,如(12ab +2R )平方米。
代数式的系数:在代数式中,每一项字母前的数字因数叫做这一项的系数。
2、整式的有关概念(1)单项式的定义:都是数与字母的积的代数式叫做单项式.说明:判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.如yx 就不是一个单项式,因为2y 与x 之间是除法运算.但是,12ab 是单项式,因为12是一个数.a 是一个单项式,因为ab 以看作是a ·b 特别地,单独的一个数或单独的一个字母也都是单项式,如-3,0,12,x ,x2等都是单项式(2)单项式次数:一个单项式中,所有字母的指数和叫做这个单项式的次数. 说明:单项式的次数,是指这个单项式中将所有字母指数相加得到的和.如单项式3x 2、2xy 、x 2y 、12x 的次数分别是2、2、3、1.特别地,单独的一个数字,如3,-9等,可以当做0次单项式来看待.(3)单项式的系数:单项式中的数字因数即为单项式的系数.说明:在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8.(4)多项式的定义:几个单项式的和叫做多项式.说明:多项式是由几个单项式相加得到的,如多项式x2+2x-1是由单项式x2,2x和-1相加而得到的(5)多项式的次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数.说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.如,多项式x3-x2y2+x中,单项式x3的次数是3,单项式-x2y2的次数是4,单项式x的次数是1,所以多项式x3-x2y2+x 的次数是4.(6)多项式的项数:一个多项式中有几个单项式就有几项.每一个单项式就是一项。
人教版七年级数学上册第二章整式的加减法习题大全(含答案) (12)

人教版七年级数学上册第二章整式的加减法习题大全(含答案)若关于a 、b 的单项式1m a b +与n ab -的和为0,则m ,n 的值为( )A .1m =,0n =B .1m =-,1n =C .1m =-,0n =D .0m =,1n =【答案】D【解析】【分析】直接利用同类项的定义中的相同字母的指数相同得出m ,n 的值,【详解】解:∵关于a 、b 的单项式1m a b +与n ab -的和为0,∴1m a b +与n ab -是同类项,并且互为相反数,∴11m += ,1n = ,解得:0m = ,1n = ,故选:D .【点睛】此题主要考查了同类项,正确得出m ,n 的值是解题关键.12.下列运算正确的是( )A .()22a b c a b c-+-=--+ B .()22265352174a a a a a a -+-+-=-+C .()x y z x y z --+-=--D .241455xy xy -=【答案】B【解析】【分析】根据有理数的运算法则,合并同类项法则化简计算即可.【详解】A. ()2222a b c a b c -+-=--+,故此选项错误;B. ()22265352174a a a a a a -+-+-=-+,故此选项正确; C. ()x y z x y z --+-=-+,故此选项错误; D. 2415xy xy -,不能合并,故此选项错误; 故选:B .【点睛】本题主要考查了有理数的运算法则,合并同类项等,熟悉运算法则是解题的关键.13.下列各式中与多项式a -b -c 不相等的是( )A .(a -b )-cB .a -(b +c )C .-(b +c -a )D .a -(b -c )【答案】D【解析】【分析】分析题意,要求出与a-b-c 不相等的多项式只需将四个选项中的式子根据“去括号法则”去掉括号,再同a-b-c 进行对比;将选项中的式子,根据“去括号法则”:去正不变,去负全变进行化简可选出正确答案即可;【详解】由去括号法则,可得:A选项,(a-b)-c =a-b-c,不符合题意;B选项,a-(b+c)= a-b-c,不符合题意;C选项,-(b+c-a)= a-b-c,不符合题意;D选项,a-(b-c)= a-b+c,符合题意;故选D.【点睛】本题主要考查了去括号与添括号,掌握“去括号法则”是解题的关键. 14.下列等式一定成立的是( ▲)A.3m+3m=6m2B.7m2 -6m2=1C.-(m-2)=-m+2 D.3(m-1)=3m-1【答案】C【解析】【分析】根据整式的加减法则即可得出答案.【详解】A:3m+3m=6m,故选项A错误;B:7m2 -6m2= m2,故选项B错误;C:-(m-2)=-m+2,故选项C正确;D:3(m-1)=3m-3,故选项D错误;因此答案选择:C.【点睛】本题考查的是整式的加减,需要熟练掌握整式的加减法则.15.下列各项中是同类项的是( ▲ )A .xy 2与-3x 2yB .2x 2y 与-3x 2yzC .a 3与b 3D .-3a 3b 与3ba 3【答案】D【解析】【分析】根据同类项得定义即可得出答案.【详解】A :字母的指数不一样,不是同类项,故选项A 错误;B :字母不同,不是同类项,故选项B 错误;C :字母不同,不是同类项,故选项C 错误;D :字母相同,相同字母的指数相同,是同类项,故选项D 正确; 因此答案选择D.【点睛】本题考查的是同类项的定义:字母相同,相同字母的指数相同.16.若23m xy -与2385n x y -是同类项,则m 、n 的值分别是( )A .2m =,2n =B .4m =,1n =C .4m =,2n =D .2m =,3n =【答案】C【解析】【分析】根据同类项的定义:字母相同,相同字母的指数也相同,通过计算即可得到答案.【详解】解:∵23m xy -与2385n x y -是同类项,∴231n -=,28m =,∴2n =,4m =,故选择:C.【点睛】本题考查了同类项的定义,熟练掌握同类项的定义是解题的关键.17.下列各式,正确的是( )A .2a+3b=5abB .x+2x=3x 2C .2(a+b)=2a+bD .-(m-n)=-m+n【答案】D【解析】【分析】根据同类项的定义、合并同类项法则、乘法分配律和去括号法则判断即可.