初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)
八年级上册数学分式重点难点题型全覆盖试卷附详细答案

八年级上册数学分式重点难点题型全覆盖试卷附详细答案一、单选题(共12题;共24分)1.如果关于x的方程无解,则m的值等于()A. −3B. −2C. −1D. 32.已知1a −1b=4,则a−2ab−b2a−2b+7ab的值等于A. 6B. −6C. 215D. −273.若方程=0有增根,则增根可能是()A. 0或2B. 0C. 2D. 14.已知=3,则分式的值为()A. B. ﹣ C. D. ﹣5.化简,其结果是()A. B. C. D.6.若x+2x2−2x+1的值为正数,则x的取值范围是( )A. x<-2B. x<1C. x>-2且x≠1D. x>17.如果(a-1)0=1成立,则()A. a≠1B. a=0C. a=2D.a=0或a=28.如果x+yy =74,那么xy的值是( )A. 32B. 23C. 43D. 34 9.在式子 1a ,2xy π,3a 2b 3c 4, 56x , x 7+y8 ,10xy ﹣2 ,x 2x中,分式的个数是( )A. 5B. 4C. 3D. 210.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为 x 千米/时,则可列方程( )A. 10030+x =6030−x B. 100x+30=60x−30 C. 10030−x =6030+x D. 100x−30=60x+3011.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( ) A. 480(1+50%)x -480x=4 B.480x-480(1-50%)x =4C.480x -480(1+50%)x=4 D.480(1-50%)x -480x=412.当x 分别取﹣2015、﹣2014、﹣2013、…,、﹣2、﹣1、0、1、 12 、 13 、…、 12013 、 12014 、 12015 时,计算分式x 2−1x 2+1的值,再将所得结果相加,其和等于( )A. ﹣1B. 1C. 0D. 2015二、填空题(共6题;共7分)13.分式表示一个整数时,整数m 可取的值共有________个.14.已知实数a ,b ,c 满足 ab+c +bc+a +ca+b =1 ,则 a 2b+c+b 2c+a +c 2a+b = ________. 15.当x________1时,分式 的值为负数.16.当x________时,分式的值为1;当x________时,分式的值为-1.17.已知 1x −1y =1 ,则分式 3x+4xy−3y2x−5xy−2y = ________. 18.阅读材料:分离整数法就是将分式拆分成一个整式与一个分式(分子为整数)的和的形式.如: ① x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1 ; ②x 2+1x−3 =x 2−9+10x−3=x 2−9x−3+ 10x−3 =x+3+10x −3.解答问题.已知x 为整数,且分式3x−4x−2为整数,则x 的值为________.三、计算题(共8题;共70分)19.已知abc≠0且a+b+c=0,求a (1b +1c)+b (1c+1a)+c (1a+1b)的值.20.已知a、b、c均为非零的实数,且满足a+b−cc = a−b+cb= −a+b+ca,求(a+b)(b+c)(c+a)abc的值.21.先化简,再求值:a3−aa2+2a+1÷a−12a+2+(1+2a−a+1a−2)⋅2a3−4a2a+1,其中a的值在0,1,﹣1,2,5中选出一个合适的值.22.解方程:(1)x−2x+2−12x2−4=1(2)21+x−31−x=6x2−123.分式计算: (1)3ab+a 2a 2−b 2÷a+3b a−b(2)(−ab )2⋅(ba 2)2÷(−2ab)2(3)22a+3+33−2a +2a+154a 2−9(4)先化简,再求值: (m +4m+4m)÷m+2m 2,其中m=1.24.先化简再求值: x 2−2x x 2−1÷(x −1−2x−1x+1) ,其中 x =12.25.先化简,再求值:(3x−1−x−1)÷x−2x2−2x+1,其中x=2.26.计算:(1)2a5a2b +3b10ab2(2)(m3n)−2(2m−2n−3)−2(3)81−a2a2+6a+9÷a−92a+6⋅a+3a+9(4)(a2b−c )3⋅(c2−ab)2÷(bca)4四、解答题(共5题;共35分)27.阅读下面的解题过程: 已知 xx 2+1 = 13 ,求x 2x 4+1的值.解:由 xx 2+1 = 13 知x≠0,所以x 2+1x=3,即x+ 1x =3.所以x 4+1x 2=x 2+ 1x 2 = (x +1x )2 -2=32-2=7.故x 2x 4+1的值为 17 .该题的解法叫做“倒数求值法”,请你利用“倒数求值法”解下面的题目: 若 xx 2−3x+1 = 15 ,求 x 2x 4+x 2+1的值.28.先化简:x 2+x x 2−2x+1÷(2x−1﹣1x ),再从﹣2<x <3的范围内选取一个你最喜欢的值代入,求值.29. (1)先化简,再求值:( aa+2 + 1a 2−4 )÷ a−1a+2 + 1a−2 ,其中a=2+ √2 ;(2)化简:aa2−4• a+2a2−3a﹣12−a,并求值,其中a与2,3构成△ABC的三边,且a为整数;(3)先化简,再求值:(xx−2﹣4x2−2x)÷ x+2x2−x,其中x满足x2﹣x﹣2=0.30.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?31.已知x3﹣x2﹣x+1=(x﹣1)(x2﹣1)且x是整数,求证:是整数.五、综合题(共19题;共191分)32.化简:(1);(2)33.某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.34.请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:x−1x+1,x2x−1;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:1x+1,2x+1x2−1.我们知道,假分数可以化为带分数,例如:135=10+35=2+35=235,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:x+1x−1=x−1+2x−1=1+2x−1.(1)将分式2x+1x−1化为带分式;(2)当x取哪些整数值时,分式2x+1x−1的值也是整数?(3)当x的值变化时,分式2x2+7x2+2的最大值为________.35.定下面一列分式:(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.36.海拉尔区某中学在友谊大厦购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元。
