第三章固定化酶催化反应动力学
《酶工程》课后知识题目解析

《酶工程》课后知识题目解析第一章酶工程基础1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。
②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。
③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。
其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。
④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。
⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。
2.说说酶的研究简史酶的研究简史如下:(1)不清楚的应用:酿酒、造酱、制饴、治病等。
(2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科医生Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。
1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。
(3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。
3.说说酶工程的发展概况I.酶工程发展如下:①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod 提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971年各国科学家开始使用“酶工程”这一名词。
第三章固定化酶反

球状固定化酶之模型的建立
• 假定球状固定化酶的半径为R,在距球中心为r处取一壳层,其厚度为dr,底物通过微孔
由外向内扩散,且通过此壳层,底物在(r+dr)处扩散进入,在r处离开,并在壳层内发
生酶促反应而消耗底物,以扩散方面为正方向,则单位时间内扩散进入微元壳层的底物
的量为
N sr d r4(r d)2 r 4(r d)2 r D e sd drS r r dr
V
为固定化酶的体积
p
Ap为固定化酶的外表面积
对于球形固定化酶, R
3
rmax ,则有
Km Des
D e(sd d2S 2r2 rd d)S rrS D e[sd(d d d) rS r2 rd d]S rrS
d[d(S0 S)
•
Des{
d(Rr)
d(Rr)
2
Rr
dd((SR 0 r S))}K rm m aS xS rr
底物浓度沿半径分布图
• 从右图可以看出,对同一位置r 处,随着Φ 的增加,底物浓度 在减少。
• Ф 的大小,表征了内扩散阻力 的大小,因此随内扩散阻力的 增大,同一位置处底物浓度减 小,而且当Ф 不变时,愈往颗 粒内部,底物浓度越小。
上式可变为 (r2 2 rd dr 2)D red s drr S r d rr2 D ed s drr S r r2 dr r S,重排后得
D e[ sr ( 2 2 rd )d d r rS r r d rr 2d d rS r r ] r 2 d r r S
两边同除以r2dr, 得
即:d2S2 2 dS
第三章 固定化酶反应动力学

•反应的总过程为外部传递和表面反应两者的集中反映,反 应的有效速率既与底物的传质系数有关,又与反应的动力 学参数有关vmax和Km。 •动力学控制:传质速度相当快,反应主要受到酶的催化反 rmax cso 应。
Rsi
•扩散控制:酶的催化效率很高,底物的传质速率很慢。
K m cso
rso
Rsi k L a(cso - csi ) k L acso rd
颗粒内无浓度梯度影响时的反应速率:
dcs Rs 4R De dr r R
2
4 3 4 3 rmaxcso Rsi R rso R 3 3 K m cso
第三章 固定化酶反应动力学
(3)一级反应动力学内扩散有效因子
R 若引入:r r / R,cS cS / cS 0,并令:1 3 则该方程式变为:
d cS 2 dcS D ( ) rS e 2 dr r dr
2
k1 , rS k1cS , De
d cS 2 dcS 2 9 1 cS 2 dr r dr
2
边界条件:r 1处,cS 1; dcS r 0处, 0。 dr
第三章 固定化酶反应动力学
cS cS 0
2
d cS 2 dcS D ( ) rS e 2 dr r dr
2
第三章 固定化酶反应动力学
(2)内扩散效率因子
Rs 颗粒内实际有效反应速 率 颗粒内无浓度梯度时的 反应速率 Rsi
在稳定状态下,球形固定化酶颗粒内的实际有效反应速率应等 于从颗粒外表面向微孔内的扩散速率,即:
第三章 固定化酶反应动力学
Байду номын сангаас
1
第3章 固定化酶催化反应过程动力学

