电力电子技术
电力电子技术

图7.32 电压型交直交系统再生制动时的等值电路
38
电力电子技术 PWM整流器在可再生能源中的应用
– 可再生能源(风能、太阳能、潮汐发电、水 力发电等)不可控 ,不能直接并入电网 。
– 太阳能发电并网系统
TD1 TD3 TD5
L C
Salor Array
VDC
Lf
Cf
TD4
TD6
TD2
图7.36 太阳能发电并网系统原理图
18
电力电子技术
其它方面的应用
• 常规电源:不停电电源、开关电源、微机及仪器 仪表电源、航空电源、通信电源等。 • 专用电源:电化学电源、蓄电池充电放电、电子 模拟负载、电解水电源、交流电子稳 压电源、脉冲功率电源等; • 新型能源:如太阳能电池,风力发电等; • 节能: 如利用变频器调节电动机转速
30
电力电子技术
三、整流电路基本工作原理
• 整流——交流到直流的变换
– 不控整流(二极管) – 相控整流(晶闸管) – PWM整流(IGBT)
31
电力电子技术
相控整流电路的一般结构
• 主电路: -交流电源:工频电网或整流变压器
-滤波器:为保证电流连续
-负载:阻性负载、阻感负载、反电势负载等 • 控制电路:模拟控制、数字控制、单片机、DSP
32
电力电子技术
单相桥式全控整流电路
• 工作原理(正半周)
ud
0 π
2 π
-ωt=:发脉冲,T1T4导通
-ωt=π:iT1=iT4=Id,T1T4仍然 导通,T2T3承受正电压
Ud
ωt
a
i2
u2 u2
i2 Id
u2
-ωt =π+:T2T3导通,T1T4
电力电子技术课件

电子学 电力 电子学
连续、离散
电力学
控制 理论
图1 描述电力电子学的倒三角形 7
与电子学(信息电子学)的关系 电子学(信息电子学)
3
1.1
信息电子技术
电力电子与信息电子
电力电子技术---电力电子技术----使用电 ----使用电 力电子器件对电能进行变换
电力电子技术
电子技术
和控制的技术,包括电压、 频率、电流、波形等电量的 变换技术。即用于电力领域 的电子技术。
模拟电子技术
数字电子技术
信息电子技术——信息处理 信息电子技术——信息处理 电力电子技术——电力变换 电力电子技术——电力变换 电子技术一般即指信息 电子技术,广义而言,也包 括电力电子技术。
目前电力电子器件均用半 导体制成,也称电力半导体 器件。 电力电子技术变换的“电 力”,可大到数百MW甚至 力”,可大到数百MW甚至 GW,也可小到数W甚至 GW,也可小到数W mW级。 mW级。 4
1.2
两大分支
电力电子器件制造技术 电力电子技术的基础, 电力电子技术的基础,理论基础是半导体物理 变流技术(电力电子器件应用技术) 变流技术(电力电子器件应用技术) 用电力电子器件构成电力变换电路和对其 进行控制的技术, 进行控制的技术,以及构成电力电子装置 和电力电子系统的技术。 和电力电子系统的技术。 电力电子技术的核心, 电力电子技术的核心,理论基础是电路理 论。
8
与电力学(电气工程)的关系 电力学(电气工程)
•电力电子技术广泛用于电气工程中
电力电子技术_基础知识

电力电子系统集成化研ቤተ መጻሕፍቲ ባይዱ成为热点,目前主要集中
于电力电子器件与控制电路的集成、磁性元件的集 成两大块。
三、电力电子技术的应用
电源
弧焊电源 电解、电镀电源 不停电电源(UPS) 恒频恒压电源 直流开关电源 充电电源 感应加热电源 脉冲电源、激光电源 。。。
数码产品广泛应用各类开关电源
新能源应用
风能、太阳能、潮汐能、地热能等应用
电网电源常见问题波形示意图
未来电力系统将大量应用电力电子 技术以提高电力品质和供电效率
风力、太阳能发电系统
风力发电
太阳能发电
三、电力电子技术的应用
照明
各类气体放电灯 电子镇流器 LED照明驱动器
西湖夜景
杭州湾大桥
集中运行中心
面向军事应用领域举例
电力电子技术与电能控制的关系
一、什么是电力电子学
典型的电力电子系统
电流采样
二、电力电子技术的发展与现状
电力电子器件的进步推动电力电子学的变革发展
1957年通用电气公司发明晶闸管,标志着电力电子技术的 诞生,相控变换技术广泛应用;
20世纪70年代后期,GTO、GTR、P-MOSFET迅速发
展,PWM控制技术推广应用; 20世纪80年代后期,IGBT开始推广应用,大功率变换进
入以IGBT+PWM技术为主流的时代;
20世纪90年代,为降低器件开关损耗,软开关技术开始推 广应用;
二、电力电子技术的发展与现状
进入21世纪以后
为了实现高频和低 EMI 的大功率变换,多电平变换 技术逐步推广应用;
船用操作变流器模块
配电模块
燃料电池
