柔性直流输电技术在输电领域的应用分析

合集下载

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。

随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。

本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。

一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。

其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。

通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。

2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。

(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。

(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。

二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。

传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。

2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。

在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。

3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。

通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。

本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。

我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。

我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。

我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。

通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。

二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。

与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。

柔性直流输电技术的核心在于电压源换流器(VSC)。

VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。

VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。

在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。

VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。

柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。

这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。

柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究随着经济的发展和人口的增加,能源需求越来越大。

传统的交流输电技术已经面临着许多挑战,如能量损耗、线路大量铺设和电网稳定性等问题。

这些问题促使人们寻找新的输电技术,柔性直流输电技术便应运而生。

柔性直流输电技术是一种高电压直流输电技术,它将输电线路变成了一个大的电容器。

通过控制直流电压和电流,可以减少输电过程中的损耗,增加输电能力。

该技术有着广泛的应用,如数字经济、新能源和电网升级等方面。

在数字经济方面,柔性直流输电技术可以为数据中心、智能制造和网络通信等领域提供可靠的电力支持。

数字经济的应用需要大量的电力支持,这就要求输电技术必须高效、安全、可靠。

柔性直流输电技术具有能量利用率高、可靠性强、成本低等优势。

因此,在数字经济中,柔性直流输电技术可以帮助数据中心等部门提高能源效率,有效降低能源成本,为数字经济发展提供有力保障。

在新能源方面,柔性直流输电技术可以为可再生能源提供有效的输电方式,如太阳能、风能等。

可再生能源是未来能源发展的趋势,但是,其不稳定的特点导致其输出电量不均衡,因此需要一种可靠的输电技术。

柔性直流输电技术具有高效、稳定、可靠等特点,可以为可再生能源提供最佳的输电方式,提高可再生能源利用率,是可再生能源发展的重要技术手段。

在电网升级方面,柔性直流输电技术可以提高电网的可靠性和稳定性。

电网是现代社会的基础设施之一,任何一次大范围停电都会给社会经济带来严重影响。

柔性直流输电技术可以为电网提供高效的输电方式,降低电网损耗,提高电网可靠性和稳定性,是电网升级的重要技术手段。

总之,柔性直流输电技术是未来输电技术的发展方向之一。

随着数字经济、新能源和电网升级的不断发展,这种技术将会得到越来越广泛的应用。

电力系统中的柔性直流输电技术研究

电力系统中的柔性直流输电技术研究

电力系统中的柔性直流输电技术研究随着人类社会的快速发展和工业化进程的不断加速,电力的重要性已经愈发凸显。

然而,传统的交流输电方式存在众多的缺陷,因此柔性直流输电技术应运而生。

柔性直流输电技术是指通过直流电进行电力输送、流量控制和系统稳定控制的一种新型电力传输技术。

这项技术早在上世纪80年代就已经开始研究,近年来也得到了快速发展和广泛应用。

在电力系统中,柔性直流输电技术主要被应用于高压直流输电、大容量输电等领域。

相比于传统的交流输电方式,柔性直流输电技术显然具有更多的优势。

首先,柔性直流输电技术可以实现电力的快速传输和高效控制。

由于它采用了直流电进行输送,可以有效减少电力传输过程中的功率损耗,同时也可以灵活控制电流、电压等参数,以达到更高的电力输送效率。

其次,柔性直流输电技术还可以提高电力系统的可靠性和稳定性。

传统的交流输电方式容易受到电压、频率等不稳定因素的影响,从而导致电网的故障、停电等问题。

而柔性直流输电技术则可以通过精密的控制系统,实现对电力流量的调节和系统稳定的控制,提高电网的可靠性和抗干扰能力。

最后,柔性直流输电技术还具有更小的空间占用和环保优势。

随着城市的快速发展和人口的不断膨胀,传统的交流输电方式不仅需要占用大量的土地和空间,而且还会对周围环境造成一定的噪音和辐射污染。

而柔性直流输电技术可以通过更紧密的线路布局和更先进的电力传输技术,实现更小的空间占用和更低的环境影响。

总的来说,柔性直流输电技术的应用和发展对于电力系统的优化和升级具有重要的意义。

未来,在技术不断迭代和创新的基础上,柔性直流输电技术还将逐步实现更加智能化、高效化和可持续化的电力传输体系,在为经济社会的发展和人民生活的改善做出更多贡献的同时,也为推进能源革命和全球环保事业做出应有的贡献。