人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
北师大版八年级数学下册分式知识点归纳总结及习题精练

分式及其运算知识点归纳总结一、知识点归纳1、分式的概念:一般地,如果A ,B 表示两个整式,B 中含有字母且B 不等于0,那么式子BA 叫做分式. 需要注意的四点:(1)分式的分母中必须含有字母;(2)分式的分母的值不能为0;(3)分式是写成两式相除的形式,中间以分数线隔开;(4)判断分式需要看最初的形式2、分式有无意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,分母为0时,分式无意义3、分式的值:(1)分式的值为0,满足000≠=⇔=B A BA 且 (2)分式的值为1,满足01≠=⇔=B A BA (3)分式的值为-1,满足01≠-=⇔-=B A BA (4)分式的值为正,满足⎩⎨⎧<<⎩⎨⎧>>⇔>00000B A B A B A 或 (5)分式的值为负,满足⎩⎨⎧><⎩⎨⎧<>⇔<00000B A B A B A 或 4、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. )0(,≠÷÷==m mb m a b a bm am b a ,前提条件是0≠m ,强调是同时 5、分式的符号:y y y x x x--==-(符号调整时注意不要改变分式的值). 6、约分和最简分式:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.对分式进行约分化简时,通常要使结果成为最简分式(即分子和分母已没有公因式)或者整式. 通分:最简公分母7、分式的乘除运算乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 分式的加减运算同分母的分式相加减,分母不变_,把分子相加减;异分母的分式相加减,先通分,化成同分母的分式,然后再加减.在进行分式的运算前,要先把分式的分子和分母分解因式分式的乘除要约分,加减要通分,最后的结果要化成最简.有时进行分项化简分式及其运算的题型总结题型一:分式的定义及有无意义1、下列各式是分式的有_________________.(填写序号) ①1π;②2x x;③(3)(1)x x +÷-;④210xy -;⑤242x x --;⑥109x y +. 2、当x 取何值时,下列分式有意义?(1)ax x; (2)239x x +- (3(4)2x -. 3、当x =______分式212x x x ---=0,当x =________时,216(3)(4)x x x --+=0 4、已知当2x =-时,分式x b x a--无意义,当4x =时,该分式的值为0,则a b +=___________.5、若分式224x x x m++不论x 取何实数总有意义,则m 的取值范围 6、当x 时,22(1)x x -+的值为正数 题型二:分式的化简求值7、下列变形正确的有________________.(填写序号)1.x y x y x x -+-=;2.x y x y x x-++=-;3.x y x y y x x y -++=--;4.y x x y x y x y --=-++. 5.135320.55x y x y x x--= ;6.133m m m =++;7122x y y x +=--; 8.x x x y x y =--+- 8、若分式22x y x y+-的中,x y 同时扩大2倍,分式的值 若分式222x y xy+的中,x y 同时扩大2倍,分式的值 9、把下列分式化为最简分式:(1)22233x x x x ---; (2)22222222x y z yz z x y xy--+--+.10、分式的运算:(1)4222a b a a b a b ab a --⋅+-; (2)3222322212()xy xy x y x y x y ⎛⎫⎛⎫⎡⎤÷⋅ ⎪ ⎪⎢⎥+--⎣⎦⎝⎭⎝⎭.(3)2933a a a +--; (4)22433x x x x x---+-.下列说法错误的是( )A .2314a b 与2316a b c的最简公分母是2312a b c B .1m n +与1m n-的最简公分母是22m n - C .213x x -与229x -的最简公分母是(3)(3)x x x -+ D .1x y -与1y x -的最简公分母是()()x y y x -- 11、分式的混合运算:(1)2344111x x x x x -+⎛⎫+-÷ ⎪--⎝⎭ (2)22112111x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭;(3)412222x x x x -⎛⎫÷+- ⎪--⎝⎭; (4)2222211b a ab b a a ab a a b ⎛⎫-+⎛⎫÷++ ⎪ ⎪-⎝⎭⎝⎭.(5)24(2)22m m m m ⎛⎫+÷+ ⎪--⎝⎭; (6)352242m m m m -⎛⎫÷+- ⎪--⎝⎭.(7)22222111113256712920x x x x x x x x x x +++++++++++++题型三:分式的应用1、若118x y +=,则2322x xy y x xy y -+++=____ 23a b =,则2222a ab b a b -++=________若2112x x x =-+,则2421x x x =++_____.3x =4y =5z ,则222z y x xz yz xy ++++=_______.2、已知113x y -=,求2322x xy y x xy y+---的值3、若0a b <<,且2260a b ab +-=,则a b a b +-的值为________.4、若m 为正实数,且1m m -=3,则221m m -=______ 1m m+=若15a a +=,则2421a a a =++ ;已知21x x x -+=7,则2421x x x ++= 5、若实数a ,b 满足:ab =1,则221111a b +++的值为________. 6、若分式2424x x x -+-的值为整数,则整数x 的值为__________. 已知a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ac a c =+,则abc ab bc ca++=_____.若abc =1,则111a b c ab a bc b ca c ++++++++的值为_______.。