同时, 颗粒内氧浓度分布可采用CS = CS 0 −
生物反应工程习题精解
第三章 固定化酶催化反应过程动力学
3.3 蔗糖酶催化下述反应 C12H22O11+H2O—C6H12O6+C6H12O6 (蔗糖) (葡萄糖) (果糖) 蔗糖酶固定在直径为 1.6mm 有微孔球形树脂颗粒上,其密度为 0.1μmol 酶/g 颗粒,蔗糖水溶液在树脂中有效扩散系数为 1.3×10-11m2/s,该反应在一篮式离 心反应器内进行,外扩散限制影响可消除。蔗糖浓度为 0.85kg/m3。反应的表 现速率为 1.25×10-3kg/(s·m3 树脂) ,Km=3.5kg/m3。试求 (1) 内扩散有效因子是多少? (2) 本征一级反应速率常数为多少? 解: (1)
由表面浓度 CSi 求解和由有效因子η E 求解。 (1)表面浓度 CSi 求解。由式
12
生物反应工程习题精解
第三章 固定化酶催化反应过程动力学
k L a(CS 0 − CSi ) = 引入CS=
rmax CSi r CSi ⇒ CS 0 − CSi = max K m + CSi k L a K m + CSi
CS = CS 0 + rmax 2 6 DiCS 0 。 (r − R 2 ),其中存在有最大颗粒半径Rmax= 6D rmax
当酶反应动力学方程符合 M-M 方程时,无解析解,仅有数值解。 12、对于膜片状固定化酶,其解法与球形固定化酶相同,结果有所不同。 当酶反应动力学方程为一级反应动力学时,可解得: l cosh(φ ) L ,其中φ=L rmax 。 CS = CS 0 cosh(φ ) Km iD 当酶反应动力学方程为零级反应动力学时,可解得:
固定化酶

⑧充分考虑到固定化酶制备过程 和应用过程中的安全因素。
固定化载体的选择标准
① 载体的形式 ② 载体的结构 ③ 载体的性质
④ 酶偶联量或装载量和实效系数
二、固定化酶的制备方法
结晶法 分散法 物理吸附法 离子结合法 网格法
非化学结合法
包埋法
微囊法 交 联 法
化学结合法
共价结合法
1、物理吸附法
(physical adsorption)
第一节
第二节
酶的固定化
辅酶的固定方法
第三节
第四节
固定化细胞
固定化酶的性质及其影响因素 Nhomakorabea
第五节
固定化酶催化反应动力学
对于现代工业来说,酶不是一种理想的 催化剂
绝大多数水溶性的酶,酶蛋白对外界环境很敏 感,极易失活。催化结束后极难回收,只能进 行分批生产。
解决办法??
第一节
酶的固定化
一、固定化酶(Immobilized Enzyme)
定义:是指在一定空间内呈闭锁状态存在的 酶,能连续地进行反应,反应后的酶可回收 重复使用。
固定化酶的优缺点
固定化酶优点:
(1)简化了提纯工艺 (2)可以装塔连续反应
固定化酶缺点:
①酶活力有损失 ②工厂初始投资大 ③只能用于可溶性底物, 对大分子底物不适宜 ④与完整菌体相比,需 要辅助因子的催化反应 不适宜于多酶反应
法条件温和,酶失活少,但要完全除去膜上残留的有机溶剂很 麻烦。作为膜材料的高聚物有硝酸纤维素、聚苯乙烯和聚甲基 丙烯酸甲酯等。
界面聚合法
化学方法。将疏水性和亲水性单体在界面进行聚合, 形成半透膜,将酶包埋于半透膜微囊中。所得的微 囊外观好,但不稳定,有些酶还会因在包埋过程中 发生化学反应而失活。
生物反应工程原理总复习

扩散效应 传质机理仅为
常数 扩散系数视为
5、底物分配系数是1。
6、固定化酶颗粒处于稳态之下。
7、底物和产物的浓度仅沿r方向而变化。 数学模型简化
第四章 细胞反应过程动力学
4.1 细胞反应的主要特征
1. 细胞是反应的主体。 2. 细胞反应过程的本质是复杂的酶催化反应体系。 3. 细胞反应与酶催化反应也有着明显的不同。
生物反应工程的研究方法
用数学模型方法进行研究: 机理模型:或称结构模型,从过程机理出发推导得到的。 半经验模型:对过程机理有一定了解基础上结合经验数据 得到 经验模型:在完全不了解或不考虑过程机理的情况下,仅 根据一定条件下的实验数据进行的数学关联。
2.1.1 酶的催化共性
它能降低反应的活化能,加快生化反应的速率;但它不能 改变反应的平衡常数,而只能加快反应达到平衡的速率。 酶在反应过程中,其立体结构和离子价态可以发生某种变 化,但在反应结束时,一般酶本身不消耗,并恢复到原来状 态。
2.2 简单的酶催化反应动力学
1、什么是简单的酶催化反应动力学 2、活性中间复合物学说 3、简单的酶催化反应机理 4、推导方程的假设条件 5、“平衡”假设、“拟稳态”假设 6、米氏方程的参数及其物理意义
k +1 + E+S ⎯2 ES ⎯ k⎯→ E + P k −1
1 dns rs = − v dt
4.3.2 分批培养时细胞生长动力学
1、生长历程 2、Monod方程
目前,常使用确定论的 非结构模型是 Monod 方程 µ max ⋅C S µ= ( 3 − 34 ) K S + CS
第五章 生化反应器的设计与分析
间歇操作搅拌槽式反应器 Batch Stir Tank Reactor (BSTR) 连续操作的搅拌槽式反应器 Continuous Stir Tank Reactor (CSTR) 连续操作的管式反应器 continuous plug Flow Reactor (CPFR)
第三章 固定化酶及反应动力学0

