本安与防爆的基本区别
本安系统与防爆认证

本安系统由本安现场设备、关联设备(也称安 全栅) 和连接电缆三部分组成, 就本安防爆性能而 言,它们必须满足 o ≤ i、 o ≤ i、 o ≤ i、 o ≥
c+ i 和 o ≥ c+ i 四个条件。这些设备配置的选用 原则是:
① 本安电气设备的选用原则 按照 GB3836.4-2000防爆标准规定,
电缆,应考虑相互叠加影响。
目前国内已有多家电缆生产厂生产专为本安
系统设计的本安用特殊电缆, 为方Fra bibliotek比较选用, 下
面表 1 给出了典型普通连接电缆的分布参数,表 2
给出了典型国产本安用特殊电缆分布参数,以供参
考。
为了提高系统允许的电缆分布参数,可以通过提高 安全栅允许外接参数和降低本安设备内部等效参 数的方法来实现。
通过电气设备连接装置出现的电气设备总等 效内电感。
从系统布线工程角度考虑,由于连接电缆存在 分布电容和分布电感,使连接电缆成为储能元件。 它们在信号传输过程不可避免地存储能量,一旦当 线路出现开路或短路时,这些储能就会以电火花或 热效应的形式释放出来,影响系统的本安性能。因 此既要保证连接传输电缆不会受到外界电磁场干 扰影响及与其他回路混触,又要限制布线长度和感 应电动势所带来的附加非本安能量,依此来确定电 缆的允许分布电容和允许分布电感,世界各防爆检 验机构主要采取以集中参数的方式考虑电缆分布 参数的方法。
对于电压不超过 1.2V、电流不超过 0.1A,且其能量 不超过 20 μ J 或功率不超过 25mW 的电气设备可视 为简单设备,其中最常见的仪表设备有热电偶、热 电阻、pH 电极、应变片和开关等,它们的典型特点 是仪表设备的内部等效电感 = 0 , 内部等效电容
15本安型防爆系统与防爆认证要点

15本安型防爆系统与防爆认证本安型防爆系统与防爆认证;(一)、本安防爆技术;本安防爆技术是目前唯一被标准化适合于0区的技术;1、本安防爆技术的基本原理;电火花和热效应是引起爆炸性危险气体爆炸的主要点燃;2、本安防爆技术的特点;本安防爆技术实际上是一种低功率设计技术;1)、不需要设计制造工艺复杂、体积庞大且又笨重的;2)、可在带电工况下进行维护、标定和更换仪表的部;3)、安全可靠性高;4---本安型防爆系统与防爆认证(一)、本安防爆技术本安防爆技术是目前唯一被标准化适合于0区的技术。
对于自动化仪表,最常用的防爆形式依次是本安型、隔爆型和增安型。
然而由于电子技术的飞速发展和低功耗电子器件的不断诞生,使本安防爆技术的推广和应用了更为广阔的空间。
特别是由于本质安全型(也称“本安型”)防爆形式与其他防爆形式相比,不仅具有结构简单,适用范围广,而且还具有易操作和维护方便等特点,因此这种抑制点火源能量为防爆手段的本安防爆已为仪表制造商和用户接受。
1、本安防爆技术的基本原理电火花和热效应是引起爆炸性危险气体爆炸的主要点燃源。
本安就是通过限制电火花和热效应两个可能的点燃源的能量来实现的。
在正常工作和故障状态下当仪表可能产生的电火花或热效应的能量小于这个能量时,低度表不可能点燃爆炸性危险气体而产生爆炸。
原理是从限制能量入手,可靠地将电路中的电压和电流限制在一个允许的范围内,以保证仪表在正常工作或发生短接和元器件损坏等故障情况下产生的电火花和热效应不致于引起其周围可能存在的危险气体的爆炸。
2、本安防爆技术的特点本安防爆技术实际上是一种低功率设计技术。
通常对于氢气(ⅡC)环境,必须将电路功率限制在1.3W左右。
由此可见,本安技术能很好的适用于工业自动化仪表。
与其他任何防爆型式相比,采用本安防爆技术可给工业自动化仪表带来以下技术和商务上的特点。
