放大电路失真现象研究
晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。
2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。
3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。
4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。
二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。
输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。
2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。
合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。
静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。
3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。
(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。
(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。
三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。
2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。
(2)用万用表测量晶体管各极的电压,计算静态工作电流。
(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。
3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。
(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。
4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。
模电论文放大电路失真现象的研究

目录一、引言 (2)二、晶体管放大电路的类型 (2)2.1共射极放大电路 (2)2.2共集极放大电路 (2)2.3共基极放大电路 (2)三、几种类型的失真 (3)3.1非线性失真 (3)3.1.1饱和失真 (3)3.1.2截止失真 (4)3.1.3交越失真 (4)3.1.4双向失真 (6)3.2晶体管放大电路非线性失真的因素概括 (6)3.2.1信号源内阻 (6)3.2.2放大器接法 (6)3.2.3负反馈 (7)3.2.4多级反相放大 (7)3.3线性失真 (7)四、总结 (8)参考文献 (9)放大电路失真现象的研究张翔翔(北京交通大学电子信息工程学院北京 100044)摘要:本文介绍了几类放大电路,然后介绍了几种晶体管放大电路几种类型的失真。
并分析了失真产生的原因,又通过具体电路的具体波形非线性失真,介绍了线性失真和非线性失真的区别,着重讲解了减少线性失真和非线性失真的方法和步骤。
一、引言失真的情况在现实生活中随处可见,指的是指一个物体、影像、声音、波形或其他资讯形式其原本形状(或其他特征)的改变现象,而且往往是不希望出现的。
在理想的放大器中,输出波形除放大外,应与输入波形完全相同,但实际上,不能做到输出与输入的波形完全一样,这种放大电路中的失真无疑会给工程增加一些麻烦,所以对其失真类型的判断和采取相应的改进措施就显得颇为必要了。
放大电路常见的失真分为线性失真和非线性失真,其中非线性失真又包括饱和失真、截止失真和交越失真。
二、晶体管放大电路的类型晶体管放大电路中的关键器件便是晶体管。
由NPN型晶体管和PNP型晶体管组成基本放大电路各有3种,即共射极放大电路、共集电极放大电路和共基极放大电路。
2.1共射极放大电路图2-1左所示为共射极放大电路的基本结构,从图中可以看到该类电路是将输入信号加到晶体管基极和发射极之间,而输出信号又取自晶体管的集电极和发射极之间,由此可见发射极为输入信号和输出信号的公共接地端,具有这种特点的单元电路便称为共射极放大电路。
功率放大器非线性失真特性研究

功率放大器非线性失真特性研究功率放大器是电子设备中一种重要的电路,可以将信号的电压或电流进行放大,并输出到外部电路中。
随着科学技术的不断发展,功率放大器的应用范围越来越广泛。
但是,功率放大器中存在着非线性失真的问题,这会对信号的传输产生负面影响。
本文将就功率放大器非线性失真特性进行深入探讨。