【详解】A. 2a 和3b 不是同类项,不能合并,故A 错误;B. x+2x=(1+2)x= 3x ,故B 错误;C.根据乘法分配律: 2(a+b)=2a+2b ,故C 错误;D.根据去括号法则: -(m-n)=-m+n ,故D 正确.故选D.【点睛】此题考查的是同类项的定义、合并同类项法则、乘法分配律和去括号法则,解决此题的关键是根据它们的定义及法则去判断各选项的对错.18.如图为魔术师在小美面前表演的经过,假设小美所写数字为x,那么魔术师猜中的结果应为()A.2 B.3 C.6 D.x+3【答案】A【解析】【分析】根据题意列出算式,去括号合并即可得到结果.【详解】设小美所写数字为x,根据题意得:(3x+6)÷3﹣x=x+2﹣x=2.故选:A.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.下列说法中正确的是()A .x 的系数是0B .24与42不是同类项C .y 的次数是0D .23xyz 是三次单项式【答案】D【解析】【分析】 根据单项式的概念及其次数分析判断.【详解】A 、x 的系数是1,故错;B 、24与42是同类项,属于常数项,故错;C 、y 的次数是1,故错;D 、23xyz 是三次单项式,故D 对.故选:D .【点睛】主要考查了单项式的有关概念.单项式的系数是单项式中的常数,次数为各字母指数的和.20.下列计算:①325a b ab +=;②22523y y -=;③277a a a +=;④2222x y xy xy -=.其中正确的有( )A .0个B .1C .2个D .3个【答案】A【解析】【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断。
人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。
如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。
(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。
3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。
人教版数学七年级上册 第2章2.1 ---2.2基础练习含答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版数学七年级上册第2章2.1 ---2.2基础练习含答案2.1整式一.选择题1.若代数式2x|m|﹣(m+3)x+7是关于x的三次二项式,那么m的值为()A.﹣3B.3C.±3D.02.若(a﹣2)x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣1 3.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.14.下列说法正确的是()A.2x2﹣2x+35是五次三项式B.不是单项式C.的系数是D.﹣22xab2的次数是65.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣1 6.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式7.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是38.单项式﹣x2y的系数和次数分别是()A.﹣1和2B.﹣1和3C.0和2D.0和39.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个10.下列说法正确的是()A.是单项式B.﹣πx的系数为﹣1C.﹣3是单项式D.﹣27a2b的次数是10二.填空题11.多项式3x2y﹣7x4y2﹣xy4﹣10是次项式.12.把多项式5xy﹣3x3y2﹣8+x2y3按x的降幂排列为.13.单项式﹣8x2y5的系数是,次数是.14.单项式的系数是,多项式xy2﹣2xy﹣1的次数是,二次项是.15.单项式的系数是;次数是.多项式3x2y﹣xy3+5xy﹣1是次多项式.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.多项式a2x3+ax2﹣4x3+2x2+x+1是关于x的二次三项式,求a2++a的值.18.若关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,求a、b的值,并写出此三项式.19.已知关于x.y的多项式(m﹣1)x3y﹣(n+4)x3y n﹣1+6xy﹣2.(1)当m,n满足什么条件时.此多项式是四次三项式?(2)当m,n满足什么条件时.此多项式是三次三项式?参考答案与试题解析一.选择题1.【解答】解:由题意得:|m|=3,且m+3=0,解得:m=﹣3,故选:A.2.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.3.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.4.【解答】解:A、2x2﹣2x+35是二次三项式,原说法错误,故此选项不符合题意;B、不是单项式,原说法正确,故此选项符合题意;C、﹣πxy2的系数是﹣π,原说法错误,故此选项不符合题意;D、﹣22xab2的次数是4,原说法错误,故此选项不符合题意;故选:B.5.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.6.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.7.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.8.【解答】解:单项式﹣x2y的系数和次数分别是:﹣1,3.故选:B.9.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.10.