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。

随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。

本文将对柔性直流输电市场的发展现状进行分析和探讨。

主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。

该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。

相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。

2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。

柔性直流输电系统可以实现大规模清洁能源的长距离传输。

•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。

因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。

•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。

在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。

3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。

•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。

电力系统中的柔性直流输电技术研究与应用

电力系统中的柔性直流输电技术研究与应用

电力系统中的柔性直流输电技术研究与应用随着能源需求的增长和可再生能源的快速发展,电力系统的可靠性和效率成为了迫切的问题。

在过去,交流输电是占主导地位的,但是随着电力系统的复杂性和功率需求的不断增加,柔性直流输电技术逐渐崭露头角并得到广泛关注。

柔性直流输电技术是一种能够有效提高电力系统稳定性和可靠性的新型电力传输方式。

相较于传统的交流输电方式,柔性直流输电技术具有以下优势:1. 技术先进性:柔性直流输电技术采用了高压高功率电力电子器件,能够实现高效能的电力传输。

通过电力电子设备对电压和频率进行控制,可以快速调整电力流向和功率分配,提高系统的稳定性和可控性。

2. 低损耗和高效率:相较于交流输电方式,柔性直流输电技术在长距离传输时损耗更低。

由于直流电流不会产生电感和电容的功耗,输电损耗更小,能够有效降低能源浪费和环境污染。

3. 技术应用广泛性:柔性直流输电技术可以灵活适应不同的传输需求和能源分布情况。

在大规模可再生能源开发和分布式能源系统中,柔性直流输电技术可以提供更加稳定可靠的电力传输,实现能源的高效利用。

在实际应用中,柔性直流输电技术已经取得了一系列的成果。

首先,在长距离高容量输电方面,柔性直流输电技术可以实现大容量电力的长距离传输,有效解决了传统交流输电的限制。

通过减少输电损耗,提高输电效率,柔性直流输电技术能够为电力系统提供更稳定可靠的电力供应。

其次,在可再生能源领域的应用方面,柔性直流输电技术在风能和太阳能等可再生能源开发中具有广阔的应用前景。

由于可再生能源的不稳定性和间歇性,柔性直流输电技术可以实现对电力流量的精确控制,将多余的电力注入电网,并实现电力的平衡调度。

这不仅提高了可再生能源的利用率,还增强了电网的稳定性和可靠性。

同时,柔性直流输电技术在城市供电和电力互联网的建设中也发挥着重要作用。

通过柔性直流输电技术,电力系统可以实现更好的电力管理和智能化控制。

通过对电力流向和负荷需求的精确监测和控制,可以实现电力需求的动态分配和优化,提高供电的质量和可靠性。

柔性直流输电在中国电网中的应用前景

柔性直流输电在中国电网中的应用前景柔性直流输电(Flexible Direct Current Transmission,简称FDCT)是一种新型电力传输技术。

近年来,这种技术在全球范围内被广泛应用,成为国际上一种流行的高压直流输电技术。

FDCT是将柔性电力电子技术与现有的直流输电技术相结合,可以实现高效、高稳定性、高控制能力的电力传输,被誉为新一代电力传输技术的代表之一。

FDCT在中国的应用前景广阔。

在中国,FDCT在跨境、远距离输电等方面的应用前景非常广泛。

比如,FDCT可以实现中国与亚洲、欧洲、非洲等地区的跨国互联互通。

通过FDCT,我们可以将中国的绿色能源有效地输送到世界各地,实现中国的可再生能源出口。

此外,FDCT还可以帮助中国通过远距离输电解决负荷不足、能源“输送+销售”等问题。

在我国“十四五”规划和“2060碳达峰”目标的背景下,FDCT也将成为我国能源转型的中流砥柱。

FDCT技术在中国可以由国内厂商自主研发,并降低设备成本。

随着FDCT技术的不断成熟,它将成为解决中国能源锁定的关键技术之一。

FDCT的应用前景也非常广泛。

比如,在我国北方的水大地少问题较为突出,FDCT技术可以将南方丰富的水能投送北方,缓解水资源缺乏等问题。

此外,在我国西部地区,特别是新疆等地的风能、太阳能资源丰富,FDCT技术可以通过构建柔性直流输电通道,将这些可再生能源高效输送到东部和中部地区,真正实现当地可再生能源的产业化。