一、功率放大器的工作原理功率放大器主要由直流供电、输入信号放大、输出阶段等组成。
在工作时,信号被输入到输入端,并通过输入信号放大器进行放大,然后被输送到输出阶段,并从输出端输出。
在放大过程中,功率放大器需要保证输出信号与输入信号之间的线性关系,否则就会出现失真现象。
但是,有些因素会导致功率放大器出现非线性失真,如功率放大器本身的非线性特性、电容和电感等元件的非线性特性、信号的过载等。
二、功率放大器的非线性失真特性1.交叉失真交叉失真是指两个频率不同的信号在功率放大器内交叉产生失真引起的失真。
这种失真主要由功率放大器的非线性特性引起。
当两个不同频率的信号同时存在于功率放大器中时,会产生交叉相位,这会导致交叉失真的发生。
2.截止失真截止失真是指输出信号的幅度不能随着输入信号的幅度而无限制地增加。
当输入功率达到一定程度时,输出功率开始波动,无法再继续增加。
这种失真主要由功率放大器的内部电压限制引起,当电压超过一定限制时,输出信号的幅度就无法再随着输入信号的幅度而增加。
3.交调失真交调失真是指两个频率不同的信号在功率放大器内交互作用产生失真引起的失真。
当两个不同频率的信号同时作用于功率放大器时,会在放大器内产生交互作用,导致交调失真的发生。
三、功率放大器非线性失真控制方法1.负反馈负反馈是一种消除失真的方法,它可以通过将一部分输出信号输入到功率放大器的输入端进行控制,从而减小输出信号与输入信号之间的误差。
负反馈可以降低失真程度并提高整个系统的线性度,但它不能彻底消除失真。
2.滤波滤波是一种消除失真的方法,它可以将出现于功率放大器输出端的失真信号进行筛选,只保留有效信号而滤去失真信号。
三极管放大电路实验结论

三极管放大电路实验结论三极管放大电路实验结论在电子学中,三极管是一种重要的电子元件,常用于放大电路中。
三极管放大电路的实验是电子学教学中的基础实验之一。
通过该实验,我们可以深入了解三极管的工作原理以及其在放大电路中的应用。
本次实验中,我们使用了一种常见的三极管放大电路——共射极放大电路。
该电路由三极管、输入电阻、输出电阻、耦合电容等元件组成。
实验中,我们通过改变输入信号的幅度和频率,观察输出信号的变化,从而得出以下结论。
首先,三极管放大电路具有放大功能。
当输入信号的幅度较小时,输出信号的幅度也较小,但是随着输入信号幅度的增大,输出信号的幅度也随之增大,呈线性关系。
这表明三极管放大电路能够将输入信号放大到更大的幅度,实现信号的放大功能。
其次,三极管放大电路具有频率选择性。
在实验中,我们改变了输入信号的频率,观察到输出信号的变化。
当输入信号的频率较低时,输出信号的幅度较大;而当输入信号的频率超过一定范围时,输出信号的幅度会显著减小。
这说明三极管放大电路对于不同频率的输入信号有不同的放大效果,具有一定的频率选择性。
此外,三极管放大电路还具有非线性失真现象。
在实验中,我们观察到当输入信号的幅度较大时,输出信号会出现失真现象,即输出信号的波形发生畸变。
这是由于三极管工作在非线性区域时,引起了非线性失真。
因此,在实际应用中,我们需要注意控制输入信号的幅度,避免出现过大的失真。
此外,在本次实验中我们还发现了一些其他现象。
例如,当输入信号的幅度较小时,输出信号存在一定的噪声;而当输入信号的频率较高时,输出信号存在一定的畸变。
这些现象可能与实验条件、元件参数等因素有关,需要进一步研究和分析。
综上所述,通过本次三极管放大电路实验,我们深入了解了三极管的工作原理以及其在放大电路中的应用。
我们得出了三极管放大电路具有放大功能、频率选择性和非线性失真等特点的结论。
这些结论对于我们理解和应用三极管放大电路具有重要意义,并为进一步研究和应用提供了基础。
EDA实验报告

姓名:郭灵芝学号:0704240115班级:通信一班07042200实验一0704240115 郭灵芝通信一班一.实验内容1.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
2.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益;3.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
4.测电路的频率响应曲线和f L、f H值。
二.放大电路的原理图(1-1)放大电路的原理图R为滑动变阻器,该电路用的是三极管来实现放大,采用的是电压偏置,接法是共射极,1R的大小从而改变三极管的静态工作点,使三极管处于正常放通过它改变接入电路中的1大状态。
为了确定好的静态工作点,进行如下静态分析:上面图1-1的静态电路如下(1-2)放大电路所对应的静态电路可以用两个交流电压表分别测量输入电压和输出电压,输出电压除以输入电压即为放大倍数。
为了保证放大电路工作在放大区(可用示波器监测,保证波形不失真),将交流输入电压调为1mv,2mv,3mv 。
电压表均用交流模式。