【解答】解:A、是多项式,原说法错误,故此选项不符合题意;B、﹣πx的系数为﹣π,原说法错误,故此选项不符合题意;C、﹣3是单项式,原说法正确,故此选项符合题意;D、﹣27a2b的次数是3,原说法错误,故此选项不符合题意;故选:C.二.填空题(共5小题)11.【解答】解:多项式3x2y﹣7x4y2﹣xy4﹣10是六次四项式;故答案为:六、四.12.【解答】解:多项式5xy﹣3x3y2﹣8+x2y3的各项为5xy,﹣3x3y2,﹣8,x2y3,按x的降幂排列为:﹣3x3y2+x2y3﹣5xy﹣8.故答案为:﹣3x3y2+x2y3﹣5xy﹣8.13.【解答】解:根据单项式系数、次数的定义,单项式﹣8x2y5的数字因数是﹣8,所有字母的指数和为2+5=7.故答案为:﹣8,7.14.【解答】解:的系数是﹣,多项式xy2﹣2xy﹣1的次数是3,二次项是﹣2xy;故答案为:﹣,3,﹣2xy.15.【解答】解:单项式的系数是:﹣;次数是:3.多项式3x2y﹣xy3+5xy﹣1是四次多项式.故答案为:﹣,3,四.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:∵a2x3+ax2﹣4x3+2x2+x+1是关于x的二次多项式,∴,解得:a=2,∴a2++a=22++2=.18.【解答】解:∵关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,∴2﹣b=0,a+1=4,解得:a=3,b=2,∴此三项式为:(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2=﹣x3y+x2y+5y2.19.【解答】解:(1)①依题意得:n﹣1=1,且m﹣1﹣n﹣4≠0,解得n=2,m≠7;②依题意得:m﹣1=0,n﹣1=1,解得n=2,m=1;③依题意得:n+4=0,且m﹣1≠02.2整式的加减一.选择题1.下列选项中,不是同类项的是()A.42和π3B.n3和33n3C.3xy和﹣xy D.﹣2x2y和xy2 2.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.43.下列各式中,错误的是()A.a+b=b+a B.C.a+(﹣a)=0D.0+(﹣a)=04.下列运算中,正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣3y)=﹣2x+3yC.2(a+b)=2a+b D.5x2﹣2x2=3x25.下列运算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣0.25ab+ab=06.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣47.化简2a﹣a的结果是()A.3a B.2a C.a D.﹣a8.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)9.下列各式计算正确的是()A.m+n=mn B.2m﹣(﹣3m)=5mC.3m2﹣m=2m2D.=m﹣2n10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm二.填空题11.已知单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,则m﹣n=.12.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.13.添括号:﹣x﹣1=﹣().14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若单项式2x2a+b y2与的和是单项式,则a﹣b=.三.解答题16.化简求值(﹣x2+4x﹣5)﹣2(x2+2x﹣3),其中x=2.17.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.18.先化简,再求值:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b,其中a=﹣2,b=.19.数学老师给出这样一个题目:□﹣2×△=﹣x2+2x.(1)若“□”与“△”相等,求“△”(用含有x的代数式表示)(2)若“□”为﹣3x2﹣2x+6,当x=1时,请你求出“△”的值.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A.42和π3都是数字,是同类项;B.n3和33n3所含字母相同且相同字母指数相同,是同类项;C.3xy和﹣xy所含字母相同且相同字母指数相同,是同类项;D.2x2y和xy2所含字母相同,但相同字母指数不相同,不是同类项;故选:D.2.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.3.【解答】解:A、a+b=b+a,正确,不合题意;B、,正确,不合题意;C、a+(﹣a)=0,正确,不合题意;D、0+(﹣a)=﹣a,原式计算错误,符合题意.故选:D.4.【解答】解:A、﹣(a﹣b)=﹣a+b,故此选项错误;B、﹣2(x﹣3y)=﹣2x+6y,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、5x2﹣2x2=3x2,正确.故选:D.5.【解答】解:A.2a+3a=5a,故本选项不合题意;B.3a﹣a=2a,故本选项不合题意;C.2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.6.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.7.【解答】解:2a﹣a=(2﹣1)a=a.故选:C.8.【解答】解:A、原式=﹣a﹣2,故本选项变形错误.B、原式=﹣a+,故本选项变形错误.C、原式=﹣(a﹣1),故本选项变形正确.D、原式=﹣(a﹣1),故本选项变形错误.故选:C.9.