1)、不需要设计制造工艺复杂、体积庞大且又笨重的隔爆外壳,因此,本安仪表具有结构简单、体积小、重量轻和造价的特点。
防爆合格证中的几种防爆形式的区别

防爆合格证中的几种防爆形式的区别见过防爆标志的人都知道,防爆标志中有:ExdeIIBT4、EXdIIBT4 Gb、EXedIICT4Gb等这样的标志。
这就是由于防爆型式的不同从而导致防爆标志的不同,防爆型式有以下几种:隔爆型、增安型、本安型、充油型、充砂型、浇封型、气密型、复合型等。
因为适用的环境也不同,所以它所需要的防爆形式也不同。
1、隔爆型-d所谓的隔爆型就是将可能点燃爆炸性气体混合物的那一部分隔离在外壳内,但是前提条件是这个外壳是能够承受一定的外力的,也就是说外壳的任何接合面或者结构与结构之间的间隙渗透到外壳内部的可燃性混合物在内部爆炸而不损坏,并且不会引起外部由一种、多种气体或蒸气形成的爆炸性环境的点燃。
把可能产生火花、电弧和危险温度的零部件均放入隔爆外壳内,隔爆外壳使设备内部空间与周围的环境隔开。
隔爆外壳存在间隙,因电气设备呼吸作用和气体渗透作用,使内部可能存在爆炸性气体混合物,当其发生爆炸时,外壳可以承受产生的爆炸压力而不损坏,同时外壳结构间隙可冷却火焰、降低火焰传播速度或终止加速链,使火焰或危险的火焰生成物不能穿越隔爆间隙点燃外部爆炸性环境,从而达到隔爆目的。
隔爆型“d”按其允许使用爆炸性气体环境的种类分为I类和IIA、IIB、IIC类,该防爆型式设备适用于1、2区场所1、增安型-e增安型防爆型式是一种对在正常运行条件下不会产生电弧、火花的电气设备采取一些附加措施以提高其安全程度,防止其内部和外部部件可能出现危险温度、电弧和火花的可能性的防爆型式。
它不包括在正常运行情况下产生火花或电弧的设备.在正常运行时不会产生火花、电弧和危险温度的电气设备结构上,通过采取措施降低或控制工作温度、保证电气连接的可靠性、增加绝缘效果以及提高外壳防护等级,以减少由于污垢引起污染的可能性和潮气进入等措施,减少出现可能引起点燃故障的可能性,提高设备正常运行和规定故障(例如:电动机转子堵转)条件下的安全可靠性。
电气防爆基础知识大全

DIP A21 TA T5 - 表示设备可适用于1区工厂爆炸性粉尘环境,最 高表面温度(TA)是T5。
Rev. 15
防爆电气设备标志举例
Rev. 15
粉尘环境不利于安全的重要因素
- 粉尘堆积影响散热
- 导电粉尘进入外壳可引起火花
防爆标志:现行国家标准规定以外壳保护的粉尘防爆电气设备采 用防粉尘点燃符号“DIP”。
Rev. 15
防爆电气设备标志举例
II 1 G EExiaIICT4 - 表示设备可适用于0区工厂爆炸性气体 环境。
II 2 G EExdeIICT6 - 表示设备可适用于1区工厂爆炸性气体环 境。
危险场所:爆炸性环境大量出现或预期出现的数量足以要求 对电气设备的结构、安装和使用采取专门预防措施的区域。
在石油、化工、煤炭等生产领域将不可避免地产生爆炸性物 质的泄漏,并与空气形成爆炸性危险场所。据资料:
- 在煤矿井下,2/3的场所属于爆炸性危险场所; - 在石油开产现场和精炼厂约有60-80%属爆炸性危险场所; - 在化学工业中,约有80%以上的生产车间属爆炸性危险场所。
☞ 重要差异 : - IEC和EN标准允许制造厂商对2区设备进行自认证(自我声明)。 - 而中国要求包括0区、1区和2区场所用的全部防爆产品都必须经国 家授权的防爆检验机构认证后,方可投入使用。
Rev. 15
上海凡宜科技电子有限公司
第3部分 隔爆、本安、粉尘防爆技术介绍
Rev. 15
防爆电气设备的类、级、组