当交流信号源取下表所示不同值时,读出电压表的读数,即i V 和0V ,并计算电压的放大倍数。
(表一)结论:当三极管工作在放大区时,其电压放大倍数近似为常数。
即输入电压随输入电压线性变化。
且放大倍数符合大于50的要求。
(表二)结论1R 调到10%到80%之间时三极管都正常放大,这可以通过C I 与B I 的比值即β来确定,在这个区间里β基本保持不变,当然1R 处于0%到10%之间的确定不了,这个还要通过实际测量的β来确定。
三.失真研究1. 电位器调到0%,交流信号保持20mv ,5 KHz ,输出信号如下(1-3)饱和失真的波形图此时负半周出现了失真,即削底,对于NPN 管说明出现了饱和失真。
实验二 单管共射放大电路实验

实验二单管共射放大电路实验一、实验目的:1.研究交流放大器的工作情况,加深对其工作原理的理解。
2.学习交流放大器静态调试和动态指标测量方法。
3.进一步熟悉示波器、实验箱等仪器仪表的使用方法。
4.掌握放大器电压放大倍数、输入电阻、输出电阻和最大不失真输出电压的测试方法。
二、实验仪器设备:1.实验箱 2.示波器 3.万用表三、实验内容及要求:1.按电路原理图在试验箱上搭接电路实验原理:如图为电阻分压式共射放大电路,它的偏置电路由Rw、Rb1和Rb2组成,并在发射极接有电阻Re’和Re’’,构成工作点稳定的放大电路。
电路静态工作点合适的情况下,放大器的输入端加入合适的输入信号Vi后,放大器的输出端便可得到一个与Vi相位相反、幅度被放大了的输出信号V0,从而实现了电压放大。
2.静态工作点的测试打开电源,不接入输入交流信号,调节电位器W2使三极管发射极电位UE =2.8V。
用万用表测量基极电位UB、集电极电位UC和管压降UCE,并计算集电极电流IC。
、3.动态指标测量(1)由信号源输入一频率为1kHz ,峰峰值为400mv 的正弦信号,用示波器观察输入、输出的波形,观察并在同一坐标系下画出输入ui 和uo 的波形示意图。
(2)按表中的条件,测量 us 、 ui 、 uo 、 uo',并记算Au 、ri 和ro 。
s i s i i i iR U U U I U r -== Lo o oo o oR U U U I U r -=='4. 研究静态工作点与波形失真的关系在以上放大电路动态工作情况下,缓慢调节增大和减小W2观察两种不同失真现象,并记录失真波形。
若调节W2到最大、最小后还不出现失真,可适当增大输入信号。
5. 实验数据记录。
(1). 静态工作点的测试(2). 动态指标测量 1. Ui 和Uo 的波形(3) 测量 Us 、Ui 、Uo 、Uo',并记算Au 、Ri 和Ro 。
Uo Ui t(4)研究静态工作点与波形失真的关系Uo Uit增大R w2Uo Ui减小R W2四、思考题(1)总结放大电路静态工作点、负载、旁路电容的变化,对放大电路的电压放大倍数及输出波形的影响。
放大电路失真现象及改善失真的研究报告

b)
c)双向失真
双向失真那么是由于输入信号过大,在信号正半周造成饱和失真,负半周造成截止失真,因此称为双向失真。
d)交越失真
这是一种比拟特殊的失真,它是由于输入电压较低时,因三极管截止而产生的失真。这种失真通常出现在通过零值处,如图2.7。交越失真出现在乙类放大电路中,如图2.8,这个电路由两个相互对称的PNP和NPN管组成,先分析这个电路的工作原理,当处于正半周期工作时,T1导通,T2截止,其工作等效电路如图2.8〔a〕,当处于负半周期工作时,T1截止,T2导通,其工作等效电路如图2.8〔b〕,但是由于没有直流偏置,管子的 必须在| |大于某一个数值〔即门坎电压,硅管约为0.7V,锗管约为0.2V〕时才有显著变化。当输入信号 低于这个数值时,T1和T2都截止, 和 根本为零,负载 上无电流通过,出现一段死区,输出波形对输入波形来说存在失真,也就是在过零值处出现的交越失真。
模拟电子技术研讨论文
放大电路失真现象及改善失真的研究
学院:电子信息工程学院
专业:通信工程
组长:南海蛟
组员:达川宇涵
指导教师:颖
一、引言3
二、放大电路失真类型3
2.1线性失真3
2.1.1幅度失真4
2.1.2相位失真4
2.1.3改善线性失真的方法4
2.2非线性失真6
2.2.1饱和失真6
2.2.2截止失真6
2.Байду номын сангаас.3双向失真7
2.2.4交越失真7
2.2.5谐波失真8
2.2.6互调失真8
2.2.7不对称失真8
2.2.8瞬态互调失真9
2.2.9改善非线性失真的方法9
2.3负反响对失真现象的影响11
BJT放大电路失真类型及抑制失真的方法

可从几何波形 和解 析两 方面分 析该 放大器 输 出电压 波形 的
从 晶体管 输入 特性 曲线 可看 出 , 正弦 信 号 电压 负 半 在
BT放大器中 的非 线性 失真 电压 ( J 电流 ) 波形 的基本 特
征是一个 波头矮胖 , 另一 个瘦 长 , 图 3 非 线性 失真属 于柔 见 .
