甲基化DNA测序的试剂配制

合集下载

二代测序检测甲基化的方法

二代测序检测甲基化的方法

二代测序检测甲基化的方法二代测序是一种高通量测序技术,可以快速、精准地分析DNA序列。

甲基化是一种重要的表观遗传修饰方式,可以对基因表达和细胞功能产生重要影响。

因此,通过二代测序检测甲基化状态成为了研究人员关注的焦点。

本文将介绍基于二代测序的甲基化检测方法。

一、甲基化的检测原理甲基化是指在DNA分子中加入甲基基团,可以影响DNA的结构和功能。

为了检测DNA中的甲基化状态,研究人员通常采用亚硫酸氢盐处理和二代测序相结合的方法。

亚硫酸氢盐可以将未甲基化的胞嘧啶(C)转化为尿嘧啶(U),而甲基化的胞嘧啶不受影响。

通过测序分析DNA中的U和C的比例,就可以确定DNA中的甲基化状态。

二、甲基化检测的实验流程1. DNA提取:从待检测的细胞或组织中提取DNA样本,保证样本的纯度和完整性。

2. 亚硫酸氢盐处理:将DNA样本与亚硫酸氢盐溶液反应,将未甲基化的C转化为U。

3. 文库构建:将经过亚硫酸氢盐处理的DNA样本进行文库构建,包括DNA片段的断裂、连接、文库扩增等步骤。

4. 二代测序:使用二代测序技术对DNA文库进行高通量测序,获得原始测序数据。

5. 数据分析:对原始测序数据进行质控、去除低质量序列和接头序列,然后将剩余的序列与参考基因组进行比对。

6. 甲基化位点鉴定:根据比对结果,统计序列中U和C的比例,确定甲基化位点的甲基化水平。

三、甲基化检测的数据分析甲基化检测的数据分析是整个过程中最关键的一步。

主要包括质控、比对、甲基化位点鉴定和甲基化水平分析等。

1. 质控:对原始测序数据进行质量控制,去除低质量的序列以及接头序列。

这一步骤可以保证后续分析的准确性和可靠性。

2. 比对:将质控后的序列与参考基因组进行比对。

通过比对可以确定序列的位置信息,为后续的甲基化位点鉴定提供基础。

3. 甲基化位点鉴定:根据比对结果,统计序列中U和C的比例。

如果某个位点的U和C比例明显偏差,即可判定该位点存在甲基化。

4. 甲基化水平分析:根据甲基化位点的甲基化水平,可以分析不同位点的甲基化状态。

DNA甲基化检测实验指导

DNA甲基化检测实验指导

DNA甲基化检测甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,在细胞正常发育、基因表达模式以及基因组稳定性中起着至关重要的作用,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。

目前甲基化特异性PCR ,Methylmion Specific PCR,简称MSP,及其改进方法是检测基因甲基化的经典方法.原理是首先用亚硫酸氢钠修饰处理基因组DNA,所有未发生甲基化的胞嘧啶都被转化为尿嘧啶,而甲基化的胞嘧啶则不变。

然后设计针对甲基化和非甲基化序列的引物并进行PCR扩增,通过检测,确定与引物互补的DNA序列的甲基化状态。

MSP法灵敏度较高,应用范围广。

实验前准备在实验开始前,先准备好本次实验所需的各种试剂,如:3mmol NaOH,DNA 纯化试剂盒,以及PCR检测用到的试剂盒等。

所涉及的仪器和耗材有赛默飞公司提供的单道移液器、QSP盒装吸头、Nun 冰盒,Thermo Scientific全波长扫描式多功能读数仪,还有常规的离心机、水浴锅等。

本实验的操作流程为:引物设计,重亚硫酸盐修饰后进行DNA纯化,通过浓度检测方进行甲基化特异性PCR检测。

首先进行引物设计甲基化常发生在启动子区,以DAPK1基因甲基化引物设计为例来。

首先要找到DAPK1的启动子区,登陆Map Viewer,搜索DAPK1。

点击gene,filter,找到对应的基因,获得更多的信息。

点击Map Viewer,可见DAPK1在9号染色体的具体位置。

第一个外显子位于90140 kb处,估计启动子就在其上游2000kb内。

显示为Genbank格式,点击display,获得序列。

将得到的序列拿到Promoter Scan中预测,获得该启动子的相关信息。

预测结果的可靠性,需要通过实验证实。

最后,登陆在线引物设计程序“MethPrimer”,将序列复制到框中,这选项是设计BSP引物,可根据需要设置参数。

我们选择MSP引物,点击Submit获得MSP的5对引物。

(完整版)甲基化检测方法(亚硫酸氢盐修饰后测序法)