Rev. 15
本质安全型- Ex i (续)
本安防爆

第一章爆炸性气体环境的基本知识一引言随着石油、化工、煤矿等工业的发展,防止爆炸性事故的发生,越来越引起人们的重视,但是在生产过程中又难免会产生爆炸性物质的泄漏,形成爆炸性气体危险场所。
据资料介绍,煤矿井下约有2/3场所,石油开采和精炼厂约有60%-80%场所为爆炸性危险场所,所以使用在这些场所的电气设备都必须采取防爆措施,才能避免成为危险点燃源。
二爆炸的基本观念要了解爆炸就要熟悉燃烧现象。
燃烧现象的出现同时具备以下三个条件:即要有可燃物质、助燃物质和点燃源,三者缺一不可。
燃烧是一种化学反应。
它是可燃物质在点燃源能量的作用下,在空气或氧气中,进行化学反应,引起温度的升高,释放出热辐射及光辐射的现象。
如果燃烧速度急剧加快,温度猛烈上升,导致燃烧生成物和周围空气激烈膨胀,形成巨大的爆破力和冲击波并发出强光和声响,这就是爆炸。
爆炸分凝聚相爆炸和分散相爆炸两类。
凝聚相爆炸指炸药类的爆炸,分散相爆炸指爆炸性气体环境中形成的爆炸。
三爆炸性气体(蒸气)混合物的几个主要参数1. 闪点闪点是指在标准条件下,使液体变成蒸气的数量能够形成可燃性气体/空气混合物的最低液体温度。
液体的闪点越低,引燃的危险程度越大。
如环氧丙烷的闪点为-37.2℃,不仅在冬天户外场所蒸发蒸气,而且在常温时会快速蒸发蒸气。
液体周围环境温度是影响液体蒸发的主要依据。
我国规定了最高环境温度为45℃作为分界线,闪点高于45℃的称可燃性液体;闪点低于45℃的称易燃性液体。
可燃性液体在常温储存没有爆炸危险性。
但当可燃性液体呈雾状颗粒状态及操作温度高于液体闪点时同样有爆炸危险性。
2.爆炸极限与范围爆炸极限是指可燃性气体(蒸气)与空气形成的混合物,能引起爆炸的最低浓度(爆炸下限)或最高浓度(爆炸上限),介与爆炸下限和上限中间的浓度范围称爆炸范围。
爆炸范围越大,则形成爆炸性混合物的机会越多;爆炸下限越低,则形成爆炸的条件越易。
3.相对密度密度是指单位体积的物质质量。
本安与防爆的基本区别(终审稿)

本安与防爆的基本区别公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]现场设备的防爆技术包括隔爆型(如增安、气密、浇封等)和本质安全型两类。
隔爆型防爆是防爆中的一种形式,隔爆型为隔爆外壳型,主要考虑外壳强度,以及间隙大小,保证内部所发生的火花不会引起外部爆炸。
与隔爆型技术相比,本质安全技术采取抑制点火源能量作为防爆手段,可以带来一系列的优点:结构简单、体积小、重量轻、在带电情况下进行维护和更换、安全可靠性高、适用范围广。
实现本质安全的关键技术为低功耗技术和本安防爆技术。
但在我国目前的技术条件下,因为价格和其它因素,通常采用隔爆型防爆技术。
本安与隔爆型控制柜通常都安装在安全区。
本质安全型防爆技术通常采用PLC控制系统,柜内配备安全栅,将危险区返回的信号线经过安全栅处理后再接入PLC输入/输出模块。
目前国内通常对PLC输入信号采用本安型防爆技术,可将危险区的输入电流限制在2mA以下,因为电流很小,从本质上讲是安全的。
而PLC输出信号因为价格和其它因素,通常采用隔爆型防爆技术,输出信号线通常采用铠装电缆,穿入水煤气管,接入隔爆型防爆电器,例如防爆电机等,安装中要求从控制柜到最终设备之间都要进行密封处理,将电缆与危险区进行隔离。
隔爆型与本安型是两种不同的防爆电器,前者内部可能有燃爆源(如灯泡)但采取隔爆措施达到安全目的,后者不会达到爆燃能量(电压不高于 12 V,电流不大于 100mA,比如热电阻,属于本质安全型)。