总之,FDCT在中国的应用前景非常广阔。

这种技术可以在西部地区缓解能源短缺问题,并将中国的绿色能源出口到世界各地。

随着日益增长的能源消耗压力和环保意识的加强,FDCT 技术将会在中国发展得更快、更广泛。

柔性直流输电(Flexible Direct Current Transmission,简称FDCT)是未来电力传输领域的热门技术之一,具有高效、高稳定性和高可控性的优势。

自1997年FDCT实验开始以来,该技术已取得了不俗的进展。

柔直技术在低压配电网中应用探索及实践

柔直技术在低压配电网中应用探索及实践随着社会的不断发展和科技的日益进步,电力在人们的生产生活中扮演着越来越重要的角色。

低压配电网作为电力系统的最后一环,直接关系到用户的用电质量和可靠性。

近年来,柔直技术在电力领域的应用逐渐引起了广泛关注,其在低压配电网中的应用探索与实践也取得了一定的成果。

柔直技术,全称为柔性直流输电技术,是一种新型的直流输电技术。

与传统的直流输电技术相比,柔直技术具有诸多优势。

首先,它能够实现有功功率和无功功率的独立控制,这对于提高电网的电能质量和稳定性具有重要意义。

其次,柔直技术的换流器具有较小的占地面积和灵活的扩展性,能够更好地适应城市等土地资源紧张的区域。

此外,柔直技术还能够实现对分布式能源的高效接入和管理,为低压配电网的发展带来了新的机遇。

在低压配电网中,分布式能源的接入是一个重要的问题。

分布式能源包括太阳能、风能、生物质能等可再生能源,以及小型燃气轮机、燃料电池等分布式发电设备。

这些分布式能源具有分散性、间歇性和随机性等特点,给低压配电网的运行和管理带来了很大的挑战。

柔直技术的出现为解决这一问题提供了有效的手段。

通过柔直技术,可以将分布式能源接入低压配电网,并实现对其输出功率的灵活控制和管理,从而提高分布式能源的利用率和电网的可靠性。

例如,在一些偏远地区或者岛屿,由于地理位置和环境的限制,建设传统的交流输电线路成本高昂且难度较大。

而采用柔直技术,可以通过直流电缆将分布式能源发电装置产生的电能输送到负荷中心,有效地解决了这些地区的供电问题。

同时,柔直技术还可以实现对分布式能源的孤岛运行控制,在电网故障时保证重要负荷的持续供电,提高了供电的可靠性。

除了分布式能源的接入,柔直技术在低压配电网中的电能质量治理方面也发挥着重要作用。

在现代社会,各种电子设备和敏感负荷对电能质量的要求越来越高。

电压波动、谐波污染等电能质量问题不仅会影响设备的正常运行,还可能造成设备损坏和数据丢失等严重后果。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术是一种新兴的输电技术,其应用在电网中具有重要的意义。

本文将就柔性直流输电技术的应用探究进行介绍和分析。

一、柔性直流输电技术的基本原理柔性直流输电技术是指在输电中采用直流电而非交流电,其主要原理是通过变流器将交流电转换为直流电,然后再通过逆变器将直流电转换为可控的交流电。

柔性直流输电技术具有很多优点,比如输电损耗小、功率密度高、电压波动小,同时能有效地控制电压和频率,提高电网的稳定性和可靠性。

二、柔性直流输电技术的应用领域柔性直流输电技术在电力系统中的应用主要有以下几个方面:1. 远距离输电:柔性直流输电技术能够实现长距离的电能输送,同时保持较小的输电损耗和电压损失,适用于大规模远距离输电。

2. 新能源并网:随着新能源风电、光伏等的快速发展,柔性直流输电技术可以解决新能源并网后的电网稳定性和可靠性问题,有效地提高电网的容纳能力。

3. 电网升级改造:在现有电网升级改造过程中,柔性直流输电技术可以使电网操作更加灵活,提高电网的负载能力和供电能力,满足用户对电能的需求。

4. 大型工业用电:柔性直流输电技术应用于大型工业用电中,可以有效提高工业设备的运行效率和降低能源消耗成本。

三、柔性直流输电技术的应用案例1. 欧洲超级电网项目:欧洲超级电网项目是一个跨国电力输送项目,采用柔性直流输电技术,通过跨越欧洲多个国家,将大规模的风电和光伏电能输送到各地,提高了欧洲地区的可再生能源利用率。