《电力电子技术》学习资料

《电力电子技术》学习资料概述本文档旨在提供关于电力电子技术的研究资料,帮助读者了解该领域的基本概念和原理。
1. 电力电子技术简介- 电力电子技术是指利用电子器件和电力技术,将电能进行控制、变换和传输的技术领域。
- 电力电子技术广泛应用于电力系统、工业控制、电动车辆、电力传输等领域。
2. 电力电子技术的重要原理与器件2.1 可控硅器件- 可控硅器件是电力电子技术中最基本的器件之一。
- 可控硅器件可以实现对电能的方向、大小以及周期进行控制,广泛应用于电动机控制、电能变换等领域。
2.2 逆变器与变频器- 逆变器用于将直流电转换为交流电,常用于太阳能发电系统、UPS系统等。
- 变频器用于控制交流电机的转速和转矩,广泛应用于变频空调、工业驱动等领域。
2.3 共模电路- 共模电路用于电力系统的滤波和隔离。
- 共模电路能够有效抑制电力系统中的干扰信号和电磁波。
2.4 光伏逆变器- 光伏逆变器是将光伏电池所产生的直流电转换为交流电的装置。
- 光伏逆变器广泛应用于太阳能发电系统,为电网注入可再生能源。
3. 电力电子技术的应用3.1 电力系统- 电力电子技术在电力系统中起到重要作用,可以实现电力的传输、分配和控制。
- 电力电子技术能够提高电力系统的稳定性和效率。
3.2 工业控制- 电力电子技术在工业控制中应用广泛,如电动机控制、自动化生产线等。
- 电力电子技术可以实现对电力的精确控制和调节。
3.3 电动车辆- 电力电子技术是电动车辆关键技术之一。
- 电力电子技术可以实现电动车辆的电能转换和控制,提高能源利用效率。
3.4 可再生能源- 电力电子技术在可再生能源的应用中起到重要作用。
- 电力电子技术可以将风能、光能等可再生能源转换为可用的电能,推动可再生能源的开发利用。
总结本文档介绍了电力电子技术的基本概念、重要原理与器件,以及其在电力系统、工业控制、电动车辆和可再生能源中的应用。
通过学习电力电子技术,读者可以更深入了解和应用这一领域的知识。
电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。
其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。
2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。
可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。
3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。
4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。
5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。
以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。
二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。
常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。
2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。
常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。
3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。
《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
电力电子技术

电力电子技术电力电子技术是指将电力与电子技术相结合,用于控制、调节和变换电能的一门学科。
它在现代电力系统中起着至关重要的作用,广泛应用于电力变换、电力质量改善、能量回收等领域。
本文将介绍电力电子技术的原理、应用以及未来发展方向。
一、电力电子技术的原理电力电子技术的原理基于半导体器件的特性以及电力系统的需求。
电力电子器件主要包括二极管、可控硅、晶闸管、场效应管等。
通过控制这些器件的导通和关断,可以实现电能的变换和控制。
1.1 电力电子技术的基本原理首先,电力电子技术通过开关电源的方式,将电能以高频率的交流形式进行变换。
这种交流形式可以经过滤波器进行滤波,从而得到平稳的直流电压或交流电压。
其次,电力电子技术通过控制开关器件的导通和关断时间,实现对电能的调节和控制。