虽然如此,防爆电器通常在安全场合和非安全场合分界处都安装有安全栅。
压力变送器基于不同工作原理也可以有以上两种区别。
防爆的等级根据使用场合选择。
仪表知识:本安型安全栅和防爆型安全上的区别本安型安全栅和防爆型安全上的区别本安型安全栅应用在本安防爆系统的设计中,它是安装于安全场所并含有本安电路和非本安电路的装置,电路中通过限流和限压电路限制了送往现场本安回路的能量,从而防止非本安电路的危险能量串入本安电路,它在本安防爆系统中称为关联设备[见术语解释],是本安系统的重要组成部分。
本安型防爆伺服电机和隔爆型防爆伺服电机的区别

1、国际电工委员会/欧洲电工委员会划分的危险区域的等级分类
0区(Zone 0):易爆气体始终或长时间存在;连续地存在危险性大于1000小时/每年的区域;
1区(Zone 1):易燃气体在仪表的正当工作过程中,是有可能发生或者存在的,断续地存在危险性10~1000小时/每年的区域;
2区(Zone 2):一般情形下,不存在易燃气体且即使偶尔发生,其存在时间亦很短,事故状态下存在的危险性0.1~10小时/每年的区域;
2、气体爆炸场所用电气设备防爆类型选型表
3.本安型“i”(本质安全型电气设备及其关联设备)本质安全电路:
本安型设备和关联设备的本质安全部分分为ia和ib:
¨ia:正常工作+ 一个故障+ 任意组合的两个故障均不能引起点燃的电气设备。
¨ib:正常工作+ 一个故障条件下不能引起点燃的本质安全型电气设备。
由此可见ia等级高于ib等级
结论:本安型ia用于防爆区域0区,为最高防爆等级,不能被别的防爆型式替代;本安型ib用于防爆区域1区,可以被满足防爆区域1区的隔爆型式替代。
附录:
南京德拜自动化罗刚联系电话请咨询文章内容上方吸顶悬浮的展示
2018.12.25。
带你了解本安型防爆系统

带你了解本安型防爆系统(一)、本安防爆技术本安防爆技术是目前唯一被标准化适合于0区的技术。
对于自动化仪表,最常用的防爆形式依次是本安型、隔爆型和增安型。
然而由于电子技术的飞速发展和低功耗电子器件的不断诞生,使本安防爆技术的推广和应用了更为广阔的空间。
特别是由于本质安全型(也称“本安型”)防爆形式与其他防爆形式相比,不仅具有结构简单,适用范围广,而且还具有易操作和维护方便等特点,因此这种抑制点火源能量为防爆手段的本安防爆已为仪表制造商和用户接受。
1、本安防爆技术的基本原理电火花和热效应是引起爆炸性危险气体爆炸的主要点燃源。
本安就是通过限制电火花和热效应两个可能的点燃源的能量来实现的。
在正常工作和故障状态下当仪表可能产生的电火花或热效应的能量小于这个能量时,低度表不可能点燃爆炸性危险气体而产生爆炸。
原理是从限制能量入手,可靠地将电路中的电压和电流限制在一个允许的范围内,以保证仪表在正常工作或发生短接和元器件损坏等故障情况下产生的电火花和热效应不致于引起其周围可能存在的危险气体的爆炸。
2、本安防爆技术的特点本安防爆技术实际上是一种低功率设计技术。
通常对于氢气(ⅡC)环境,必须将电路功率限制在1.3W左右。
由此可见,本安技术能很好的适用于工业自动化仪表。
与其他任何防爆型式相比,采用本安防爆技术可给工业自动化仪表带来以下技术和商务上的特点。
1)、不需要设计制造工艺复杂、体积庞大且又笨重的隔爆外壳,因此,本安仪表具有结构简单、体积小、重量轻和造价低的特点。
据资料,建立一个本安型和隔爆型开关传输回路的费用之比约为1:4.2)、可在带电工况下进行维护、标定和更换仪表的部分零件等。
3)、安全可靠性高。
本安仪表不会因为紧固螺栓的丢失或外壳结合面锈蚀、划伤等人为原因而降低仪表的安全可靠性。