【解答】解:A、m+n,不是同类项,无法合并,故此选项错误;B、2m﹣(﹣3m)=5m,正确;C、3m2﹣m,不是同类项,无法合并,故此选项错误;D、=m,故此选项错误;故选:B.10.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.二.填空题(共5小题)11.【解答】解:∵单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,∴n=2,m﹣2=3,解得:m=5,∴m﹣n=5﹣2=3,故答案为:3.12.【解答】解:(x+2)+(y﹣2xy)=x+y﹣2xy+2∵x+y=3,xy=2,∴原式=3﹣4+2=1.故答案为:1.13.【解答】解:﹣x﹣1=﹣(x+1).故答案为:x+1.14.【解答】解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.【解答】解:由题意得:,解得:,则a﹣b=0,故答案为:0.三.解答题(共4小题)16.【解答】解:原式=﹣x2+4x﹣5﹣2x2﹣4x+6=﹣3x2+1,当x=2时,原式=﹣3×22+1=﹣12+1=﹣11.17.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.18.【解答】解:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b=2ab2﹣a3b﹣2(ab2﹣a3b)﹣5a3b=2ab2﹣a3b﹣2ab2+a3b﹣5a3b=﹣5a3b,当a=﹣2,b=时,原式=﹣5×(﹣2)3×=8.19.【解答】解:(1)由题意得:□﹣2×△=﹣x2+2x,∴﹣△=﹣x2+2x,∴△=x2﹣2x一天,毕达哥拉斯应邀到朋友家做客。
人教版数学七年级上册 第2章 2.1---2.2.同步练习含答案

2.1整式一.选择题1.单项式的系数和次数分别为()A.,3B.﹣1,3C.﹣1,2D.,22.下列单项式中,次数为3的是()A.B.mn C.3a2D.3.已知(a﹣1)x2y a+1是关于x、y的五次单项式,则这个单项式的系数是()A.1B.2C.3D.04.代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关B.与x有关C.与y有关D.与x,y无关5.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣xy2的系数是﹣1D.﹣2ab2是二次单项式6.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.的系数次数分别为()A.,7B.,6C.,8D.5π,68.下列判断中正确的是()A.单项式的系数是﹣2B.单项式的次数是1C.多项式2x2﹣3x2y2﹣y的次数是2D.多项式1+2ab+ab2是三次三项式9.对于式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式10.下列语句中错误的是()A.数字2017是单项式B.单项式﹣a的系数与次数都是1C.是二次单项式D.﹣的系数是﹣二.填空题11.3xy﹣π2y+1是次多项式.12.单项式的系数和次数分别是.13.已知多项式(a﹣4)x3﹣x b+x﹣1是关于x的二次三项式,则ab=.14.关于x的多项式(a﹣4)x a﹣x2+x﹣a+1(a为正整数)是二次三项式,则a=.15.已知一列按规律排列的代数式:a2,3a4,5a6,7a8,…,则第9个代数式是.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.下列代数式分别有n项,每一项的系数分别是什么?﹣2x﹣3y,﹣4a2﹣4ab+b2,.18.指出下列各式的系数:﹣x2,a3b,,(﹣2)3a3,.19.观察下列单项式:﹣2x,22x2,﹣23x3,24x4,…,﹣219x19,你能写出第n个单项式吗?并写出第2013个单项式为解决这个问题,我们不妨从系数和次数两个方面入手进行探究,从中发现规律,经过归纳,猜想出结论.(1)系数规律有两条:①系数的符号规律是;②系数的绝对值规律是.(2)次数的规律是.(3)根据上面的规律,猜想出第n个单项式.(4)求第2013个单项式.参考答案与试题解析一.选择题1.【解答】解:单项式的系数是﹣,次数为3,故选:A.2.【解答】解:A、﹣次数为3,故此选项正确;B、mn次数为2,故此选项错误;C、3a2次数为2,故此选项错误;D、﹣ab2c次数为4,故此选项错误;故选:A.3.【解答】解:由题意得:a+1+2=5,解得:a=2,则这个单项式的系数是a﹣1=1,故选:A.4.【解答】解:4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3=(4+3﹣7)x3+(﹣3+3)x3y+(8﹣8)x2y=0.故代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值与x,y无关.故选:D.5.【解答】解:A、2x2﹣3xy﹣1是二次三项式,正确,不合题意;B、﹣x+1不是单项式,正确,不合题意;C、﹣xy2的系数是﹣1,正确,不合题意;D、﹣2ab2是三次单项式,故此选项错误,符合题意.故选:D.6.【解答】解:在代数式π(单项式),x2+(分式),x+xy(多项式),3x2+nx+4(多项式),﹣x(单项式),3(单项式),5xy(单项式),(分式)中,整式共有6个,故选:B.7.【解答】解:的系数为,次数为6,故选:B.8.【解答】解:A、单项式的系数是﹣,故此选项错误;B、单项式,没有次数,故此选项错误;C、多项式2x2﹣3x2y2﹣y的次数是4,故此选项错误;,D、多项式1+2ab+ab2是三次三项式,正确;故选:D.9.【解答】解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式,,abc,0,m;2个多项式为:,3x2+5x﹣2.故选:C.10.