初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A.B. C.D.6.计算的结果为()A.B. C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C. D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:=.16.若分式有意义,则实数x的取值范围是.17.分式方程的解x=.18.若代数式的值为零,则x=.19.化简的结果是.20.化简:=.21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求•(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春•潜江期末)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012•岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005•扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013•临沂)化简÷(1+)的结果是()A.B. C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008•黄冈)计算的结果为()A.B. C. D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009•潍坊)下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2•a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013•杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016•本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005•武汉)计算的结果为()A.1 B.x+1 C. D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004•十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014•陕西)计算:=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014•衢州)若分式有意义,则实数x的取值范围是x≠5.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013•梅州)分式方程的解x=1.【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013•临夏州)若代数式的值为零,则x=3.【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013•凉山州)化简的结果是m.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013•衢州)化简:=.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015•黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013•绥化)若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是m .>﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x的不等式是本题的一个难点.24.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为5.【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x ﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013•舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013•眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005•徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013•普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013•巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013•陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.38.(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,。
八年级数学下学期期末考点 分式 全章复习 (4个考点梳理+9种题型解读)(原卷版)

清单03分式全章复习(4个考点梳理+9种题型解读)考点一分式的基础分式的概念:如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式,A为分子,B为分母.对于分式A B来说:①当B≠0时,分式有意义;当B=0时,分式无意义.②当A=0且B≠0这两个条件同时满足时,分式值为0.③当A=B时,分式的值为1.当A+B=0时,分式的值为-1.④若A B>0,则A、B同号;若A B<0,则A、B异号.约分的定义:把一个分式的分子与分母的公因式约去,叫分式的约分.最简公式的定义:分子与分母没有公因式的分式,叫做最简分式.通分的定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,这一过程叫做分式的通分.通分步骤:①定最简公分母;②化异分母为最简公分母.最简公分母的定义:通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.确定最简公分母的方法:类型方法步骤1.(23-24八年级上·全国·课后作业)对于分式2x y x y -+:(1)如果1x =,那么y 取何值时,分式无意义?(2)如果1y =,那么x 取何值时,分式无意义?(3)使分式无意义的x ,y 有多少对?(4)要使得分式有意义,x ,y 应有什么关系?(5)如果=1x -,那么y 取什么值时,分式的值为零?2.(22-23八年级下·河南南阳·阶段练习)对于分式23x a x b-+,当1x =-时,分式无意义;当4x =时,分式的值为0,求a b 的值.3.(22-23八年级上·湖南永州·期中)已知关于x 的分式21(1)(3)x x x -+-,求下列问题:(1)当x 满足什么条件,分式无意义;(2)当x 满足什么条件,分式有意义;(3)当x 满足什么条件,分式的值等于0.【考试题型2】利用分式的基本性质进行分式变形4.(23-24八年级上·全国·课后作业)在括号中填上恰当的式子:(1)()()30510a axy xy axy=≠;(2)()()22124a a a +=≠±-;(3)()()222x y x y x y+=≠-;(4)()22222a ab b a b a b -+-=-(0a b +≠且0a b -≠).5.