通过改变开关器件的导通和关断时间,可以改变电能输出的电压和电流波形,实现对电力系统负载的需要。
最后,电力电子技术可以实现电能的双向流动。
通过逆变器等器件,可以将直流电能转换为交流电能,实现电能的回馈和能量回收。
1.2 电力电子技术的关键技术在电力电子技术的应用中,存在一些关键技术需要解决。
其中包括功率器件的选型和设计、开关电源的控制算法、电力电子系统的故障保护等。
功率器件的选型和设计是电力电子技术的核心。
不同的应用需要选择不同类型的功率器件,以满足功率和效率的要求。
同时,功率器件的设计需要考虑散热、温度和损耗等因素。
开关电源的控制算法决定了电能的变换效率和控制精度。
通过合理的控制算法,可以实现对电能的精确控制,从而满足不同负载的需求。
电力电子系统的故障保护是电力电子技术中必须考虑的问题。
电力电子系统中存在高电压和大电流,一旦发生故障可能会对系统造成严重损害。
因此,需要设计安全可靠的故障保护装置,保证系统正常运行。
二、电力电子技术的应用电力电子技术在现代电力系统中有广泛的应用。
其主要应用领域包括电力变换、电力质量改善和能量回收等。
2.1 电力变换电力变换是电力电子技术最主要的应用之一。
电力电子技术知识总结

电力电子技术知识总结电力电子技术是一个研究电力系统中能量的电子转换和控制的学科,它在电力系统的输配电过程中发挥着关键作用。
下面将对电力电子技术的基本原理、常用器件和应用领域进行总结。
电力电子技术的基本原理主要涉及能量的转换、控制和变换等方面。
其中,能量转换指的是将电力系统中的电能转换为其他形式的能量,例如机械能或热能;能量控制则是对电力系统中能量的流动进行控制,以保证系统的稳定和可靠运行;能量变换则是将电力系统中的电流和电压进行变换,以满足不同设备的工作需求。
在电力电子技术中,常用的器件有晶闸管、可控硅、IGBT和MOSFET等。
其中,晶闸管是一种具有可控导通能力的开关元件,广泛应用于直流电力传输和交流电功率控制系统中;可控硅是一种三层结构的半导体器件,具有可控导通和导通角的特点,常用于电力系统的调压和调速控制;IGBT是一种由双极性晶体管和MOSFET组成的器件,结合了二者的优点,适用于高压和高频应用;MOSFET则是一种最常用的功率开关管,具有速度快、损耗小和驱动电压低等特点。
电力电子技术在诸多领域有着广泛的应用,其中最常见的是电力变换和传输系统。
例如,直流输电系统中,电力电子技术可以实现高压直流输电,提高输电效率;交流输电系统中,电力电子技术可以实现交流电压和频率的调整,以适应不同工况。
此外,电力电子技术还应用于电力工具、家用电器、工业自动化、电动汽车等领域,提高了系统的效能和可靠性。
此外,电力电子技术还与能源转换和储能技术密切相关。
例如,太阳能光伏系统中,电力电子技术可以对光伏阵列产生的直流电进行变换和控制,以满足不同负载的需求;同时,电力电子技术还可以应用于储能系统,例如电动汽车的电池组和储能电站中,对电能的储存和释放进行控制。
总结来说,电力电子技术在电力系统中的应用十分重要。
它通过能量的转换、控制和变换,实现了电力系统的高效运行和灵活控制。
而晶闸管、可控硅、IGBT和MOSFET等器件则为电力电子技术的实现提供了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电力技术考纲序言:提玄勾要,弃小留大,以飨读者第1考点晶闸管1 . 1 内容归纳与总结1 . 1 . 1 晶闸管的结构与工作原理(1 ) 晶闸管可用图1-1 的符号表示, 阳极———A, 阴极———K,门极(控制极) ———G。
图1-1 晶闸管符号其结构为三个PN 结、四层结构、三端的半控型半导体开关管。
(2) 它的工作原理可理解为一个PNP三极管与一个NPN 三极管的连接, 这种连接是以电流正反馈的原理按特殊工艺制造而成的。
一旦晶闸管导通, 其控制极就失去作用。
普通晶闸管有平板型与螺旋型两种1 . 1 .2 关断与导通条件(1 ) 导通的充分必要条件。
1) 阳极与阴极间承受正向电压。
2) 门极施加相对阴极来说为正的脉冲信号。
(2 ) 关断条件为下列之一。
1) 阳极与阴极间承受反向电压。
2) 阳极电流减小到小于维持电流1 . 1 . 3 晶闸管的主要参数(1 ) 晶闸管的通态平均电流I F 。
在规定的条件下, 为晶闸管通以工频、正弦半波电流, 且负载 为纯电阻负载, 导通角不小于170°。
此时这个电流的平均值就是 半波电流的平均值。