4)、由于本安防爆技术是一种“弱电”技术,因此,本安仪表的使用可以避免现场工程技术人员的触电伤亡事故的发生。
5)、适用范围广。
本安技术是唯一可适用于0区危险场所的防爆系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现场设备的防爆技术包括隔爆型(如增安、气密、浇封等)和本质安全型两类。
隔爆型防爆是防爆中的一种形式,隔爆型为隔爆外壳型,主要考虑外壳强度,以及间隙大小,保证内部所发生的火花不会引起外部爆炸。
与隔爆型技术相比,本质安全技术采取抑制点火源能量作为防爆手段,可以带来一系列的优点:结构简单、体积小、重量轻、在带电情况下进行维护和更换、安全可靠性高、适用范围广。
实现本质安全的关键技术为低功耗技术和本安防爆技术。
但在我国目前的技术条件下,因为价格和其它因素,通常采用隔爆型防爆技术。
本安与隔爆型控制柜通常都安装在安全区。
本质安全型防爆技术通常采用PLC控制系统,柜内配备安全栅,将危险区返回的信号线经过安全栅处理后再接入PLC输入/输出模块。
目前国内通常对PLC输入信号采用本安型防爆技术,可将危险区的输入电流限制在2mA以下,因为电流很小,从本质上讲是安全的。
而PLC输出信号因为价格和其它因素,通常采用隔爆型防爆技术,输出信号线通常采用铠装电缆,穿入水煤气管,接入隔爆型防爆电器,例如防爆电机等,安装中要求从控制柜到最终设备之间都要进行密封处理,将电缆与危险区进行隔离。
隔爆型与本安型是两种不同的防爆电器,前者内部可能有燃爆源(如灯泡)但采取隔爆措施达到安全目的,后者不会达到爆燃能量(电压不高于 12 V,电流不大于 100mA,比如热电阻,属于本质安全型)。
虽然如此,防爆电器通常在安全场合和非安全场合分界处都安装有安全栅。
压力变送器基于不同工作原理也可以有以上两种区别。
防爆的等级根据使用场合选择。
仪表知识:本安型安全栅和防爆型安全上的区别本安型安全栅和防爆型安全上的区别本安型安全栅应用在本安防爆系统的设计中,它是安装于安全场所并含有本安电路和非本安电路的装置,电路中通过限流和限压电路限制了送往现场本安回路的能量,从而防止非本安电路的危险能量串入本安电路,它在本安防爆系统中称为关联设备[见术语解释],是本安系统的重要组成部分。
由于安全栅被设计为介于现场设备与控制室设备之间的一个限制能量的接口,因此无论控制室设备处于正常或故障状态,安全栅都能确保通过它传送给现场设备的能量是本质安全的。
中国国家仪器仪表防爆安全监督站是中华人民共和国地区监督生产安全防爆产品的权威机构,对本安型安全栅产品有着严格、科学、详细的规定,只有通过该监督站认证的企业及其所开发生产的产品才具备符合标准的安全性能,否则可能会给使用方的设备、人员和生产造成无可估量的损害。
术语解释:关联设备一种安装在安全场所,本安电气设备与非本安电气设备之间的相连的电气设备。
安装位置安全栅安装于安全场所,接收来自危险区的信号,输出安全信号到安全区或危险区.安全栅的结构形式常见的安全栅结构形式分为齐纳式和隔离式.齐纳式安全栅结构原理:电路中采用快速熔断器、限流电阻或限压二极管以对输入的电能量进行限制,从而保证输出到危险区的能量。
它的原理简单、电路实现容易,价格低廉,但因由于其自身原理的缺陷使其应用中的可靠性受到很大影响,并限制了其应用范围,其原因如下:1、安装位置必须有非常可靠的接地系统,并且该齐纳式安全栅的接地电阻必须小于1Ω,否则便失去防爆安全保护性能,显然这样的要求是十分苛刻并在实际工程应用中难以保证。
2、要求来自危险区的现场仪表必须是隔离型,否则通过齐纳式安全栅的接地端子与大地相接后信号无法正确传送,并且由于信号接地,直接降低信号抗干扰能力,影响系统稳定性。