共价结合法 是将酶蛋白分子上官能团和载体上的反应基团 通过化学价键形成不可逆的连接的方法。 在温和的条件下能偶联的酶蛋白基团包括有氨基、羧基、半 胱氨酸的巯基、组氨酸的咪唑基、酪氨酸的酚基、丝氨 酸和苏氨酸的羟基等。 常用的载体包括天然高分子(纤维素、琼脂糖、葡萄糖凝胶 、胶原及其衍生物),合成高分子(聚酰胺、聚丙烯酰胺 、乙烯-顺丁烯二酸酐共聚物等)和无机支持物(多孔玻璃 、金属氧化物等)。 共价结合法制备的固定化酶,酶和载体的连接键结合牢固, 使用寿命长,但制备过程中酶直接参与化学反应,常常 引起酶蛋白质的结构发生变化,导致酶活力的下降,往 往需要严格控制操作条件才能获得活力较高的固定化酶
01
概
述
固定化酶制备方法
吸附(载体结合)法:物理吸附(活性碳,硅胶等),离子结合(离子交 换剂和离子交换树脂),共价结合。作用力增强,对酶影响加大。
物理法固定酶的优点在于酶不参加化学反应,整体结构保持不变,酶 的催化活性得到很好保留。但是,由于包埋物或半透膜具有一定的空 间或立体阻碍作用,因此对一些反应不适用。
固定化技术
01
什么是固定化酶?
水溶性酶
概
述
水不溶性载体
固定化技术 水不溶性酶 (固定化酶) 固定化:将酶通过物理或化学方法固定在载体上或限 制在一定空间内。
固定化酶(immobilized enzyme)
亦称固相酶或水不溶酶。是用物理的或化学 的方法使酶装变为在一定的空间内其运动受 到完全约束,或受到局部约束的一种不溶于 水,但仍具有活性的酶。能以固相状态作用 于底物进行催化反应。 水不溶性大分子载体结合或把酶包埋在水不 溶性凝胶或半透膜的微囊体中制成的。
第三章 固定化酶催化反应过程动力学
反应工程第三章 固定化酶反应过程动力学.

rso
•外扩散控制:酶的催化效率很高,底物的传质速率很慢。
R si k La(Cso - Csi ) kLaCso rd
•介于上述两种情况之间
第三章 固定化酶反应动力学
Rsi总是接近于动力学反应速度和扩散速度两者中比较小的那个。
Rs rso
rd Rsi
主体浓度co
第三章 固定化酶反应动力学
2.0×10-4
第三章 固定化酶反应动力学
3.3.3影响固定化酶促反应的主要因素
1)分子构象的改变
溶液酶
分子构象改变
2)位阻效应
第三章 固定化酶反应动力学
溶液酶
位阻效应
3)分配效应
第三章 固定化酶反应动力学
宏观环境
cS0 cSg
cSi
由于固定化酶的亲水性、疏水性及静电作用等引起固定化酶 载体内部底物或产物浓度与溶液主体浓度不同的现象称为分 配效应。
E
有外扩散影响时的实际 反应速率 无外扩散影响时的固定 化酶外表面处的反应速
率
R si rso
R si
rmax csi Km csi
rso
rmax cso Km cso
E
cs (1 K) cs K
cs csi / cso
Km
Km cso
Da rmax k Lacso
第三章 固定化酶反应动力学
3.3.2 颗粒内的浓度分布与有效因子
(1)颗粒内的浓度分布
第三章 固定化酶反应动力学
De
(
dcS dr
4r2 )
r r
D
e
(
dcS dr