交流分量 的正半 波都 比较大 , 反相后 反映为负 载电压负半 波
瘦长 , 图 3 见 .
就是 说 , 基本 共 射放 大 器输 入信 号 电压 虽 然 是正 弦 波 形 , 由于 B T的非线性输 入特性 即 r 值 的交 变 , 出电压 但 J b e 输 畸变 为上半部矮胖 下半 部瘦长的非正 弦波形. 正弦电压 上下
半波本来对称 , 非线 性失 真后 上下半 波不 再对称 , B T放 故 J 大器非线性失 真也 叫做不对称失真. 非线 性 失 真波 形 的 所有 谐 波分 量 有 效值 U ( =1 2, i ,
… …
) 的均方根值与基 波有效值 U 。的比值称 为总谐 波失 真
( oa H r ncDs ro ) 简称 T D T tl a moi i o i , ttn H
性失 真. 非线性失真可 以用若 干方 法来 抑制或补偿.
2 B 1放大 电路非 线性 失真 分析 J'
图 1是 BT输 入特 性 曲线 , 斜率 叫做 B T的输 入 电 J 其 J
阻. 可看 出 ,J BT输入 电阻 r k在正 弦信 号 电压 瞬 时变化 过程 中一 直随着总 电流变化. 电流越 大 , e r 越小 . b
波, 电流总量较小 ,e r 较大 , b 结果使信号电流、 基极电流交流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模拟电子技术》研究性课题论文学院电子信息工程学院专业通信工程学号姓名指导教师2013年5月目录一、饱和失真 (1)产生饱和失真的原因 (1)消除失真的方法 (2)二、截止失真 (3)截止失真产生的原因 (3)消除截止失真的方法 (3)三、双向失真 (5)产生双向失真的原因 (5)消除双向失真的方法 (5)四、交越失真 (5)交越失真产生的原理 (5)克服交越失真的方法 (6)五、负反馈改善失真波形 (7)负反馈改善失真波形原理 (7)六、频率失真 (9)频率失真的原因 (9)幅度失真的原因 (9)相位失真的原因 (9)七、瞬态互调失真 (10)瞬态互调失真产生的原理 (11)消除瞬态失真的方法 (11)八、总结 (12)参考文献 (14)放大电路失真现象的研究摘要:运算放大器广泛应用在各种电路中,但是同时伴随着失真现象。
一个理想的放大器,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的.但是,在实际放大器中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真。
本文通过研究基本放大电路出现的非线性失真的原因并且提出消除非线性失真的方法。
关键词:失真失真原因失真解决方法Abstract:Operational amplifiers are widely used in various circuits, but at the same time it accompanied by distortion. An ideal amplifier, the output signal should accurately reflect the input signal, even if they differ in amplitude, time may be delayed, but they should have the same wave form. However, due to various reasons, the output signal can not be identical to the waveform of the input signal in practical amplifier, this phenomenon is called distortion. This paper studies the basic amplifying circuit nonlinear