(完整版)甲基化检测方法(亚硫酸氢盐修饰后测序法)

甲基化检测方法(亚硫酸氢盐修饰后测序法)第一部分基因组DNA的提取。

这一步没有悬念,完全可以购买供细胞或组织使用的DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。

DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的。

此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。

因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。

使用两者的细节:1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。

否则可能的后果是不仅没有RNA,连DNA也被消化了。

两者均于-20度保存。

验证提取DNA的纯度的方法有二:1:紫外分光光度计计算OD比值;2:1%-1.5%的琼脂糖凝胶电泳。

我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。

第二部分亚硫酸氢钠修饰基因组DNA如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。

1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;2:加5.5ul新鲜配制的3M NaOH;3:42℃水浴30min;水浴期间配制:4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。

这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。

PH一定要准确为5.0。

加520ul至上述水浴后溶液中。

6:EP管外裹以铝箔纸,避光,轻柔颠倒混匀溶液。

7:加200 ul 石蜡油,防止水分蒸发,限制氧化。

8:50℃避光水浴16h。

一般此步在4pm开始做,熟练的话不到5pm即可完成,水浴16h正好至次日8am 以后收,时间上很合适。

甲基化检测方法(亚硫酸氢盐修饰后测序法)

甲基化检测方法(亚硫酸氢盐修饰后测序法)

甲基化检测方法(亚硫酸氢盐修饰后测序法)第一部分基因组DNA的提取。

这一步没有悬念,完全可以购买供细胞或组织使用的DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。

DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的。

此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。

因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。

使用两者的细节:1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。

否则可能的后果是不仅没有RNA,连DNA也被消化了。

两者均于-20度保存。

验证提取DNA的纯度的方法有二:1:紫外分光光度计计算OD比值;2:1%-1.5%的琼脂糖凝胶电泳。

我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。

第二部分亚硫酸氢钠修饰基因组DNA如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。

1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;2:加5.5ul新鲜配制的3M NaOH;3:42℃水浴30min;水浴期间配制:4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。