(23-24八年级上·全国·课堂例题)不改变分式的值,使下列分式的分子和分母都不含“-”号:(1)35b a --;(2)35m n---;(3)332x x ---;(4)232x --+.6.(21-22八年级上·全国·课后作业)不改变分式的值,把下列各式的分式与分母中各项的系数都化为整数.①220.60.30.50.7x y x y -+;②22220.250.50.752a b a b +-;③1112361164a b c a b -++;④21318543x y x ---.考点二分式的运算【考试题型3】整式与分式相加减7.(23-24八年级上·山东潍坊·阶段练习)计算:(1)212293m m +--(2)211x x x -++8.(23-24八年级上·全国·课后作业)计算:(1)2222242x x xy y x x y y x x y---+---(2)236924424x x x -++--;(3)2111111x x x +++--;(4)3211x x x x +-+-9.(2022·四川泸州·一模)化简:221111x x x x -⎛⎫+- ⎪-+⎝⎭【考试题型4】分式加减乘除混合运算10.(23-24八年级上·山东聊城·阶段练习)计算:(1)23234243b b b a a a a b ⎛⎫⎛⎫⎛⎫⎛⎫÷-⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)()22224414;22x xy y x y x y x y -+÷-⋅-+11.(23-24八年级上·山东烟台·期中)计算(1)22433842x x y x y y ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭;(2)211x x x x +--;(3)222632444163x x x x x x x ---÷⋅-+-+;(4)2211()xy x y x y x y -÷-+-.12.(23-24八年级上·山东东营·阶段练习)计算:(1)22233x y xy y z z ⎛⎫⋅÷ ⎪⎝⎭(2)()22222x xy y x y xy x xy x -+--÷(3)2222223223x y x y x y x y x y x y ++--+---(4)222111x x x x x ++---【考试题型5】分式的化简求值13.(22-23八年级下·贵州六盘水·阶段练习)先化简,再求值:24431221x x x x x -+÷-+++⎛⎫ ⎪⎝⎭,其中x 是不等式381x -<的正整数解.14.(23-24八年级上·山东烟台·期中)若a ,b 为实数,且()222|25|05a b b -+-=-,求22b a a b --的值.15.(23-24八年级上·广东湛江·期末)化简2869111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,再从1,1,3-中选择一个合适的数代入求值.16.(23-24八年级上·山东淄博·阶段练习)化简求值:112()y x y x y x y-÷-+-,其中x ,y 满足()2120x y -++=.考点三解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.【考试题型6】解分式方程17.(23-24八年级上·山东烟台·期中)解分式方程:(1)23611x x =+-(2)31244x x x -+=--.18.(23-24八年级上·江苏南通·阶段练习)解下列分式方程:(1)21122x x x +=+--;(2)2227611x x x x x -=+--.【考试题型7】根据分式方程解的情况求值19.(22-23八年级下·全国·假期作业)已知关于x 的分式方程3211m x x +=---的解为非负数,求正整数m 的值.20.(23-24八年级上·全国·课堂例题)已知关于x 的方程233x m x x -=--的解是正数,求m 的取值范围.21.(23-24八年级上·湖南怀化·期中)已知关于x 的方程4433x m m x x---=--有增根,求m 的值.22.(23-24八年级下·全国·课后作业)已知关于x 的方程:3611(1)(1)mx x x x x +=+-+-.(1)若方程有增根,求m 的值;(2)若方程无解,求m 的值.23.(23-24八年级上·山东泰安·阶段练习)解方程:(1)解方程:21133x x x x =-++;(2)解方程:2236111y y y +=+--;(3)关于x 的分式方程()()232121mx x x x x +=-+-+.①若方程的增根为2x =,求m 的值;②若方程有增根,求m 的值;③若方程无解,求m 的值.【考试题型8】分式方程与一元一次不等式组综合24.(23-24八年级上·新疆乌鲁木齐·阶段练习)关于x 的方程2133x m x x--+=的解为正数,且关于y 的不等式组()323y m y m m -≥⎧⎨-≤+⎩有解,则符合题意的所有整数m 的和为.25.(22-23八年级下·重庆九龙坡·期末)若实数m 使关于x 的不等式组2333222x x x m ++⎧-≤⎪⎨⎪-<-⎩有整数解且至多有4个整数解,且使关于y 的分式方程16211m y y-=---的解为非负数,则满足条件的所有整数m 的和为.26.(23-24八年级上·重庆九龙坡·期末)若关于x 的不等式组3512622x x x x a-⎧<+⎪⎨⎪-≥+⎩有且只有3个奇数解,且关于y 的分式方程32111y a a y y +-+=--的解为整数,则符合条件的所有整数a 的和为.考点四利用分式方程解决实际问题用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:【考试题型9】分式方程的实际应用27.(22-23八年级下·江苏无锡·期中)在2020年疫情防控期间,我市某公司为了满足全体员工的需求,花1万元买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩的价格下降了50%,该公司又花了6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包.求2020年每包口罩的价格是多少?(1)设2020年每包口罩的价格为x 元,则2021年每包口罩的价格为元;(用含x 的代数式表示)(2)求2020年每包口罩的价格.28.(23-24八年级上·山东烟台·期中)2023年9月21日,“天宫课堂”第四课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某单位为满足学生的需求,充实物理小组的实验项目,需要购买甲、乙两款物理实验套装.经了解,每款甲款实验套装的零售价比乙款实验套装的零售价多7元,该单位以零售价分别用750元和540元购买了相同数量的甲、乙两款物理实验套装.(1)甲、乙两款物理实验套装每个的零售价分别为多少元?