distortion and proposed to eliminate the non-linear distortion.Key Words: Distortion Cause of the distortion Distortion solution一、饱和失真产生饱和失真的原因下图所示为工作点太高的情况,由下图可知,当工作点太高时,放大器能对输入的负半周信号实施正常的放大,而当输入信号为正半周时,因输入信号太大,使三极管进入饱和区,I C=βI B的关系将不成立,输出电流将不随输入电流而变化,输出电压也不随输入信号而变化,产生输出波形的失真。
1图1这种失真是因由于工作点取的太高,输入正半周信号时,三极管进入饱和区而产生的失真,所以称为饱和失真。
消除失真的方法对由NPN管子组成的共发射极放大器,当输出信号的负半周产生失真时,因共发射极放大器的输出和输入倒相(如图2),输入波形输出波形图2说明是输入信号为正半周时电路产生了失真。
输入的正半周信号与静态工作点电压相加,将使放大器的工作点进入饱和区,所以,这种情况的失真为饱和失真,消除的办法是降低静态工作点的数值,将其选在交流负载线的中点。
这种判断的方法仅适用于由NPN型三极管组成的放大器,对于由PNP型三极管组成的放大器,因电源的极性相反,所以结论刚好与NPN型的相反。
2截止失真产生的原因下图所示为工作点太低的情况,由图可知,当工作点太低时,放大器能对输入的正半周信号实施正常的放大,而当输入信号为负半周时,因小于三极管的开启电压,三极管将进入截止区I B=0,I C=0,输出电压U0=U CE=Vcc将不随输入信号而变化,产生输出波形的失真。
这种失真是因工作点取的太低,输入负半周信号时,三极管进入截止区而产生的失真,所以称为截止失真。
图3消除截止失真的方法同样对由NPN管子组成的共发射极放大器来说,当输出信号的正半周产生失真时,说明输入信号为负半周时电路产生了失真,输入负半周信号与静态工作点电压相减,将使放大器的工作点进入截止区,所以,这种情况的失真为截止失真,消除的办法是提高电路静态工作点的数值是指到达交流负载线的中点。
这种判断的方法也仅适用于由NPN型三极管组成的放大器,对于由PNP型三极管组成的放大器,同样因电源的极性相反,所以结论刚好与NPN型的相反。
3产生双向失真的原因双向失真是指即在三极管输出特性曲线的饱和区失真又在截止区失真,三极管有饱和状态又有截止状态,向上达到饱和状态,向下到达截止状态,出现这种非线性失真不是由于电路中某个电路元件选择的不合适,而是由于信号源输入的信号过大导致三极管在放大时出现了双向失真。
消除双向失真的方法改变这种失真的方法就是工作点Q要设置在输出特性曲线放大区的中间部位,减小输入的信号,选择一个合理的输入信号,使之正好工作在放大区域内。
四、交越失真交越失真产生的原理单管乙类功放电路仅在半个周期内有电流通过, 尽管减小了管耗, 有利于提高输出效率, 但使输入信号的半个波形被削掉, 存在严重的波形失真。
如果用两个管子, 使之都作在乙类放大状态, 但是一个在正半周期, 而另一个工作在负半周期, 同时使这两个输出波形都能加到负载上, 从而使负载得到一个完整的波形, 这样就能解决效率与失真的矛盾。
电路原理图如图5图4电路中T1和T2 分别为NPN和PNP型管, 当信号处于正半周期时,T1承担放大任务, T2截至, 有电流通过负载RL而当信号处于负半周期时, 则刚好相反, T2承担放大任务,T1截至, 仍然有电流通过负载RL这样, 上图所示基本互补对称电路实现了在静态时管子不取电流, 而在有信号时,T1和T2 轮流导通。
正负半周期的等效电路分别如图:图5由于三极管PN结的压降, 上图所示的互补对称功放电路并不能使输出波形很好地反映输入的变化。
由于没有直流偏置, 管子的基极电流I B , 必须在|V BE|大于某一数值(即门坎电压, 硅管约为0.6v,锗管约为0.2v,)时才有显著变化。