【解答】解:A、单独的一个数字也是单项式,故A正确;B、单项式﹣a的系数应是﹣1,次数是1,故B错误;C、xy的次数是2,符合单项式的定义,故C正确;D、﹣的系数是﹣,故D正确.故选:B.二.填空题(共5小题)11.【解答】解:多项式3xy﹣π2y+1是二次多项式.故答案为:二.12.【解答】解:单项式的系数是﹣,次数是6,故答案为:,6.13.【解答】解:由题意得:a﹣4=0,b=2,解得:a=4,b=2,则ab=8,故答案为:8.14.【解答】解:由题意得:a﹣4=0,解得:a=4,当a=2时,原式=﹣3x2+x﹣1,符合题意,故答案为:4或2.15.【解答】解:系数的规律为:1、3、5、7……、2n﹣1,次数的规律为:2、4、6、8……、2n,∴第9个代数式为:17a18,故答案为:17a18.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:﹣2x﹣3y有两项:﹣2x,﹣3y;两项的系数分别是﹣2,﹣3;﹣4a2﹣4ab+b2有三项:﹣4a2,﹣4ab,b2;三项的系数分别是﹣4,﹣4,1;有三项:﹣x2y,2x,﹣3y;三项的系数分别是﹣,2,﹣3.18.【解答】解:单项式﹣x2,a3b,,(﹣2)3a3,的系数分别是:﹣1,1,,﹣8,.19.【解答】解:(1)∵第一个单项式是﹣2x=(﹣1)1×21x1;第二个单项式是22x2=(﹣1)2×22x2;第三个单项式是﹣23x3=(﹣1)3×23x3;…;∴第n个单项式是(﹣1)n×2n x n.∴①系数符号的规律是(﹣1)n;②系数的绝对值规律是2n.故答案为:(﹣1)n;2n.(2)∵由(1)知第n个单项式是=(﹣1)n×2n x n,∴次数的规律是:第n 个为n 次;(3)由(12.2《整式的加减》姓名: 班级: 等级:一.选择题(每小题4分,共32分) 题号 选项1.下列算式正确的是( ) A.B.2222a a a -=--C. 3243a a a =+D.a a a =-222.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.-3的次数是0D.25xyz 是三次单项式 3.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B.52nm 不是整式C.单项式-x 3y 2的系数是-1D.3x 2-y +5xy 2是二次三项式 4.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.y 的次数是0D.25xyz 是三次单项式5.如果单项式-x a+1y 3与y b x 2是同类项,那么a,b 的值分别为( ) A.a=2,b=3 B.a=1,b=2 C.a=1,b=3D.a=2,b=26.若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( ) A.三次多项式 B.四次多项式 C.七次多项式 D.四次七项式 7.当x 分别取2和-2时,多项式x 5+2x 3-5的值( ) A.互为相反数 B.互为倒数 C.相等 D.异号不等8.有一列式子,按一定规律排列成3a ,﹣9a 2,27a 3,﹣81a 4,243a 5,….当n 为正整数时,第n 个式子为( )A .3n a nB .(﹣1)n 3n a nC .(﹣1)n+13n a nD .﹣3n ﹣1a n二.填空题(每小题4分,共32分) 9.计算:﹣a ﹣(﹣a+2a )= .10.a 3b 2c 的系数是 ,次数是 ;11.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是 。
人教版七年级上册数学第二章 整式的加减含答案(精练)
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列说法中错误的是( )A.0是单项式B.3x 4是四次单项式C. 的系数是3D.x 3﹣xy 2+2y 3是三次三项式2、下列合并同类项的结果正确的是()A.2x 2+3x 2=5x 4B.C.7x 2﹣4x 2=3D.9a 2b ﹣9ba 2=03、在,,,,0,中,单项式的个数是()A.2B.3C.4D.54、下列单项式中,与a2b是同类项的是()A.ab 2B.2a 2bC.a 2b 2D.3ab5、如果2x2m-5y2+n与mxy3n-2的和是单项式,那么该单项式的系数和次数分别是()A.3,2B.2,3C.5,5D.5,106、单项式﹣3x3y的系数和次数分别为()A.3,3B.﹣3,3C.3,4D.﹣3,47、下列运算正确的是()A.(x 2)3=x 5B.3x 2+4x 2=7x 4C.(﹣x)9÷(﹣x)3=x6 D.﹣x(x 2﹣x+1)=﹣x 3﹣x 2﹣x8、下列各题中合并同类项,结果正确的是()A.2a 2+3a 2=5a 2B.2a 2+3a 2=6a 2C.4xy-3xy=1D.2x 3+3x 3=5x 69、下列各式中与是同类项的是( )A. B. C. D.10、我们规定一种运算:,其中都是有理数,则等于()A. B. C. D.11、下面的计算正确的是()A.8a﹣7a=1B.2a+3a 2=5a 3C.﹣(a﹣b)=﹣a+bD.2(a﹣b)=2a﹣b12、若与是同类项,则的值为( )A. B. C. D.13、下列运算正确的是()A. B. C. D.14、已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则()A.m=-5,n=-1B.m=5,n=1C.m=-5,n=1D.m=5,n=-115、下列运算正确的是().A.3a 2﹣a 2=3B.(a+b)2=a 2+b 2C.(﹣3ab 2)2=6a 2b 4D.a 2•a 4=a 6二、填空题(共10题,共计30分)16、(a+b+c)-(________)=2a-b+c.17、探索规律:,3 =9,,,,,………,那么的未位数是________。
人教版七年级上册数学第二章 整式的加减含答案
