保护渣作用和液渣层厚度测量感想
保护渣对铸坯质量的影响

攀枝花学院Panzhihua University本科毕业设计(论文)文献综述院(系):材料工程学院专业:冶金工程班级:2007冶金工程班学生姓名:曾月斌学号: 2007111030472011 年2 月16 日本科生毕业设计(论文)文献综述评价表文献综述:结晶器保护渣对铸坯质量影响的研究1 结晶器保护渣的发展及现状1.1 保护渣的发展在出钢和浇注过程中,钢液长期接触空气和耐火材料,温度和成分发生了显著变化,钢的质量受到严重影响。
经过长期的探索与实践,发现采用气体、液体、固体保护剂,产生还原性气体,将钢液与空气隔离,并对钢液中上浮的夹杂物进行捕集的保护浇注;或采用真空浇注法,是减少浇注过程中钢液污染的有措施。
常用的保护浇注法如[1]表 1.1所示。
1.1 保护浇注分类以前,在钢锭模内壁刷无水焦油,或向钢锭模内放置木框、石蜡稻草圈进行无渣保护浇注。
之后,逐渐发展到使用固体保护渣进行有渣保护浇注,取得了良好的效果,为了适应连续浇注生产迅速发展的需要,1989年我国推出第一批连铸保护渣系列。
从此我国连铸保护渣的标准化、规范化、生产专业化进入一个新时代。
连铸结晶器保护渣的品[2]种繁多:(1)按其化学成分可分为:223SiO Al O CaO --系、223SiO Al O FeO --系、2232SiO Al O Na O --系,其中以前者的应用最为普通。
在此基础上加入少量添加剂(碱金属或碱土金属氧化物、氟化物、硼化物等)和控制熔速的炭质材料(炭黑、石墨和焦炭等)。
(2)按保护渣的形状可分为粉状渣(机械混合成型)、颗粒渣(挤压成型的产品呈长条形,圆盘法成型的产品呈圆形,喷雾法成型的产品呈空心圆颗粒)。
(3)按使用的原材料可分为原始材料混合型、半预熔型和预熔型。
(4)按其使用特性,根据钢种特性、连铸设备特点和连铸工艺条件可分为各种规格的保护渣(低、中、高碳钢保护渣和特种钢专用渣)、发热型开浇渣等。
1.2 保护渣的发展趋势随着连续铸钢的发展,原有保护渣已满足不了生产工艺需求,现代连铸技术采用的保护渣必须是低黏度、低熔点、高熔化速度、大凝固系数的新型保护渣,且保护渣的选择必须与连铸机工艺条件相匹[3]配。
保护渣正确使用方法

保护渣正确使用方法一个优秀保护渣性能的发挥,与保护渣的正确使用是分不开的,目前有一部分市场由于保护渣不能正确使用,而反映保护渣质量问题,结果给保护渣配方的调整和生产造成了误导,致使一个好的保护渣越搞越糟。
针对保护渣正确使用,结合多年的经验,在此提出几条建议:一、渣层厚度的合适控制保护渣在结晶器内应保持一定的厚度(整个渣层),一般在方坯(包括大方坯、圆坯类)在20~50mm,板坯在40~60mm,超薄板坯应保持在80~100mm。
其目的是为了保持保护渣在结晶器内的均匀熔化,使液渣层相对稳定,同时可以维持一定的粉渣层,以起到绝热保温的作用。
通过多年对钢厂现场的观察,我们发现有以下情况:1、见红加渣钢厂说其主要目的是怕渣层过厚而观察不到钢液面,这是一种错误的加法,原因是:A、见红后,液渣层外露,由于没有粉渣层的保温作用,液渣层将变薄,对均匀消耗不利;B、液渣层外露后,与空气接触的部分将部分凝固,在结晶器内出现结团,造成渣面恶化,对稳定渣子性能不利;C、失去渣子的保温性能作用,造成大量热损失,易造成钢液面结冷壳现象等等;2、厚渣层操作有些钢厂人员喜欢厚渣层操作,主要原因是多加一点渣可以多歇一会,这种现象也是不可取的,原因如下:A、厚渣层操作会影响对钢液面的正确判定,一不小心有可能造成事故的出现,该类情况尤以夏季时最易出现;同时由于在某些钢厂由于没有保护渣渣层控制标准,所以有的班好,有的班差,造成老在某些班渣子出问题。