这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。

PH一定要准确为5.0。

加520ul至上述水浴后溶液中。

6:EP管外裹以铝箔纸,避光,轻柔颠倒混匀溶液。

7:加200 ul 石蜡油,防止水分蒸发,限制氧化。

8:50℃避光水浴16h。

一般此步在4pm开始做,熟练的话不到5pm即可完成,水浴16h正好至次日8am 以后收,时间上很合适。

dna甲基化测序建库方法

dna甲基化测序建库方法

dna甲基化测序建库方法DNA甲基化是指DNA分子上的甲基基团(CH3)结合到DNA碱基上的过程。

DNA甲基化在生物学中具有重要的功能,它可以调控基因的表达和细胞分化,对生物体的发育和疾病发生起着重要作用。

因此,研究DNA甲基化水平和模式对于理解生物学过程和疾病机制具有重要意义。

DNA甲基化测序建库方法是研究DNA甲基化的一种重要技术手段。

下面将介绍DNA甲基化测序建库的原理和步骤。

DNA甲基化测序建库的第一步是DNA提取。

DNA提取是从生物样本中分离出DNA分子的过程。

常用的DNA提取方法有酚-氯仿法、盐沉淀法和商用DNA提取试剂盒等。

第二步是DNA甲基化处理。

DNA甲基化处理是将DNA分子上的甲基基团加到DNA碱基上的过程。

DNA甲基化处理可以使用多种方法,包括化学甲基化和酶甲基化。

化学甲基化是使用化学试剂将DNA分子上的甲基基团加到DNA碱基上,而酶甲基化是使用甲基转移酶将甲基基团转移到DNA碱基上。

第三步是DNA片段化。

DNA片段化是将DNA分子切割成较短的片段。

DNA片段化可以使用限制性内切酶、超声波或化学方法进行。

片段化后的DNA片段长度通常在100-500碱基对之间。

第四步是连接甲基化测序引物。

连接甲基化测序引物是将甲基化测序引物连接到DNA片段的末端。

甲基化测序引物在设计上考虑到了DNA甲基化的位置信息,并且引物上的甲基化处理可以保护DNA片段。

第五步是PCR扩增。

PCR扩增是使用DNA聚合酶将DNA片段进行扩增的过程。

PCR扩增可以将DNA片段扩增到足够的数量,以便后续的测序。

第六步是测序。

测序是对建库后的DNA片段进行测序的过程。

常用的测序方法有Sanger测序和高通量测序。

在测序过程中,可以使用不同的测序引物和测序平台,以获得高质量的测序数据。

通过对测序数据的分析,可以得到DNA甲基化的信息。

通过比较样本之间的DNA甲基化水平和模式,可以研究DNA甲基化在生物体发育和疾病发生中的作用。

甲基化检测原理及步骤

甲基化检测原理及步骤

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备(1)3 M NaOH原料(用前现配)把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。

甲基化检测方法(亚硫酸氢盐修饰后测序法)-2

甲基化检测方法(亚硫酸氢盐修饰后测序法)-2

甲基化检测方法(亚硫酸氢盐修饰后测序法)-2此步细节:1:在使用注射器时,一定要用力均匀且轻,如使用暴力,会将小柱内的薄膜挤破,失去作用。

2:乙酸铵、糖原不需新鲜配制,糖原配好后放在-20度保存,乙酸铵室温即可,因为这样浓度的乙酸铵非常难溶,一旦放在4度,取出用时也会有很多溶质析出。

3:异丙醇、70%乙醇都不需要新鲜配制,但如果用量大,现场配也很方便。

此步关键是在树脂与DNA的结合上,这就再次强调第二部分调亚硫酸钠PH值得重要性。

因为树脂与DNA结合需要有一个适当的PH,如前一步没做好,此步树脂不能与DNA很好结合,将会带来灾难性后果,即DNA随着液体被挤出了,洗脱时实际已没有任何DNA了。

第四部分修饰后DNA用于PCR这一步也没有悬念。

我主要谈一下这里面的几个比较棘手的问题:1:引物问题:我感觉自己设计引物有相当的难度,我曾设计过几对引物,并且试验了一下,但以失败告终。

如果时间充裕、作的又是比较新的基因文献不多,自己设计引物没有问题。

如果不是这样,还是参考文献更好些。

首先查阅SCI分值高的文献,然后是著名实验室的文献,如果国内有做的,更好了,可以直接联系咨询。

查到序列后,一定要和Genbank中的序列进行比对,防止有印刷错误造成的个别碱基的差别。

然后再到google上搜一下,看用的人多否,体系条件是否一样。

用的人多、体系条件一样,表明可重复性比较强。

我也是按此行事,算比较顺利。

2:Taq酶问题:有文献用高保真的金牌 Taq(Platinum),但我感觉只要体系正确、变性退火等条件合适,一般的热启动酶是可以的。

我开始使用的是Takara的LA Taq,很好用,配有10x含mg++的LA缓冲液。

有时候用没了,暂时以Takara 的普通Taq酶也可以。

如何选择,可以根据自己的情况。

初作者还是用好一点的酶。

3:PCR的条件:变性一般都选择95度,3min。

其余我感觉还是根据文献,退火可以根据你的引物的退火温度在小范围内尝试。

DNA甲基化实验操作原理及方法

DNA甲基化实验操作原理及方法

DNA 甲基化重亚硫酸氢盐修饰法(DNA METHYLATION BISULFITE MODIFICATION)实验操作原理及方法一、实验目的:通过本实验,可以检测特定DNA序列的甲基化状态。

二、实验原理:DNA 甲基化是指由S-腺苷甲硫氨酸(SAM)提供甲基基团,在DNA 甲基转移酶(DNA methyltransferases,DNMTs)的作用下,将CpG 二核苷酸的胞嘧啶(C)甲基化为5-甲基化胞嘧啶(5-m C)的一种化学反应。

DNA 甲基化是调节基因转录表达的一种重要的表观遗传的修饰方式。

DNA 甲基化主要在转录水平抑制基因的表达。

DNA 甲基化引起基因转录抑制的机制可能主要有以下3 种:(1)DNA甲基化直接干扰特异性转录因子与各基因启动子中识别位置的结合。

(2)序列特异性的甲基化DNA 结合蛋白与启动子区甲基化CpG 岛结合,募集一些蛋白,形成转录抑制复合物,阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。