2. 中国南方科技大学直流电网实验项目:作为中国首个直流电网实验项目,该项目采用柔性直流输电技术,通过模拟实验和现场实验,验证了柔性直流输电技术在电网中的可行性和应用效果。

3. 澳大利亚柔性直流电站项目:澳大利亚的柔性直流电站项目采用了柔性直流输电技术,实现了分布式能源接入电网,提高了澳大利亚地区的电能供给和能源利用率。

柔性直流输电技术的应用探究,将不断推动电力系统的发展与进步,为全球能源互联互通和可持续发展做出积极贡献。

柔性直流输电技术研究与应用

柔性直流输电技术研究与应用近年来,随着电力需求不断增长和可再生能源的快速发展,电力系统正面临着更高的要求和挑战。

传统的交流输电系统在长距离传输和大功率输电方面存在诸多不足。

柔性直流输电技术应运而生,为电力系统的稳定运行和高效输电提供了新的解决方案。

1. 应用背景电力输送是实现能源供给的关键环节之一,而在远距离、大功率输电方面,交流输电系统的传输效率较低,并且存在丢失电能、系统稳定性差等问题。

而柔性直流输电技术则能够通过高压直流电流的传输,有效解决这些问题。

此外,柔性直流输电技术还可以实现对不同电力系统之间的互联互通,促进能源的资源共享和优化配置。

2. 技术原理柔性直流输电技术主要依赖于高压直流输电技术和变流器技术。

在柔性直流输电系统中,变流器起到了核心作用。

变流器通过将交流电转换为直流电,并通过控制开关,实现电流的调节和控制。

这种技术可以使输电系统具备可靠性、灵活性和可控性,更好地适应电力系统的需求。

3. 技术特点柔性直流输电技术有着诸多特点,这也是其被广泛研究和应用的原因之一。

首先,柔性直流输电系统具有高效率和长距离输电能力。

相比交流输电系统,柔性直流输电系统的输电损耗更小,能够实现大功率的长距离输电,为电力系统提供更好的供电保障。

其次,柔性直流输电系统具备较高的稳定性和可控性。

通过电压和电流的调节,柔性直流输电系统可以实现对电力质量的优化控制,提高电力系统的稳定性和可靠性。

此外,柔性直流输电技术还可以很好地适应可再生能源的接入和发电需求,促进清洁能源的利用和发展。

4. 研究进展目前,柔性直流输电技术已经得到了广泛的研究和应用。

在国际上,许多发达国家如美国、德国和日本等都在积极开展柔性直流输电技术的研究工作,并在实际运行中取得了较好的效果。

在中国,柔性直流输电技术也得到了快速发展。

例如,南送直流输电工程和华北直流输电工程等项目的建设和运行,为柔性直流输电技术的推广应用做出了示范和贡献。

此外,还有许多学术机构和企业在柔性直流输电技术的研发和应用方面取得了重要的进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柔性直流输电技术在输电领域的应用分析华北电力大学,李欣蔚摘要:柔性直流输电作为新一代直流输电技术,在世界范围内已经得到广泛发展和应用,并逐渐走向成熟。

为了更进一步了解柔性直流输电技术,并且为其发展做出突破性的贡献,本文对柔性直流输电技术在输电领域的应用进行了概括性分析。

通过对目前柔性直流输电技术在输电领域的应用状况,进行较为详细的分析,找到该技术存在的可能的突破点,使其更有利于电力系统的发展。

本文首先简要介绍了柔性直流输电的基本原理及其特点,具体说明了对于柔性直流输电技术可独立控制有功无功功率、谐波含量少等不同优点,在输电领域的各种应用情况,分别为连接小规模发电厂到电网、替代传统直流的大规模送电和交直流联网、异步联网、优化电能质量和向远方孤立负荷供电。