B、厚渣层会造成液渣层相对过厚,有可能造成渣子消耗不均匀而出现表面质量问题;二、加入方式保护渣要均匀推入结晶器内,这对板坯尤为重要。
而且每次加入时间不要过长,要作用勤加少加均匀加入;这同样是一个加渣标准问题,如果你不按上述标准加,就会造成不是渣层厚就是见红,而会出现第一条中提出到相应问题;正常使用过程注意事项:1、在正常使用情况下,禁止钢钢条搅动钢液面,结晶器壁所结的轻微渣圈,不要去经常挑动。
保护渣的成分及作用

保护渣的成分及作用保护渣是指在冶金过程中,由于金属液面的氧化、挥发和热量释放等因素,形成的一层氧化物和其他杂质的混合物。
保护渣在冶金工业中具有重要的作用,可以保护金属液面不受氧化和挥发的影响,同时还可以调节金属液的温度、化学成分和流动性等,从而保障冶金过程的顺利进行。
保护渣是由多种成分组成的复合体系,其中主要成分包括氧化物、碳酸盐、硅酸盐、氟化物、氯化物、硫酸盐等。
这些成分在保护渣中起到不同的作用,下面对其主要成分及作用进行详细介绍。
1.氧化物氧化物是保护渣的主要成分之一,包括FeO、MnO、SiO2、Al2O3等。
在冶金过程中,金属液面受到氧化和挥发的影响,会产生大量的氧化物,这些氧化物会形成一层保护渣,防止金属液面继续氧化和挥发。
同时,氧化物还可以吸收金属液面中的杂质和气体,减少金属液面中的不纯物质含量,提高金属的纯度。
2.碳酸盐碳酸盐在保护渣中的含量相对较低,但其作用也非常重要。
碳酸盐可以与金属液面中的氧化物反应,生成CO2,从而减少金属液面中的氧化物含量。
此外,碳酸盐还可以调节保护渣的酸碱度,保持金属液面中的化学平衡。
3.硅酸盐硅酸盐是保护渣中的另一种重要成分,包括SiO2、CaO-SiO2等。
硅酸盐可以增加保护渣的粘度和流动性,从而保护金属液面不受氧化和挥发的影响。
此外,硅酸盐还可以吸收金属液面中的杂质和气体,提高金属的纯度。
4.氟化物氟化物在保护渣中的含量很低,但其作用也非常重要。
氟化物可以降低保护渣的熔点和粘度,从而提高保护渣的流动性和渗透性,使其更容易覆盖在金属液面上。
此外,氟化物还可以吸收金属液面中的氧化物和杂质,提高金属的纯度。
5.氯化物氯化物在保护渣中的含量也很低,但其作用与氟化物类似。
氯化物可以降低保护渣的熔点和粘度,提高保护渣的流动性和渗透性。
此外,氯化物还可以吸收金属液面中的氧化物和杂质,提高金属的纯度。
6.硫酸盐硫酸盐在保护渣中的含量也很低,但其作用非常重要。
硫酸盐可以与金属液面中的氧化物反应,生成SO2,从而减少金属液面中的氧化物含量。
对连铸结晶器保护渣渣层分析

对连铸结晶器保护渣渣层的分析[摘要]连铸结晶器保护渣的主要功能包括:使结晶器壁与铸坯壳之间保持润滑;控制结晶器与铸坯之间的热交换;保持结晶器顶部处于绝热状态;防止钢水二次氧化;吸收钢水中上浮到液面的夹杂物。
其中两个最为重要的功能是保持结晶器壁与坯壳间的润滑和控制传热。