(2)由于物理兴趣小组人数增加,该单位需再次购买两款物理实验套装共200个,且甲款实验套装的个数不少于乙款实验套装的个数的一半,由于购买量大,甲乙两款物理实验套装分别获得了20元/每个、15元/每个的批发价.求甲、乙两款物理实验套装分别购买多少个时,所用资金最少.29.(23-24八年级上·山东聊城·阶段练习)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元,为缩短工期并高效完成工程,从一开始就安排甲乙两工程队合作,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.30.(23-24八年级上·山东潍坊·阶段练习)2023年,淄博烧烤成为热门话题,和三五好友在路边小摊上说说笑笑、感受人间烟火气成为时下最受欢迎的休闲方式之一.为恢复和提振消费,越来越多的城市加入支持“地摊经济”的队伍,近日淄博某社区拟建A,B两类摊位以搞活“地摊经济”.每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.求每个A,B类摊位占地面积各为多少平方米?。
(文末附解析)八年级数学上册分式必考知识点归纳总结

(文末附解析)八年级数学上册分式必考知识点归纳总结单选题1、分式1x−2有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣22、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x−2B.90x−2=60x+2C.90x+3=60xD.60x+3=90x3、若分式1x+5在实数范围内有意义,则x的取值范围是()A.x≠-5B.x≠0C.x≠5D.x>-54、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒5、对于实数a,b,定义一种新运算“⊗”为:a⊗b=2a−b2,这里等式右边是通常的实数运算.例如:1⊗3=2 1−32=−14,则方程x⊗(−1)=6x−1−1的解是()A.x=4B.x=5C.x=6D.x=76、若把分式2xx+y中的x和y同时扩大为原来的3倍,则分式的值()A.扩大到原来的3倍B.扩大到原来的6倍C.缩小为原来的13D.不变7、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒8、(−b 2a)2n (n 为正整数)的值是( ) A .b 2+2na 2n B .b 4na 2n C .−b 2n+1a 2n D .−b 4na 2n填空题9、若代数式1x−7有意义,则实数x 的取值范围是_____.10、若关于x 的分式方程3x x−2=m+3x−2+1有增根,则m =_________. 11、分式1m 2−3m 与1m 2−9的最简公分母是_____.12、化简:(1x−1+1)÷x x−1=______.13、计算:x 2+x x —x =____.解答题 14、先化简:x 2−4x 2−4x+4+xx 2−x ÷x−2x−1在从﹣1≤x≤3的整数 中选取一你喜欢的x 的值代入求值.15、先化简,再求值:a+2a ⋅4aa 2+4a+4+2a−4a 2−4,其中a =−12.(文末附解析)八年级数学上册分式_005参考答案1、答案:A解析:分式有意义,分母不等于零,据此来求x 的取值范围.当分母x -2≠0.即x ≠2时,分式1x−2有意义;故选:A .小提示:本题考查了分式有意义的条件.解题的关键是记住分式无意义时分母为零.2、答案:A解析:未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.顺流所用的时间为:90x+2;逆流所用的时间为:60x−2.所列方程为:90x+2=60x−2.故选A小提示:本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.3、答案:A解析:根据分式有意义的条件列不等式求解.解:根据分式有意义的条件,可得:x +5≠0,∴x ≠−5,故选:A.小提示:本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键.4、答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.5、答案:B解析:已知方程利用题中的新定义化简,计算即可求出解.根据题中的新定义化简得:2x−1=6x−1−1,去分母得:2=6−x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.小提示:此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.6、答案:D解析:根据分式的基本性质即可求出答案.解:∵2×3x3x+3y =2×3x3(x+y)=2xyx+y,∴把分式2xx+y中的x和y同时扩大为原来的3倍,则分式的值不变,故选:D.小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7、答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.8、答案:B解析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.9、答案:x≠7解析:根据分式有意义的条件列出不等式,解不等式即可.∵代数式1x−7有意义,分母不能为0,可得x−7≠0,即x≠7,所以答案是:x≠7.小提示:本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10、答案:3解析:分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可解:去分母得:3x=m+3+x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:6=m+3+2-2,解得:m=3.小提示:此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.11、答案:m(m+3)(m﹣3)解析:先把两分式化成最简形式得1m2−3m =1m(m−3);1m2−9=1(m−3)(m+3),然后确定最简公分母即可.解:化简两分式得:1m2−3m =1m(m−3),1m2−9=1(m−3)(m+3)∴最简公分母是m(m+3)(m﹣3).小提示:本题主要考查了最简公分母,公分母是能使几个分式同时去掉分母的式子,几个含分母的式子系数取其最小公倍数,字母取其最高次数即得公分母.12、答案:1解析:根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1+x−1x−1×x−1x=x x−1×x−1x=1所以答案是:1.小提示:本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.13、答案:1解析:根据分式的减法运算法则即可得.