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列各式中,运算正确的是()A.(a 3)2=a 5B.(a﹣b)2=a 2﹣b 2C.a 6÷a 2=a 4D.a 2+a 2=2a 43、多项式﹣5xy+xy2﹣1是()A.二次三项式B.三次三项式C.四次三项式D.五次三项式4、单项式与是同类项,则()A. m=1,n=4B. m=2,n=4C. m=4,n=1D. m=2,n=25、下列说法正确的个数有()①近似数 39.0有三个有效数字; ②近似数 2.5万精确到十分位;③如果a<0,b>0,那么ab <0; ④多项式a2-2a+1是二次三项式A.1个B.2个C.3个D.4个6、下列变形中,错误的是()A.﹣x+y=﹣(x﹣y)B.﹣x﹣y=﹣(y+x)C.a+(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b﹣c7、下列各式计算中,正确的是()A.2a+2=4aB.﹣2x 2+4x 2=2x 2C.x+x=x 2D.2a+3b=5ab8、下列各组式子中,是同类项的是()A.3x 2与 3xB.5x 2与 5y 2C.3x 2y 与﹣4xy 2D.3x 2y 与﹣4yx 29、如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A. B. C. D.10、代数式-0.5,,,,0,中,单项式共有A.2个B.3个C.4个D.5个11、下列运算正确的是()A.a 3+a 3=2a 6B.(x 2)3=x 5C.2a 6÷a 3=2a 2D.x 3•x 2=x 512、计算(﹣2a)2﹣3a2的结果是()A.﹣a 2B.a 2C.﹣5a 2D.5a 213、化简的结果正确的是()A. B. C.2 D.14、下列计算正确的是()A. B. C. D.15、对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[﹣2.5]=﹣3.现对82进行如下操作:,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、当k=________时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.17、单项式的系数是________;次数是________.18、已知、两地相距10千米,甲从地到地步行需要小时,乙骑自行车行同样的路程比甲少用1小时,则乙的速度可表示为________千米/时.19、若单项式与是同类项,则m+n=________.20、若,则=________.21、如图,下面是用火柴棍摆的正方形,请你仔细观察第n个图形中共有________根(用n的代数式表示)火柴棍。
人教版七年级上册数学第二章 整式的加减含答案
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列计算正确的是()A.a•a 2=a 2B.(a 2)2=a 4C.3a+2a=5a 2D.(a 2b)3=a 2•b 33、如上图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)4、下列运算正确的个数是()①(-10)-(-10)=0;②0-7=7;③(-3)-(+7)=-10;④ -(-)=A.1个B.2个C.3个D.4个5、下列运算正确的是()A. B. C. D.6、去括号得()A. B. C. D.7、一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,是对称整式,不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同③单项式不可能是对称整式④若某对称整式只含字母,,,且其中有一项为,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.18、记sn =a1+a2+…+an,令Tn= ,则称Tn为a1, a2,…,an这列数的“凯森和”.已知a1, a2,…,a500的“凯森和”为2004,那么13,a 1, a2,…,a500的“凯森和”为()A.2013B.2015C.2017D.20199、在式子x2;ab;;0,3a+b;中,单项式的个数有()A.4个B.3个C.2个D.1个10、下列去括号正确的是()A.a﹣2(﹣b+c)=a﹣2b﹣2cB.a﹣2(﹣b+c)=a+2b﹣2cC.a+2(b ﹣c)=a+2b﹣cD.a+2(b﹣c)=a+2b+2c11、对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:1⊕2=﹣, 2⊕1=,(﹣2)⊕5=, 5⊕(﹣2)=﹣,…,则(﹣3)⊕(﹣4)=()A.-B.C.-D.12、在数轴上表示a、b两个实数的点的位置如图所示,则化简|a﹣b|﹣|a+b|的结果为()A.2aB.2bC.2a﹣2bD.﹣2b13、方程2-3(x+1)=1去括号得( )A.2-3x-1=1B.2-3x+1=1C.2-3x+3=1D.2-3x-3=114、下列计算正确的是()A. B. C. D.15、下列计算正确的是()A.a 3+a 2=a 5B.a 3•a 2=a 6C.(a 2)3=a 6D.a 6÷a 3=a 2二、填空题(共10题,共计30分)16、三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵.17、两个单项式与的和是一个单项式,那么________,________.18、单项式-x2m-n y3与单项式可以合并,则多项式4m-2n+(-m-n)2-2(n-2m)2的值是________.19、已知,,若多项式不含一次项,则m=________.20、若a+b=2,则代数式a2﹣b2+4b=________.21、如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为________.22、若﹣是四次单项式,则m的值是________.23、已知a,b,c在数轴上的位置如图所示,则=________24、减去得的式子为________.25、去括号:(a﹣b)﹣(﹣c+d)=________.三、解答题(共6题,共计25分)26、化简求值:5ab﹣7a2b2﹣8ab+5a2b2﹣ab,其中a=﹣2,b=﹣.27、x5•x7+x6•(﹣x3)2+2(x3)4.28、先化简再求值:,其中,29、实数a,b在数轴上的位置如图所示,化简:|a-b|-.30、先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣2,y=﹣3.参考答案一、单选题(共15题,共计45分)1、D3、B4、C5、D6、A7、B8、A9、B10、B11、A12、B13、D14、C15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。