[关键词]连铸结晶器保护渣铸坯中图分类号:tf777.1 文献标识码:a 文章编号:1009-914x (2013)07-0256-011、引言固态结晶器保护渣的结晶比对铸坯与结晶器之间的热流量有重要影响。
某些特定钢种的保护渣是根据该钢种特有的冷却条件而设计的。
有鉴于此,结晶器保护渣的组织结构和凝固特性具有重要意义。
结晶器保护渣中的晶体成分愈多,结晶器保护渣结构愈疏松,从而降低保护渣内的辐射传热。
中碳钢结晶器保护渣具有较高的结晶比,保护渣层内的传热较为均匀,有利于降低连铸坯内的纵裂纹的形成。
结晶器凝固保护渣的取样位置位于结晶器以下部位。
通过分析渣样横截面可以看出沿渣膜厚度方向存在着不同的结晶形态。
对于非中碳钢结晶器保护渣而言,并不需要太高的保护渣结晶比。
实际上在铸坯壳出结晶器之前要达到足够的厚度常常需要较高的传热速率。
因为浇铸这些钢种时的拉坯速度较高(>1.3m/min)。
现已对结晶器保护渣的结晶情况即结晶倾向进行了实验室和工厂的实验研究。
试验室的大部分试验研究,均是在对保护渣控制加热或控制冷却的试验条件下进行,然后再对凝固的保护渣进行分析研究。
在对保护渣的结晶研究中广泛使用了差热分析方法(dta)。
在本研究中,为了确定液态结晶器保护渣在冷却时的结晶温度,在实验时将保护渣的温度变化与参照试样进行了对比。
采用差热分析的方法研究表明,结晶器保护渣的结晶趋势随cao/sio2的比值、li2o、tio2和zro2含量的增加而增强,随b2o3含量的减少而增强。
fonseca等人对自己所采取的保护渣样进行了研究,结果表明,中碳钢保护渣结晶层厚度和保护渣层总厚度均比低碳钢保护渣高。
保护渣作用

保护渣作用连铸过程中,结晶器内钢水表面覆盖,能迅速形成三层结构,提高铸坯质量,防止表面纵裂和漏钢事故,能吸咐有害的夹杂物,防止钢液二次氧化及有效防止热散失的特点。
产品为空心球颗粒中,保温性好,铺展性强,不浸蚀水口,不人使铸坯表面产生渣、麻坑等缺陷。
硼和铁的合金。
根据含碳量,硼铁可分为低碳(C≤0.05%~0.1%,9%~25%B)和中碳(C≤2.5%,4%~19%B)两种。
硼铁是炼钢生产中的强脱氧剂及硼元素加入剂。
硼在钢中的最大作用是只需极微量即可显著提高淬透性而取代大量合金元素,另外还可改善力学性能、冷变形性能、焊接性能及高温性能等。
在钢中添加0.07%B可显著提高钢的淬透性。
硼加入18%Cr、8%Ni的不锈钢中经过处理可使沉淀硬化,改善高温强度和硬度。
在铸铁中硼会影响石墨化,因而增加白口的深度使其冷硬耐磨。
在可锻铸铁中加入0.001%~0.005%的硼,有利形成球墨和改善其分布状况。
目前低铝、低碳硼铁是非晶态合金的主要原材料。
根据GB5082-87标准,我国硼铁分为低碳和中碳两类8个牌号。
主要用于钢和铸铁中。
用于合金结构钢、弹簧钢、低合金高强度钢、耐热钢、不锈钢等。
硼在铸铁中可提高韧性、耐磨性,在汽车、拖拉机、机床等制造中有广泛应用。
钼铁是钼与铁的合金。
它的主要用途是在炼钢中作为钼元素的加入剂。
钢中加入钼可使钢具有均匀的细晶组织,并提高钢的淬透性,有利于消除回火脆性。
在高速钢中,钼可代替一部分钨。
钼同其他合金元素配合在一起广泛地应用于生产不锈钢、耐热钢、耐酸钢和工具钢,以及具有特殊物理性能的合金。
钼加于铸铁里可增大其强度和耐磨性。
镍大量用于制造合金。