原式=x 2+xx−x2x,=x2+x−x2x,=1,所以答案是:1.小提示:本题考查了分式的减法,熟练掌握分式的运算法则是解题关键.14、答案:x+3x−2,﹣23解析:直接利用分式的混合运算法则计算,再把已知数据代入求出答案.x 2−4x 2−4x+4+x x 2−x ÷x−2x−1=(x−2)(x+2)(x−2)2+x x(x−1)·x−1x−2=x+2x−2+1x−2=x+3x−2,∵从﹣1≤x≤3的整数 中选取一你喜欢的x 的值,∴x 可以为:﹣1,0,1,2,当x =0,1,2时,分式无意义,当x =﹣1时,原式=−1+3−1−2=﹣23.小提示:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.15、答案:6a+2,4.解析:把分子、分母进行因式分解,先根据分式乘法法则计算,再根据分式加减法法则化简得出最简结果,最后代入求值即可.a+2 a ⋅4aa2+4a+4+2a−4a2−4=a+2a ⋅4a(a+2)2+2(a−2)(a+2)(a−2)=4a+2+2a+2=6a+2.当a=−12时,原式=6−12+2=4.小提示:本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.。
分式 知识归纳+真题解析

分式知识归纳+真题解析【知识归纳】1. 分式:整式A 除以整式B ,可以表示成 A B 的形式,如果除式B 中含有,那么称 A B为分式.若,则 A B 有意义;若,则 A B 无意义;若,则 A B=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为 .3. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为的分式,这一过程称为分式的通分.5.分式的运算⑴ 加减法法则:① 同分母的分式相加减: .② 异分母的分式相加减:.⑵ 乘法法则:.乘方法则:.⑶ 除法法则:.【知识归纳答案】1.字母, B ≠0, B=0, A=0且B ≠02.值不变.)0()0(≠÷÷=≠⋅⋅=C CB C A B A C C B C A B A . 3.公因式4.为同分母5.分式的运算⑴分母不变,分子相加减 .②先通分,变为同分母的分式,然后再加减 .⑵分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.:分式的乘方,把分子、分母分别乘方.⑶:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.真题解析1.若分式有意义,则x 的取值范围是( )A.x>3 B.x<3 C.x≠3 D.x=3【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.2.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【考点】62:分式有意义的条件.【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.3.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或24.下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B.﹣a﹣1=C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)【考点】6B:分式的加减法;4I:整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A、(a2+2b2)﹣2(﹣a2+b2)=3a2,故此选项错误;B、﹣a﹣1==,故此选项错误;C、(﹣a)3m÷a m=(﹣1)m a2m,正确;D、6x2﹣5x﹣1,无法在实数范围内分解因式,故此选项错误;故选:C.5.若=+,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【考点】6B:分式的加减法.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵=+,∴﹣====﹣2,故____中的数是﹣2.故选:B.6.化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A7.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.【考点】65:分式的基本性质.【分析】根据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==;B、=;C、;D、==.故A正确.故选A.8.若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.0【考点】63:分式的值为零的条件.【分析】根据分式的值为0的条件即可求出x的值.【解答】解:由题意可知:解得:x=1,故选(B)9.分式在实数范围内有意义,则x的取值范围是x≠1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.10.当x=5时,分式的值为零.【考点】63:分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣5=0且2x+3≠0,再解即可.【解答】解:由题意得:x﹣5=0且2x+3≠0,解得:x=5,故答案为:5.11.化简:÷=.【考点】6A:分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.12.计算:( +)•=1.【考点】6C:分式的混合运算.【分析】原式括号中两项变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•=•=1.故答案为:113.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).【考点】61:分式的定义.【分析】观察分母的变化为a的1次幂、2次幂、3次幂…n次幂;分子的变化为:2、5、10、17…n2+1;分式符号的变化为:+、﹣、+、﹣…(﹣1)n+1.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.三.解答题(共9小题)14.化简•.15.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【考点】6A:分式的乘除法;4B:多项式乘多项式.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.16.某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第一步开始出错的,其错误原因是分式的基本性质;(2)请写出此题正确的解答过程.