3、齐纳式安全栅对电源影响较大,同时也易因电源的波动而造成齐纳式安全栅的损坏。
隔离式安全栅采用了将输入、输出以及电源三方之间相互电气隔离的电路结构,同时符合本安型限制能量的要求。
与齐纳式安全相比,虽然价格略高,但它其它方面的突出优点却为用户应用带来了更大的受益:1.由于采用了三方隔离方式,因此无需系统接地线路,给设计及现场施工带来极大方便。
2.对危险区的仪表要求大幅度降低,现场无需采用隔离式的仪表。
3.由于信号线路无需共地,使得检测和控制回路信号的稳定性和抗干扰能力大大增强,从而提高了整个系统的可靠性。
4.隔离式安全栅具备更强的输入信号处理能力,能够接受并处理热电偶、热电阻、频率等信号,这是齐纳式安全栅所无法做到的。
5.隔离式安全栅可输出两路相互隔离的信号,以提供给使用同一信号源的两台设备使用,并保证两设备信号不互相干扰,同时提高所连接设备相互之间的电气安全绝缘性能。
因此,对比齐纳式和隔离式安全栅的特点和性能后可以看出,隔离式安全栅有着突出的优点和更为广泛用途,虽然其价格略高于齐纳式安全栅,但从设计、施工安装、调试及维护成本来考虑,其综合成本可能反而低于齐纳式安全栅。
在要求较高的工程现场几乎无一例外地采用了隔离式安全栅作为主要本安防爆仪表,隔离式安全栅已逐渐取代了齐纳式安全栅,在安全防爆领域得到了日益广泛的应用.本安设备标志定义其中:Ex —防爆标志(ia)—防爆等级ⅡC—气体组别本公司产品防爆级别:Ex (ia)ⅡC防爆等级ia:在正常工作状态下,1个故障或2个故障状态下都不会点燃危险气体,回路必须保证在两个故障同时出现时仍然保证安全特性。
“ia ”类电气设备对易受干扰的元器件必须采用“三重化”设计。
“ib”类电气设备只能保证在1个故障状态下不会点燃危险气体。
气体组别Ⅰ组电气设备:用于易受甲烷影响的煤矿环境中。
Ⅱ组电气设备:可用于除煤矿以外的爆炸危险环境中。
Ⅱ组电气设备根据易燃性物质的不同点燃能量进一步细分。
各子组用大写英文子母区分,从下表中可以看出,C子组所需要的点燃能量最少,即在该组电气设备中,C组设备具备通用性。
防爆常识一、防爆电气设备的防爆型式1.爆炸性混合物产生爆炸的条件爆炸是指物质从一种状态,经过物理变化或化学变化,突然变成另一种状态并放出巨大的能量,而产生的光和热或机械功。
在此仅谈及爆炸性混合物的爆炸,即所有的可燃性气体、蒸气及粉尘与空气所形成的爆炸性混合物的爆炸。
这类爆炸需要同时具备三个条件才可能发生:第一,必须存在爆炸性物质或可燃性物质;第二,要有助燃性物质,主要是空气中的氧气;第三,就是还要存在引燃源(如火花、电弧和危险温度等),它提供点燃混合物所必需的能量。
只有这三个条件同时存在,才有发生爆炸的可能性,其中任何一个条件不具备,就不会产生燃烧和爆炸。
因此,采取适当的措施,使三个条件不同时具备即可达到防止爆炸的目的。
由于爆炸性混合物普遍存在于煤炭、石油、化工、纺织、粮食加工等行业的生产、加工、储运等场所,如发生爆炸则危害极大。
于是,人们采取了多种防爆技术方法,防止爆炸危险性环境形成及其爆炸。
2.基本防爆型式(1) 隔爆型“d”隔爆型防爆型式是把设备可能点燃爆炸性气体混合物的部件全部封闭在一个外壳内,其外壳能够承受通过外壳任何接合面或结构间隙,渗透到外壳内部的可燃性混合物在内部爆炸而不损坏,并且不会引起外部由一种、多种气体或蒸气形成的爆炸性环境的点燃(参见GB 3836 2标准)。
把可能产生火花、电弧和危险温度的零部件均放入隔爆外壳内,隔爆外壳使设备内部空间与周围的环境隔开。