在钢中加入镍,可以提高机械强度。
如钢中含镍量从2.94%增加到了7.04%时,抗拉强度便由52.2公斤/毫米2增加到72.8公斤/毫米3。
镍钢用来制造机器承受较大压力、承受冲击和往复负荷部分的零件,如涡轮叶片、曲轴、连杆等。
含镍36%、含碳0.3-0.5%的镍钢,它的膨胀系数非常小,几乎不热胀冷缩,用来制造多种精密机械,精确量规等。
保护渣

一、保护渣的概述在现代钢铁冶金中,炼钢的过程的产品是铸坯。
影响铸坯质量的因素,除了原材料的条件之外,主要是浇铸和凝固过程中钢液的质量。
长期以来,许多精炼后的纯净钢液仍然在大气中进行敞开浇铸,在浇铸过程中又会产生新的化学和物理变化,影响了钢液的质量。
为了获得成分均一,夹杂少而且分布均匀、组织致密、表面质量良好的铸坯,不仅要在浇铸前采取措施,而且还应采用保护浇铸。
保护渣浇铸对钢液的浇铸环境有了很大的改善。
二、保护渣的作用(1)隔绝空气,保护钢液面部受空气的二次氧化。
(2)使钢液面绝热保温,以防止过早凝固或结壳。
(3)吸收上浮夹杂,防止铸坯表面和皮下夹渣。
(4)充当铸坯与结晶器间的润滑剂。
(5)控制结晶器与坯壳之间热量传递的速度和均匀性。
三、保护渣可分为发热型,熔融型和绝热型三种。
1)发热型发热渣主要由四部分组成1.发热还原剂。
靠它们燃烧发热,帮助渣料熔化并造成强烈的还原性气氛,保护钢液面。
2.氧化剂为发热还原剂的燃烧提供部分氧量,帮助点燃发火。
3.助溶剂用以降低渣子的熔点。
4.基本渣。
由于发热渣同钢水液面接触,能迅速的释放热量,故能很快地形成熔渣层。
2)熔融型熔融渣的实质是液渣保护,及使用专门的化渣设备化渣,而后将液态渣加入结晶器内。
3) 绝热型它可以制成粉状、粒状、或块状加到结晶器液面上与钢液接触部分很快融化成熔融层,其上保持粉状或粒状,犹如棉被一般起绝热保温的作用。
四、钢种与保护渣的关系不同成分的钢种,其钢水特性及其凝固特点有别,从而决定了其对保护渣性能的不同要求。
(1)低碳钢首先,低碳钢中C含量低于0.08%或0.06%。
这类钢的高温机械性能好,凝固过程中不存在严重的相变体积变化,内应力及裂纹敏感性小,故通常以较高拉坯速度进行生产,以提高生产率。
基于低碳钢本身的凝固特点和质量要求,设计时主要考虑渣的润滑及消耗。
较高的拉坯速度要求尽量增大结晶器热流,加速钢水凝固,防止黏结性漏钢,这要求保护渣结晶温度低,凝固温度适中,以确保低碳钢结晶器保护渣在950℃以上处于非晶体状态,使发生黏结性漏钢的可能降到最低。
保护渣的性能测定

保护渣的性能测定一、保护渣的作用1)绝热保温向结晶器液面加固体保护渣覆盖其表面,减少钢液热损失。
由于保护渣的三层结构,钢液通过保护渣的散热量,比裸露状态的散热量要小10倍左右,从而避免了钢液面的冷凝结壳。
尤其是浸入式水口外壁四周覆盖了一层渣膜,减少了相应位置冷钢的聚集。
2)隔绝空气,防止钢液的二次氧化保护渣均匀地覆盖在结晶器钢液表面,阻止了空气与钢液的直接接触,再加上保护渣中碳粉的氧化产物和碳酸盐受热分解溢出的气体,可驱赶弯月面处的空气,有效地避免了钢液的二次氧化。
3)吸收非金属夹杂物,净化钢液加入的保护渣在钢液面上形成一层液渣,具有良好的吸附和溶解从钢液中上浮的夹杂物,达到清洁钢液作用。
4)在铸坯凝固坯壳与结晶器内壁间形成润滑渣膜在结晶器的弯月面处有保护渣的液渣存在,由于结晶器的振动和结晶器壁与坯壳间气隙的毛细管作用。