人教版初中七年级数学上册第二章《整式的加减》(含答案解析)(1)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 5.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.7.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】 根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 10.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A 解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.3.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.y=,则输入的数x=________________.6.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.10.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.11.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 1.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.2.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到:2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.3.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.4.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157xy,第8个分式为178xy.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。
行驶速度分别是x 千米/时和y 千米/时,3小时后两车相距多少千米?(6)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ; (5)y x 33-; (6)50-6x;P60 3.填表整数-15ab 224a b5yx 32 43x 2-42242a b b a +-系数次数项数解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数 2 4 3 3 4项数33p60 4.设教室里座位的行数是m ,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位? (2)教室里座位的行数是每行座位的32,教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。
p60 5.三个植树队,第一队植数x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42颗,当x 为下列各值时,求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示,如果圆孔的半径是r ,三角尺的厚度是h ,这块三角尺的体积v 是多少?若a=6 cm,r=0.5 cm ,h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元,按成本增加22%定出价格,每件销售多少元?后来因库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解:a+0.22a,(a+0.22a)×0.85,(a+0.22a)×0.85-ap61 8.设n表示人员一个整数,利用含n的式子表示:(1)任意一个数的偶数;(2)任意一个数的奇数.解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n各队呢?解:3,6,10,21n)(np61 10.观察下图并填表;梯形个数 1 2 3 4 5 6 ...... n图形周长5a 8a 11a 14a解:17a, 20a, 23a,..., (3n+2)aP61 11,如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1),当n=5,7,11时,S是多少?解:S=3n-3,当n=5,7,11时,S=12,18,30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x;(3) -b+0.6b-2.6b; (4) m-2n+m-2n;解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x(3) -b+0.6b-2.6b= -3b (4) m-2n+m-2n=2m-22np71 2,计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 61)=321-x (3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式,再求值:)245(45x -22x x x +-+++)(, 其中x=-2.