(3)DNA 甲基化通过改变染色质结构,抑制基因表达。

重亚硫酸氢盐修饰法检测DNA甲基化的基本原理是基于DNA变性后用重亚硫酸氢盐处理,可将未甲基化胞嘧啶修饰成尿嘧啶。

此反应的步骤是:1、在C-6位点磺化胞嘧啶残基;2、在C-4处水解去氨基来产生尿嘧啶磺酸盐;3、在碱性条件下去硫酸化。

在这个过程中,5-甲基胞嘧啶由于甲基化基团干扰了重亚硫酸氢盐进入到C-6位点而保持着未反应的状态。

在重亚硫酸氢盐处理后,使用针对每个修饰后DNA链的引物进行PCR反应。

在这个PCR产物中,每5-甲基胞嘧啶显示为胞嘧啶,而由未甲基化胞嘧啶转变成的尿嘧啶则在扩增过程中被胸腺嘧啶所取代。

BSP(bisulfate sequencing PCR) :重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,进行PCR扩增。

最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Data SupplementTitle: Circulating methylated SEPT9 DNA in Plasma is a Biomarker for Colorectal Cancer.Theo deVos1, Reimo Tetzner2, Fabian Model1,3, Gunter Weiss2,Matthias Schuster2,Jürgen Distler2, Kathryn V. Steiger1 , Robert Grützmann5, Christian Pilarsky5, Jens K. Habermann6, Phillip R. Fleshner7, Benton M. Oubre8, Robert Day1, Andrew Z. Sledziewski1, Catherine Lofton-Day11) Detailed m SEPT9 Assay Protocol:DNA Extraction: DNA was extracted from 5 mL of blood plasma using a modified viralDNA/RNA extraction kit (chemagen AG, Baesweiler Germany). Plasma samples were thawed at room temperature and extracted following the directions of the kit with modifications. Samples were lysed and treated with protease at 56︒C for 10 min in a 50 mL Falcon tube. 100 μL of magnetic particles and 15 mL of binding buffer were then added, and binding was performed for 60 min at room temperature on a rotator. Magnetic particles were captured for 4 min, the supernatant discarded and the pellet was resuspended in 3 mL of wash buffer. 1.5 mL of particle solution were transferred to a 2 mL SafeLock, the beads captured and the supernatant discarded. This was repeated to complete the 3 mL transfer. Tubes were briefly centrifuged and the residual wash buffer was removed by pipetting after bead separation. The tubes were then placed in a 56︒C dry block for 5 min, 100 μl of elution buffer was added, the tubes incubated at 65︒C with shaking on a thermomixer for 15 min, the particles separated on a magnetic stand and the eluted DNA transferred to a 0.5 mL SafeLock tube (Eppendorf). A 5μl aliquot of the DNA sample was transferred to 45 μl of elution buffer for the measurement of genomic DNA.Bisulfite Conversion: The sample input for bisulfite treatment was 95-100 μl of extracted DNA in elution buffer. The bisulfite reagents (for 25 reactions) were prepared as follows.Bisulfite solution: Sodium bisulfite (4.71gm) and sodium sulfite (1.13gm) were dissolved in 10 mL of ddH2O in a falcon tube, by vigorous shaking and heating to 50︒C if required, and the pH adjusted to 5.4-5.5 with 0.2M NaOH as necessary. DME-radical scavenger solution: 188 mg of 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid was dissolved in 1.5 mL diethyleneglycoldimethylether (DME), vortexing to ensure an uniform solution.Bisulfite Reaction: 190 μL of bisulfite solution and 30μl DME-radical scavenger solution were added to the 95-100 μl DNA sample in 0.5 mL SafeLock tubes. The tubes were incubated in a Eppendorf Mastercycler (Eppendorf)according to the following protocol: 5 min 99°C, 25min 50°C, 5 min 99°C, 1h 25min 50°C, 5 min 99°C, 4h 55min 50°C, hold 20°C. This protocol allowed overnight bisulfite conversion.Bisulfite Purification: Following bisulfite conversion, DNA was purified using a customized kit from chemagen AG. The bisulfite reaction (320 μL) was transferred to a 2 mL SafeLock tube, and 1 μLof polyA (500 ng/μL) and 1.5 mL of binding buffer were added. 10 μL chemagen magnetic particles were added and the sample was mixed by vortexing. The samples were incubated at room temperature on a thermal mixer at a rotation of 1000 rpm for 60 min. Magnetic particles were separated on a magnetic stand, the liquid discarded, the tubes briefly centrifuged and the residual liquid removed following magnetic separation. The particles were washed twice with wash buffer II from the kit, and once with 70% ethanol. Following the ethanol wash, the tubes were centrifuged again, and the residual liquid removed following magneticseparation. The particles were dried by placing open tubes in a 55︒C heat block, and 55 μL elution buffer (10 mM Tris pH 7.2) added. Samples were incubated at 55︒C for 15 min on a thermal mixer with rotation set to 1000 rpm, placed on a magnetic separator and the eluate containing DNA transferred to a new tube. A 5 µL aliquot of bis-DNA was added to 45 µL of elution buffer for the measurement of a 10 fold diluted sample. This purification method leaves out the desulfonation step following bisulfite conversion, to make the DNA amenable to carry over prevention by UNGase treatment as describe previously.