将液渣吸入,并填充于气隙之中,形成渣膜。
在正常情况下,与坯壳接触的一侧,由于温度高,渣膜仍保持足够的流动性,在结晶器壁与坯壳之间起着良好的润滑作用,防止了铸坯与结晶器壁的粘结;减少了拉坯阻力;渣膜厚度一般在50~200μm5)改善了结晶器与坯壳间的传热在结晶器内,由于钢液凝固形成的凝固收缩,铸坯凝固壳脱离结晶器壁产生了气隙,使热阻增加,影响铸坯的散热。
保护渣的液渣均匀的充满气隙,减小了气隙的热阻。
据实测,气隙中充满空气时导热系数仅为0.09W/m·K,而充满渣膜时的导热系数为1.2W/m·K,由此可见,渣膜的导热系数是充满空气时的13倍。
由于气隙充满渣膜,明显地改善了结晶器的传热,使坯壳得以均匀生长。
二、保护渣的构成1)液渣层当固体粉状或粒状保护渣加入结晶器后与钢液面相接触,由于保护渣的熔点只有1050℃~1100℃,因而靠钢液提供的热量使部分保护渣熔化,形成液渣覆盖层。
这个液渣覆盖层约10~15mm厚,它保护钢液不被氧化,又减缓了沿保护渣厚度方向的传热。
在拉坯过程中,结晶器上下振动。
连铸保护渣的基本功能及其在结晶器中的行为

个人收集整理勿做商业用途目录中文摘要........................................................................ 错误!未定义书签。
英文摘要........................................................................ 错误!未定义书签。
1 绪论 (1)1。
1连铸保护渣的基本功能及其在结晶器中的行为 (1)1.1。
1连铸保护渣的作用 (1)1。
1。
2连铸保护渣在结晶器内行为 (2)1.2裂纹敏感性钢种连铸面临的问题 (4)1。
3连铸保护渣结晶性能的研究现状 (6)1。
3.1影响连铸保护渣结晶特性的因素 (6)1.3。
2连铸保护渣结晶性能对传热的影响 (7)1。
3。
3结晶器中保护渣控制传热的途径 (8)1.4国内外关于保护渣凝固收缩性能的研究 (9)1。
5本课题的来源、研究的主要内容 (11)2 实验方案与设备 (12)2.1保护渣凝固收缩性能的测试方案 (12)2。
1.1保护渣体积变化率的评价方法 (12)2。
1。
2保护渣结晶体、玻璃体密度的测试方法 (12)2.1.3实验过程中渣样的对比研究方案 (14)2。
2实验渣成分的设计 (15)2. 3与保护渣结晶性能相关的参数的测定 (18)2.3。
1保护渣定点粘度、粘温曲线的测试 (18)2。
3.2保护渣熔化温度的测试 (20)3 实验结果及分析 (22)3.1相同渣系组分对结晶性能、凝固收缩性能影响的探讨 (22)3.2不同渣系的保护渣凝固收缩性能的探讨 (27)3。
3不同冷却速度对凝固收缩性能的影响的探讨 (28)4 结论 (30)5 致谢 (30)参考文献 (32)1 绪论连铸保护渣是连铸过程中关键性辅料,对连铸工艺的顺行和铸坯表面质量的控制具有重要影响。
保护渣从加入到离开结晶器这一过程中所发挥的作用可归结为:对结晶器钢液面绝热保温,避免钢液凝固;保护钢液面不受空气二次氧化;吸收钢液中上浮的夹杂物;润滑运动的铸坯;均匀和调节凝固坯壳向结晶器的传热.在上述诸多功能中,最重要的是润滑铸坯和控制传热两大特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保护渣作用和液渣层厚度测量感想(完)