当V i低于这个数值时i C1和i C2都基本为零, 负载RL 上无电流流过, 出现一段死区, 这就是交越失真产生的基本原理。
下图为交越失真产生的图像:图6克服交越失真的方法为了克服交越失真的影响,我们可以通过改进电路的方法来实现。
常见的方法有:甲乙类双电源互补对称电路法和甲乙类单电源互补对称电路。
甲乙类互补对称法电路原理如下图所示。
由图可见, T3组成前置放大级,T1和T2组成互补输出级。
静态时, 在D1,D2上产生的压降为T1,T1提供了一个适当的偏压, 使之处于微导通状态。
由于电路的对称, 静态时i c1=i c2,i l=0,v0=0。
有信号时, 由于电路工作在甲乙类, 即使V I很小, 基本上也可以进行线性放大。
但是图7的缺点就是其偏置电压不易调整, 改进电路如图8所示, 在图8中流人T4的基极电流远小于流过R1、r2的电流, 则由图可以求出v ce=V BE(R1+R2)/R2, 因此, 利用T4管的V be基本为一固定值, 只要调整R1、R2的比值, 就可以改变T1、T2的偏压值, 此法在集成电路中经常应用。
6图7图8 五、负反馈改善失真波形负反馈改善失真波形原理下图是处于开环状态下的放大电路图97由于放大器对信号正半周放大能力强,负半周能力弱,这样就会使输出波形上大下小图10为了补偿这种失真,我们采用闭环负反馈放大电路,图11输入波形V i通过放大器产生一个上大下小的波形,图12这个失真的波形通过负反馈环节反馈到输入环节与输入波形相叠加产生V i’波形再通过放大环节使得输出信号近似于线性放大,补偿了放大器所造成的失真图13负反馈缺点但是负反馈改善波形的实质是利用失真减小失真,但不能完全消除失真,而且负反馈只能减小反馈环内的失真,如果输入信号本身就是失真的负反馈则不能改善其失真。
8六、频率失真频率失真的原因频率失真:又称线性失真,是由于线性电抗元件所引起的,它包括幅度失真和相位失真。
假设某系统传输函数为H(jw),它规定了不同频率的信号经过此系统时产生的不同的幅度和相位的变化。
信号传输应用中,线路发送侧发出某一频率的信号,而这个信号的传输信道在此时就等价于一个传输系统(因为事实上的传输包括复用、解复用和各种转换;线路传输中会有衰减、回波损耗等),这导致在接收端收到的信号与原信号在相位和幅值上是有差别的,且这种差别因频率而变,这就叫频率失真。
幅度失真的原因幅度失真:输入信号由基波和二次谐波组成,受放大电路带宽限制(对于一个集成放大器,它有一个特定的增益带宽积,故频率大的谐波分量,放大倍数低),基波增益较大,而二次谐波增益较小,输出电压波形产生了失真。
相位失真的原因相位失真:指的是信号在传输和放大过程中发生了时间延迟。
电容和电感对交流信号(电压或电流)具有延迟作用。
当一个交流信号经过电容、电感和电阻的时候,会有一个充放电的过程,这会导致这个交流信号的幅度变化时间“向后”推迟一段时间。
在各种交流放大器中,采用的元器件或者是电感电容,或者是含有电感电容成分,而任何一个放大电路或者元器件我们都可以通过等效电路转换成电感、电容、电阻和理想有源器件的组合。
总的来说引起频率失真的原因主要有放大电路存在电抗性元件,这些电抗性原件主要有耦合电容、旁路电容、分布电容、变压器、分布电感等,而影响低频增益的电抗性元件主要有耦合电容与旁路电容,影响高频增益的电抗性元件主要有晶体管的结电容及引线等一些杂散电容910引起频率失真的另外一个原因就是三极管的β(ω)是频率的函数,低频小信号模型不再适用,因为管子的β值随着信号频率的增加而减小,也会导致高频增益的下降。
这时在研究频率特性曲线时需要采用高频小信号模型。
图14中频段:电压放大倍数近似为常。
低频段:耦合电容和发射极旁路电容的容抗增大,以致不可视为短路,因而造成电压放大倍数减小。
高频段:晶体管的结电容以及电路中的分布电容等的容抗减小,以致不可视为开路,也会使电压放大倍数降低。
课外失真研究七、瞬态互调失真瞬态互调失真,简称TIM 失真,是20世纪70年代公开发布的一种失真,它与负反馈关系密切。