(1) PCR amplification of sulfonated DNA requires an extended activation time to allow desulfonation to occur prior to amplification.PCR Analysis: The oligonucleotide sequences and assay information are outlined in the Table below.Supplemental Table 1. Oligonucleotide sequences, concentrations and cycling conditions for the real time PCR assays used in this study.For the SEPT9 PCR, the reverse primer contained an abasic d-spacer base in the 5th position. The blocker was terminated with a C3 spacer at the 3’ end to prevent extension. The SEPT9 real time probe used the FAM / BHQ-1 fluorophors dyes. The CFF1 PCR was identical to previous studies. The primers for the β-actin assay were shortened compared with previous studies, but the probe was identical to previous studies (2, 3). Oligonucleotide quality was determined in house by MALDI-TOF prior to use, and the limit of detection for each PCR was evaluated prior to use in studies. The Quantitect Multiplex mastermix from Qiagen was used at a 1x final concentration in all assays. The total PCR reaction volume was 25 μl, using 96 wellreaction plates on a Roche LC480 real time thermal cycler. For the SEPT9 and β-actin PCR reactions, the activation temperature was extended to allow the desulfonation reaction to proceed prior to amplification.Real time PCR analysis:Total genomic DNA was measured by real time PCR analysis of the diluted genomic aliquot using the CFF1 reaction. Total bisulfite DNA was measured from a 10 µL aliquot of the bisulfite DNA eluate with the β-actin reaction. SEPT9 methylation was measured in triplicate using 10 µL of the bis DNA eluate per replicate, and in a single measure using 10 µL of the diluted bisulfite DNA eluate.PCR Assay Prequalification: Prior to the study, the 90% limit of detection (LoD) was determined for the SEPT9 PCR by analysis of bisulfite treated methylated (Sss1 treated) DNA diluted in a background of bisulfite treated 50 ng peripheral blood leukocyte (PBL) DNA (Roche Applied Science). As illustrated in Data Supplement Figure 1, the dilution series was from 100pg to3.125 pg in 2 fold steps. We tested 12 replicates for four different PBL backgrounds, for a total of 48 replicates at each concentration. The 90% LoD was defined as the lowest concentration of spiked methylated DNA in a background of 50 ng human genomic DNA for which the measurement values had an area under the ROC curve (AUC) of 0.9 compared with measurements without spiked methylated DNA, and was estimated to be 9.4 pg for the m SEPT9 assay. For β-actin, the LoD of 9.7 pg was determined with a dilution series of bisulfite treated methylated (Sss1 treated) DNA, and for the genomic CFF1 PCR the LOD of4.3 pg was measured with a dilution series of genomic PBL DNA.2) Characterization of Assay performance with model samples:Model samples: For workflow development two types of model sample were produced: 1) purified methylated DNA (CpGenome, Millipore) was spiked into plasma negative for methylated SEPT9; 2) plasma positive for methylated SEPT9 was spiked into plasma negative for the SEPT9 biomarker.To determine the performance of DNA extraction from plasma, total genomic DNA recovery was measured using the genomic real time PCR assay CFF1. An example experiment from the assay development process using spiked plasma samples is shown in Figure 2. The recovery of total genomic DNA is shown for eight individual samples, in which we measured average DNA recovery of 2.93 ± 1.36 ng/mL of input plasma from a set of surrogate plasma samples in which low levels of plasma containing methylated SEPT9 were spiked into a SEPT9 negative plasma background (Figure 2a). Based on these and additional studies (not shown) we demonstrated equivalent recovery of genomic DNA to that measured with the research assay. For bisulfite conversion and purification, the protocol was tested using surrogate samples as described for genomic DNA extraction above, and as