隔爆外壳存在间隙,因电气设备呼吸作用和气体渗透作用,使内部可能存在爆炸性气体混合物,当其发生爆炸时,外壳可以承受产生的爆炸压力而不损坏,同时外壳结构间隙可冷却火焰、降低火焰传播速度或终止加速链,使火焰或危险的火焰生成物不能穿越隔爆间隙点燃外部爆炸性环境,从而达到隔爆目的。
隔爆型“d”按其允许使用爆炸性气体环境的种类分为I类和IIA、IIB、IIC类。
该防爆型式设备适用于1、2区场所。
(2) 增安型“e”增安型防爆型式是一种对在正常运行条件下不会产生电弧、火花的电气设备采取一些附加措施以提高其安全程度,防止其内部和外部部件可能出现危险温度、电弧和火花的可能性的防爆型式。
它不包括在正常运行情况下产生火花或电弧的设备(参见GB 38363标准)。
在正常运行时不会产生火花、电弧和危险温度的电气设备结构上,通过采取措施降低或控制工作温度、保证电气连接的可靠性、增加绝缘效果以及提高外壳防护等级,以减少由于污垢引起污染的可能性和潮气进入等措施,减少出现可能引起点燃故障的可能性,提高设备正常运行和规定故障(例如:电动机转子堵转)条件下的安全可靠性。
〖JP〗该类型设备主要用于2区危险场所,部分种类可以用于1区,例如具有合适保护装置的增安型低压异步电动机、接线盒等。
(3) 本质安全型“i”本质安全型防爆型式是在设备内部的所有电路都是由在标准规定条件(包括正常工作和规定的故障条件)下,产生的任何电火花或任何热效应均不能点燃规定的爆炸性气体环境的本质安全电路。
〖HTH〗“iɑ”等级电气设备〖HT〗是正常工作和施加一个故障和任意组合的两个故障条件下,均不能引起点燃的本质安全型电气设备;〖HTH〗“ib”等级电气设备〖HT〗是正常工作和施加一个故障条件下,不能引起点燃的本质安全型电气设备(参见GB 38 36 4标准)。
本质安全型是从限制电路中的能量入手,通过可靠的控制电路参数将潜在的火花能量降低到可点燃规定的气体混合物能量以下,导线及元件表面发热温度限制在规定的气体混合物的点燃温度之下。
该防爆型式只能应用于弱电设备中,该类型设备适用于0、1、2区(Exiɑ)或1、2区(Exib)。
(4) 正压型“p”电气设备的一种防爆型式。
它是一种通过保持设备外壳内部保护气体的压力高于周围爆炸性环境压力的措施来达到安全的电气设备(参见GB 38365标准)。
正压设备保护型式可利用不同方法。
一种方法是在系统内部保护静态正压,而另一种方法是保持持续的空气或惰性气体流动,以限制可燃性混合物进入外壳内部。
两种方法都需要在设备起动前用保护气体对外壳进行冲洗,带走设备内部非正压状态时进入外壳内的可燃性气体,防止在外壳内形成可燃性混合物。
这些方法的要点是监测系统,并且进行定时换气,以保证系统的可靠性。
该类设备按照保护方法可以用于1区或2区危险场所。
(5) 油浸型“o”油浸型防爆型式是将整个设备或设备的部件浸在油内(保护液),使之不能点燃油面以上或外壳外面的爆炸性气体环境(参见GB 38366标准)。
这是一个主要用于开关设备的老的防爆技术方法。
形成的电弧、火花浸在油下。
该类型设备适用于1区或2区危险场所。
(6) 充砂型“q”充砂型防爆型式是一种在外壳内充填砂粒或其他规定特性的粉末材料,使之在规定的使用条件下,壳内产生的电弧或高温均不能点燃周围爆炸性气体环境的电气设备保护型式(参见G B 38367标准)。
该防爆型式将可点燃爆炸性气体环境的导电部件固定并且完全埋入充砂材料中,从而阻止了火花、电弧和危险温度的传播,使之不能点燃外部爆炸性气体环境。
通常它用于Ex“e”或Ex“n”设备内的元件和重载牵引电池组。
该类型设备适用于1区或2区危险场所。