2008-10-16 20:16:28 作者:zhaoluo 来源:制钢参考网浏览次数:405 文字大小:【大】【中】【小】
连铸结晶器保护渣是连铸工艺过程必须的关键性材料,对铸坯质量及连铸工艺顺行具有非常重要和不可替代的作用。
随着拉速的不断提高、连铸品种的不断扩大、连铸坯质量要求的不断上升,连铸保护渣也不断成为连铸发展的技术瓶颈。
如何充分发挥连铸保护渣的各种功能和作用,保证不同钢种在不同连铸工艺条件下的顺利生产并得到高质量的铸坯,成为冶金工作者关注的重要问题,需要在不同的实践阶段从理论和实践上解决相关技术难题。
保护渣的主要作用为:绝热保温;隔绝空气,防止钢水二次氧化;吸附钢水夹杂,净化钢水;在结晶器壁和钢水凝固壳之间形成渣膜,减少拉坯阻力,防止凝固壳与结晶器壁粘连;填充凝固壳与结晶器壁之间的气隙,改善结晶器传热条件。
由于保护渣在连铸过程的的重要作用和地位,各国连铸工作者始终予以高度重视,并进行了大量研究,建立了相关理论基础,并开发了许多适合各国国情及连铸钢种和工艺的保护渣系列,从而使铸坯质量不断改善提高,品种不断增加。
近年来,以高拉速、高连浇率、高作业率及高质量为特征的高效连铸得到迅速的发展,成为钢铁企业降低成本、降低能耗、减少投资成本、开拓市场、在激烈的世界钢铁市场竞争中立于不败之地的重要技术创新和钢铁企业结构优化的必然需要。
以高拉速为主要特征的高效连铸技术的开发、应用、推广是优化我国连铸技术,提高连铸水平的重要发展方向。
由于高效连铸中的高拉速使结晶器中的热流及摩擦力增大、结晶器中钢液面波动加剧、出结晶器的铸坯坯壳变薄、•渣耗急剧下降造成润滑不良和传热不均等,使得从常速连铸(≤1.5m/min)到高速连铸(≥1.5m/min)遇到了粘结漏钢和铸坯表面质量差两大难题。
为解决这些问题,就必须研究和开发研究具有相应物理和化学性能的结晶器保护渣,保证连铸过程中结晶器内的物理化学反应处于良好的状态。
以连铸连轧为基础的紧凑型生产流程是降低冶金产品生产成本、提高企业经济效益的一个重要途径,无缺陷铸坯生产技术是实现连铸连轧的关键,这对铸坯表面质量提出了更高要求。
连铸保护渣对高表面质量铸坯的生产
起着重要的保障作用。
以薄板坯、异型坯生产为代表的近终形连铸,是近年来迅猛发展的连铸新技术,与之相适应的保护渣开发即成为一个亟待解决的问题。
由于薄板坯结晶器断面小、工作拉速快,而异型坯结晶器断面不规整,对保护渣的熔融特性、铺展性能提出了更新的要求。
为此,国内外各炼钢厂都在寻求适合本厂连铸工艺特点的无缺陷铸坯生产用结晶器保护渣。
加入到结晶器高温钢液(1500℃左右)面上的低熔点(1000~1150℃)保护渣,靠钢液提供热量,在钢液面上形成一定厚度的液渣层(6~15mm),钢水向粉渣层传热减慢,液渣层上的保护渣受热作用,形成烧结层(600~900℃),烧结层之上的渣由于从钢水接受的热量更少,保持为粉状,均匀覆盖在钢水面上,防止钢水散热,阻止空气中的氧进入钢水中。
在拉坯过程中,由于结晶器上下振动和凝固坯壳向下运动的作用,钢液面上的液渣层进入坯壳与铜壁之间的气隙,起到改善润滑和传热的作用。