illustrated in the sample experiment in Figure 2a, the recovery of bis-DNA measured using the real time β-actin PCR reaction was 1.6 ± 0.63 ng/mL of starting plasma, a yield in the range of 55% of the total genomic DNA.To test the recovery of methylated target DNA in the m SEPT9 assay, methylated SEPT9 positive plasma was spiked in a dilution series into a background of methylated SEPT9 negative plasma (Figure 2b) with the target concentration of SEPT9 biomarker at less that 10 pg/mL in the 8-fold dilution samples. For each dilution, the PCR positive rate for the original research assay and the new m SEPT9 assay was measured in 8 independent spiked samples. The detection rates differed marginally between the two assays at the higher concentrations of the SEPT9 biomarker, and were identical (50%) at the greatest dilution (Figure 2b). Based on these resultsand numerous additional experiments (data not shown), for surrogate samples we considered the new assay essentially equivalent to the previously described research assay, and proceeded to validate the assay with clinical samples in a training and test study.Study Quality ControlPositive controls for DNA extraction were 25ng/mL CpGenome methylated DNA diluted in5mg/mL bovine serum albumin (BSA), while negative extraction controls were BSA without spiked DNA. Positive controls for bisulfite processing were composed of 10ng fully methylated CpGenome DNA spiked into 90 ng of human genomic DNA prepared from buffy coat cells (Roche Applied Sciences) in a 100 µL volume of elution buffer. Negative bisulfite conversion controls were composed of elution buffer aloneSupplemental Figure 1. The LoD calibration curve for the methylated SEPT9 real time assay used in the training and test studies. The concentration of spiked methylated DNA in picograms is indicated across the top of the graph. The measured concentration of the methylated spike is indicated on the Y-axis. The dotted blue line indicates perfect identity between expected and observed, the black line connects the observed median values and the dashed red line represents the regression of the observed median values. The dotted black lines show the 90% confidence interval around the median value.Supplemental Figure 2. Performance of the m SEPT9 assay on model DNA samples. Supplemental Figure 2a. Concentration of total genomic DNA (gray bars) based on the CFF1 PCR assay, and bis-DNA (hatched bars) based on the β-actin PCR assay, calculated per mL of input plasma for eight independent sample pools. Samples were produced by spiking plasma positive for methylated SEPT9 into methylated SEPT9 negative plasmaSupplemental Figure 2b. SEPT9 positive rate in percentage measured for the SEPT9 FRET based research assay (gray bars) and the new m SEPT9 assay (hatched bars). Plasma samples were prepared in a dilution series of methylated SEPT9 positive plasma spiked into a background of methylated SEPT9 negative plasma, with a target of less than 10 pg/mL in the 8 fold dilution samples. Each percentage measurement is the aggregate of PCR results for 8 independent spiked DNA pools at the given dilution.Supplement Figure 3a. Plot of cumulative total bis-DNA measured by β-actin real time PCR, for cancer cases and control patients expressed in ng / mL plasma. Note that the total DNA measurement is essentially identical for controls and cases.Supplement Figure 3b. Plot of cumulative total bis-DNA measured by β-actin real time PCR, for cancer cases by stage in ng / mL plasma Note that the total DNA measurement is essentially identical for stages I-III but that a number of stage IV cancers show high concentrations.References:1. Tetzner R, Dietrich D, Distler J. Control of carry-over contamination for PCR-based DNAmethylation quantification using bisulfite treated DNA. Nucleic Acids Res 2007;35:e4.2. Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, et al. DNAmethylation biomarkers for blood-based colorectal cancer screening. Clin Chem2008;54:414-23.3. Grutzmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, et al.Sensitive detection of colorectal cancer in peripheral blood by Septin 9 DNA methylation assay. [Epub ahead of print] Plos One November 20, 2008 as DOI:10.1371/journal.pone.0003759.。

相关文档
最新文档