若正弦半波电流的峰值为I m , 则I F =1/2π⎰0πI m sin ωt d ωt = I m /π.通过的电流有效值为I =1/2π 0π⎰( I m sin ωt ) 2d ωt =I m /2.波形系数: 通过晶闸管的电流的(一般为非正弦) 有效值与平 均值之比K f , 在此I / I F = 1 . 57 , 即I = 1 . 57 I F = K f I FK f 称波形系数。
还有其他参数: 额定电压、维持电流、擎住电流以及一些动态 参数和门极特性等。
(2 ) 实际应用中晶闸管的选择。
主要按实际承受的电压、电流选择晶闸管。
电压的选择:按晶闸管实际在线路中承受的电压的峰值, 还要乘以一个安全裕量。
电流的选择:按晶闸管中实际通过电流的有效值与所选晶闸管( 通态平均电流为I F ) 允许通过的电流有效值相等的原则, 再乘以安全裕量, 这被称做有效值相等的原则。
这里要注意: 无论是电流还是电压波形, 都有一个峰值、有效值、平均值, 要弄清它们的定义及算法。
1 .2 例题解析例题1 . 1 在不用晶闸管测试仪的情况下, 如何用万用表简易地测出晶闸管的阳极、阴极与控制极?解: (1) 用万用表的欧姆档测试晶闸管的三个电极间的电阻。
晶闸管的阳极与阴极间的正向电阻与反向电阻都接近无限大(一般为几百千欧以上)。
门极对阴极间的正向电阻一般为几欧到几百欧, 不能为零或大于几千欧; 反向电阻比正向电阻稍大。
(2 )要真正判断其好坏, 可用以下简单电路测试。
图1-2 例题1 . 1 图例题1 . 2 图1-3为流过晶闸管中的电流波形, 其峰值为I m 。
(1 )计算其平均值与有效值。
(2 )KP-100 型晶闸管不计安全裕量, 当这些波形电流流经晶闸管时, 晶闸管所能承受的电流平均值与最大值。
解: ( 1) 平均值与有效值。
平均值1) I d1 =1/2π/2ππ⎰I m sin ωt d ωt =I m /2π2) 221323d m m I I I ππ==图1-3 例题1 . 2 图有效值1)2121(sin )222m m I I I t d t ππωωπ==⎰ 2)22320123m m I I I d t πωπ==⎰ (2 ) 100A 的晶闸管所能承受的电流平均值与最大值。
1) 晶闸管能承受的电流最大值与平均值100A 的晶闸管允许通过的有效值电流为1.57100157T I A =⨯=实际通过的电流有效值为221(sin )222m m I I I t d t ππωωπ==⎰按有效值相等的原则, 最大值为15722m I A =,1442.7m I A = 平均值为I d1 =1/2π/2ππ⎰I m sin ωt d ωt =I m /2π=70.7A2)电流的平均值与最大值100A 的晶闸管允许通过的电流有效值为I T = 1 . 57×100 = 157 A实际通过的电流有效值为22320123m m I I I d t πωπ==⎰ 按有效值相等的原则1573m I A =,272m I A = 允许的平均值:221323d m m I I I ππ===90.5A例题1 . 3 电 路如图1-4 , VT 导通, 画出负载R 上的电压波形。
图 1-4 例题1 . 3 图解: ( 1) R 上的波形如下:(2 ) R 上的波形如下:例题1 . 4 电路与波形示于图1-5( a) , ( b)。
若在t1 时刻合上K, 在t2 时刻断开K, 求负载电阻上的电压波形。
若在t1 时刻合上K, t3 时刻断开K, 输出电压的波形又如何( u g 宽度大于360°) ?图1-5 例题1 . 4 图例题1 . 5 在图1-7 中, 晶闸管阳极总加正向电压, 只要在VT1 与VT2 的控制极分别加上脉冲, 可实现两只晶闸管轮流导通, 试分析工作情况。
图1-7 例题1 . 5 图解: 当触发VT1 时, 正电源经R2 , C, VT1 为电容器充电, 其极性为左负右正, 这样, 如果VT2 正在导通, 电容器两端的电压将会使VT2 承受反压而关断。
另外一支晶闸管也如此。
习题1-1晶闸管由关断状态变为导通状态的条件, 由导通状态变为关断状态的条件是什么?答案:晶闸管由关断状态变为导通状态必须同时满足两个条件: (1 )晶闸管阳极、阴极间承受正向电压。
(2 )控制极对阴极有正的足够大的触发脉冲。
由导通变为关断状态, 满足下列两个条件之一即可:(1 )晶闸管的阳极、阴极间承受反向电压。
(2 )减小阳极电流, 使其小于维持电流。
习题1-2晶闸管的转折电压、额定电压、额定电流、维持电流、擎住电流是如何定义的?答案:转折电压: 当断开门极, 阳极电压U a 增大到晶闸管正向击穿导通的电压。