随着拉坯的进行,液渣不断被消耗,烧结层下降到钢液面熔化成液渣层,粉渣层变成烧结层,往结晶器添加新的保护渣,使其保持为三层结构,如此循环,保护渣不断消耗。
液渣层的正常厚度为6~15mm,,液渣层太薄,结晶器壁与凝固坯壳之间的渣膜达不到要求,易导致凝固壳与结晶器壁粘连,严重者发生粘结漏钢;液渣层厚度小于某一值,沿结晶器周边形成的渣圈,会使弯月面液渣流入坯壳与铜壁之间的通道堵死,使液渣不能顺利流入,不能形成均匀渣膜,导致凝固壳厚度不均匀,在应力作用下产生裂纹,严重者发生裂纹漏钢。
如板坯拉速为1.2~1.5m/min,液渣层厚度小于5mm,板坯纵裂纹明显增加,液渣层厚度6~15mm,纵裂纹几乎消失,液渣层大于20mm,纵裂纹又有所增加。
烧结层的正常厚度为5~10mm,太厚或太薄会影响液渣层厚度。
粉渣层正常厚度为5~10mm,粉渣层太薄,起不到保温作用,粉渣层太厚,形成渣条增多,严重时引起夹渣漏钢。
因此,结晶器保护渣状况的好坏,直接关系到浇钢生产顺行和铸坯质量好坏,保护渣厚度检测方法及其精确程度直接影响操作工对渣况的判断。
目前在生产中测定液渣层厚度的方法有单丝法和双丝法。
单丝法将一根铁丝插入结晶器钢水中,保持平稳,几秒钟后取出,观察铁丝表面颜色变化和粘渣情况,确定液渣层厚度。
双丝法把一根钢丝和铜丝(或铝丝)绑在一起,插入结晶器液渣层中,由于液渣温度高于铜熔点而低于钢熔点,所以铜丝熔化,而钢丝未熔,量出铜丝熔化的长度即为液渣层厚度。
这两种检测方法不仅增加了工人的劳动强度,而且由于检测时人手的抖动、结晶器振动、钢水液面波动等原因,导致测量不准确,误差较大,影响浇钢工对结晶器渣况的正确判断,造成漏钢事故的发生,影响浇钢生产的顺行。
宝钢发明了一种检测工具专利,其基本原理与双丝法相同,该装置由铜管、木夹、木板或石棉板、铁钉和镀铜铁丝组成,铜管内穿有镀铜铁丝或长度相同的一根铜丝和铁丝。
检测时将穿出木板的镀铜铁丝或铁丝与铜丝插入结晶器钢水中,并使木板漂浮在钢水液面上保持平稳,根据金属丝熔损和颜色变化来确定粉渣层、烧结层和液渣层厚度。
该专利在各渣层厚度的确定上存在人为影响因素。
熔融炉渣可以导电,X射线衍射研究表明,固态炉渣具有离子特性,而且随着温度的升高,其离子特性增强。
粉渣中没有电离的离子,又由于保护渣颗粒之间的间隙较大,含量很少的炭也被阻隔开,所以导电性很差,几乎不导电。
烧结层中已经开始生成液相物质,电离出一些离子,有一定的导电性。
随着液相的增加,电离出的离子越来越多,导电性随之增强。
当保护渣熔化达到半球点时,保护渣主要以离子状态存在,导电性会迅速增大。
沈文珍等人分析了连铸结晶器保护渣的导电机理, 研究了保护渣在不同状态下的导电性能, 并且利用电路原理计算出了液渣的电阻率。
研究结果表明:保护渣的熔化状态直接影响着其导电性能,利
用导电性能可以推断出保护渣的熔化状态;液渣在1 350 ℃时的电阻率约为
0.22Ω·cm。
日本的中森由纪将结晶器保护渣放在坩锅中加热,用电极法测定它的电学特性,并与已知的KCl水溶液进行比较,发现保护渣温度大于800℃以上时可视为导体。
由于粉状层和烧结层的电阻比液渣层大很多,故这两层可忽略不计,试制了涡流型保护渣液渣层厚度测量仪,并在新日铁君津厂2号铸机上进行试验性运行,检测精度为±2mm,但之后未见任何后续报道,可能该设备未得到推广使用。