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)一、分式的基本性质用错;(2)原式=+==故答案为:(1)一、分式的基本性质用错;17.设A=÷(a﹣).(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.【考点】6C:分式的混合运算;C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.【解答】解:(1)A=÷(a﹣)=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴﹣≤f(3)+f(4)+…+f(11),即﹣≤++…+∴﹣≤+…+,∴﹣≤,∴﹣≤,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示,.18.化简:(﹣)÷.【考点】6C:分式的混合运算.【分析】根据分式的减法和除法可以解答本题.【解答】解:(﹣)÷=====.学科网19.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【考点】6D:分式的化简求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=320.先化简,再求值:(﹣1)÷,其中x=﹣4sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】先化简原式与x的值,然后将x的值代入原式即可求出答案.【解答】解:原式=()÷=•=﹣x=2﹣4×+2=2把x=2代入得,原式==﹣221.先化简,再求值:(x﹣)÷,其中x=,y=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷===x﹣y,当x=,y=﹣1时,原式==1.22.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:÷(﹣x+1)====,∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A. B. C.D.6.计算的结果为()A. B. C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C. D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:=.16.若分式有意义,则实数x的取值范围是.17.分式方程的解x=.18.若代数式的值为零,则x=.19.化简的结果是.20.化简:=.21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求•(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春•潜江期末)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012•岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005•扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013•临沂)化简÷(1+)的结果是()A. B. C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008•黄冈)计算的结果为()A. B. C. D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009•潍坊)下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2•a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013•杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016•本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005•武汉)计算的结果为()A.1 B.x+1 C. D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004•十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014•陕西)计算:=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014•衢州)若分式有意义,则实数x的取值范围是x≠5.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013•梅州)分式方程的解x=1.【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013•临夏州)若代数式的值为零,则x=3.【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013•凉山州)化简的结果是m.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013•衢州)化简:=.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015•黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013•绥化)若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x的不等式是本题的一个难点.24.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为5.【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x ﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013•舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013•眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005•徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013•普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013•巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013•陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),。