额定电压: 晶闸管断态正向不重复峰值电压的90% , 即断态正向重复峰值电压。
额定电流: 通态平均电流, 条件为环境温度为40℃ 和规定的冷却条件, 电阻负载且导通角不小于170°, 所加电流为工频正弦半波时的电流平均值。
维持电流: 晶闸管维持导通状态所必需的最小电流。
擎住电流: 晶闸管由断态进入导通过程中, 如果撤掉触发脉冲, 能继续维持晶闸管导通的最小电流。
习题1-3 额定电流为100A 的晶闸管, 当导通角为90°, 180°时, 允许的晶闸管峰值电流为多少? 若考虑到晶闸管的安全裕量呢? 提示:假设通过晶闸管的电流为工频正弦半波的90°, 180°, 见图1-8。
图1-8 习题1-3 图100A 的晶闸管, 允许通过的电流有效值为157A 。
(1 ) 当导通角为90°时, 实际通过的电流有效值为()221sin 222m T m I I I wt dwt πππ==⎰根据有效值相等的原则求出I m 。
答案:I m = 442 . 7A 。
考虑到安全裕量, I m 应乘以安全裕量系数。
(2 ) 根据同样的方法可求出电流为180°时的I m 。
答案:I m = 314A 。
考虑到安全裕量, I m 应乘以安全裕量系数。
习题1-4 额定电流为100A 的晶闸管流过单相全波电流时,允许其最大平均电流是多少?提示 100A 的晶闸管允许通过的电流有效值为1 . 57×100= 157A 。
当流过单相全波电流时, 求出这个电流的有效值, 这里注意: 两个相同波形的有效值为其中一个波形有效值的2倍, 而不是2 倍。
()2012sin 2m I I wt dwt ππ=⎰按有效值相等的原则求出I m 。
平均电流 I d =1/π0π⎰I m sin ωt d ωt根据有效值相等的原则先求出I m , 代入平均电流公式, 或先 求出波形系数再求I d 。
答案 最大平均电流 I d = 141 . 4 A 。
习题1-5 图 1-9 中波形的阴影部分为晶闸管中的电流波形, 其最大值为I m , 计算各波形电流平均值、有效值与波形系数。
在 不考虑安全裕量时, 各应选择多大的晶闸管( 电流) ?提示从题中可以看出一个波形的电流都有其峰值、有效值、平均值, 要将它们的定义弄清楚。
在选择晶闸管的额定电流时, 一 定要按有效值相等的原则, 即晶闸管允许的电流有效值与实际通 过晶闸管的电流有效值相等的原则。
解: 1)1012sin d m m I I wtdwt I πππ==⎰ 22101(sin )2m T m I I I wt dwt ππ==⎰ 11122T F d I K I π== 2)2313sin 2d m m I I wtdwt I ππππ==⎰ 223113(sin )0.6338T m m m I I wt dwt I I ππππ==+=⎰ 222 1.31T F d I K I == 3)2301I 24m d m I I dwt ππ==⎰ 22301I 22m T m I I dwt ππ==⎰ 3332T F d I K I == 第2考点 单相可控整流电路从本章起, 主要分析的内容是可控电路的输出电压波形及有 关的计算。
从某种意义上来讲, 波形分析法是理解各种可控电路 的一种基本方法, 掌握了波形分析法, 其他一切问题都可迎刃而解。
从电路角度来看, 有各种整流电路, 如单相、三相零式、三相桥 式等, 这些整流电路又可接各种负载, 如电阻负载、电感性负载、反电动势负载等。
这样看起来, 内容就显得很多。
但是, 它们都有一个共同的规律。
只要掌握这些规律, 分析问题就能得心应手, 书就会越念越薄。
2 . 1 内容归纳与总结2 . 1 . 1 单相半控桥式整流电路分析了单相半控桥式整流电路在电阻性负载、电感性负载时,输出电压波形及输出电压平均值与控制角α的关系。
所有的半控电路对电感性负载来讲, 都有一个失控的问题, 必须加续流二极管才能得以解决。
电阻性负载与带续流二极管的电感性负载输出电压波形在形式上是相同的。
电阻性负载时: 负载电流的波形与电阻上的电压波形是相同的, 只是幅值不同。
电感性负载时: 在电感足够大时, 认为电流是连续且是平行于横轴的纯直流量。
这样, 给计算与分析问题带来很大方便, 计算中所引起的误差, 在工程上是允许的。
2 . 1 . 2 单相全控桥式整流电路电阻性负载: 输出电压波形同半控桥式整流电路。
电感性负载: 没有失控的问题。
它不但在电压的正半周能使晶闸管导通, 在电感足够大时, 此电感还能维持晶闸管在交流电压的负半周继续导通, 并且在α= 90°时, 正负电压相等, 使其输出电压的平均值为零。