解:化简得:2x +9x+1 代入x=-2得,-13p71,5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数,计算这两个数的和;(2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数,计算这两个数的差.解:(1)5a +4,2a -3,7a +1; (2)7x +3,-2x -5,9x +8.p71,6.某村小麦种植面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积的少5公顷。
列式表示水稻种植面积、玉米种值面积,并计算水稻种植面积比玉米种植面积大多少?解:3a,a-5,2a+5p71, 7.窗户的形状如图所示,其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是a cm,计算:(1)窗户的面积;(2)窗框的总长.解:(1)()222a282aa4ππ+=+;(2) 6a+πa=(6+π)a;p71,8.某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a千米每小时,水流速度为y千米每小时.轮船共航行多少千米?解:3(a+y)+1.5(a-y)=4.5a+1.5y.p72,9.(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位是 ;(2)列式表示上面的两位数与10的乘积 ;(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:P72, 10. 10个棱长为a的正方体摆放成如图的形状,这个图形的表面积是多少?解:362a复习题2 复习巩固p76 ,1.用式子表示:(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付50元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第2次降价又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m,小李跑了a 米,(a >45000),平均每天小李和小张各跑了多少米?平均每天小李比小张多跑多少米? 解:p76,2.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是多项式的指出项和次数:-21 a ²b,7n 42m ,x ²+y ²-1,x,3x ²-y+3xy ³+4x -1,32t ³,3π,2x-y.解:p76,3.计算:(1);3x 22y x y - (2)10225.0y y +;(3)2221bc 21-cba a +; (4)731mn 41+-mn;(5)7ab-ab b a ab b 73387a 322222--+++; (6) 3.553x 22223y y x y y x +-++--解:(1)-2y 2x ; (2)10.5y 2 ; (3)0;(4)7121-+mn(5)8ab 2+4; (6)x 2.P76,4.计算(1))103(10a 433233b b a b b +-+-)(; (2)()()2222435x 4xy y x xy y ---; (3))]3(2)25([52222a a a a a a ---+-; (4)15+3(1-a )-(1-a-a 2)+(1-a+a 2-a 3); (5)()()ab b a ab b 253a 422+-+-; (6)()()14234622+-+--m m m m ; (7)()()22283412a 5a a a +---+;(8)⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛---2223x 215x 3x x .解:(1)22334b a b a -; (2)22x xy y -; (3)a 4a 2-;(4)18-3a+232a a - (5)-a 2b-ab ; (6)8m 2-8m-2; (7)-3a 2+34a-13; (8)x 23x 29--P77,5.(1).体校里男生人数占学生总数的60%,女生人数是a 人,学生总数有多少人?(2)体校里男生人数是x 人,女生人数是y 人,教练人数和学生人数的比是1:10,教练人数是多少人?解:(1)x 25; (2)10yx ;p77,6.甲地的海拨高度为h 米,乙地比甲地高20米,丙地比甲地低30米,列式表示乙丙两地的海拨高度,并算出这两地的高度差。
解:(h+20)米,(h-30)米,(h+20)-(h-30)=50,即两地高度差是50米。
p77,7.长方形的长是2x cm ,宽是4cm 。
梯形的上底长是x cm ,下底长是上底长是的三倍,高是5cm 。
哪个图形的面积大?大多少?解:梯形的面积大,大2x cm 2P77.8.某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方法,确定哪一种方案砌各圆形水池的周边需要的材料多?(提示:比较两种方案中各圆形池周长的和.)解:2πr ×-(2πr+2π×2r +2π×3r+2π6r)=0p77.9.礼堂第一排有a 个座位,后面每排都比前一排多一个座位.第2排有多少个座位?第3排呢?用m 表示第n 排的座位数,m 是多少?当a=20,n=19时,计算m 的值。
解:a+1.a+2.m=a+(n-1),m=20+(19-1)=38p77.10. 用式子表示十位上的数是a,个位数上的数是b 的两位数,再把这个两位数的十位数上的数与个位数的数交换位置,计算所得数与原数的和.这个数能被11整除吗?解;11a+11b=11(a+b),这个数能被11整除。