介绍了国内外柔性直流输电工程在输电领域的成功案例,如丹麦Tjaereborg发电工程和上海南汇柔性直流输电示范工程,分析这些工程在输电领域做出的突破性贡献。

最后总结概括分析了我国的柔性直流输电技术在输电领域可能的发展方面,说明了以柔性直流输电为主的智能输电网络的可能性。

所以,目前柔性直流输电工程在中国的发展方向可以包括,建立广域的智能输电网络和长距离架空线输电两大方面。

关键词:柔性直流输电可再生能源异步联网优化电能质量智能输电网络1引言当前,新型的、清洁的、可再生的能源发电已成为电力系统未来的发展方向,国家将大力推进利用风能、太阳能等方式进行发电,但由于其主要特点之一是分散化与小型化,地理条件与发电规模的制约使得传统的交流输电技术不能很好地解决与电网连接经济性的问题。

同时,对于采用柴油发电机供电的钻探平台、岛屿、矿区等远距离负荷,应用交流输电技术供电也同样存在经济性差、环保压力大的问题。

随着用电负荷的不断增加要求电网规模与传输容量保持持续发展,然而增加输电走廊面临经济与环保的限制,这种问题在城市的负荷中心更加突出[1]。

为此,柔性直流输电技术可以说是一种较为经济、灵活、高质量的输电方式用以解决以上问题。

另外,因为电压源换流器产生的谐波含量小,不必专门配置滤波器,可以大大节省占地面积,相比于高压直流输电技术,柔性直流输电在城市、海岛、海上平台中的使用具有很大优势。

柔性直流输电是构建智能电网的重要装备,与传统方式相比,柔性直流输电在孤岛供电、大规模风电场并网、城市配电网的增容改造、交流系统互联等方面具有较强的技术优势,是改变大电网发展格局的战略选择。

随着电力电子技术的进步,柔性直流作为新一代直流输电技术,为输电方式变革和构建未来电网提供了崭新的解决方案[2]。

近几十年来国外大力发展了柔性直流输电技术,并应用于实际工程。

我国关于柔性直流输电技术的研究也迎头赶上,并成功建设了几大柔性直流输电工程。

本文简要介绍柔性直流输电技术的现状,具体分析其在输电领域应用的情况,最后总结分析了未来国内外柔性直流输电工程在输电应用领域可能的发展趋势和前景。

2柔性直流输电技术概述(1)柔性直流输电原理典型的基于绝缘栅双极半导体管(IGBT)2电平VSC的柔性直流单相示意图见图1。

柔性直流输电与传统直流输电的基本不同点是:它采用具有关断能力的可关断器件(如IGBT)组成的电压源换流器(VSC)进行换流,而传统直流输电则是采用无关断能力的低频晶闸管所组成的电网换相换流器(PCC)来进行换流[3]。

图1柔性直流输电基本原理图早期的柔性直流输电都是采用两电平或三电平换流器技术,一般采用在直流侧中性点接地的方式,但是一直存在谐波含量高、开关损耗大等缺陷[4]。

近年来,对于模块化多电平柔性直流输电技术的研究与发展越来越多,应用该技术的系统一般采用交流侧接地的方式;该技术提升了柔性直流输电工程的运行效益,极大地促进了柔性直流输电技术的发展及其工程推广应用。

目前,已投运的柔性直流输电的VSC基本采用脉宽调制(PWM)技术,可以几乎独立瞬时地改变交流输出电压的相位与幅值,从而实现有功与无功的独立瞬时调节。

在接线形式方面,单极对称接线方案是目前柔性直流输电系统中最常见的接线方案,这种接线方案采用一个6脉动桥结构,在交流侧或直流侧采用合适的接地装置钳制住中性点电位,两条直流极线的电位为对称的正负电位。

目前世界上绝大多数柔性直流工程均是采用该接线方式,在我国刚刚建成的舟山多端柔直和南澳柔直项目也是采用该接线方式。

双极对称接线方案在目前柔性直流输电系统不算常见,这种接线方案采用2个6脉动桥结构,分别组成正极和负极,两极可以独立运行,中间采用金属回线或接地极形成返回电流通路。

我国刚刚完成设计并进入工程建设阶段的厦门柔性直流输电工程也是采用的该结构。

随着单个柔性直流工程输送容量的不断提升以及用户对于柔性直流输电可靠性的要求越来越高,这种方式双极对称的接线方案必将是未来发展的主流[5]。

(2)柔性直流输电的特点1)VSC电流能够自关断,可以工作在无源逆变方式,能够给无源网络直接供电,短路容量限制不苛刻,可以给孤立负荷或弱交流电网供电。

2)柔性直流输电可以瞬时独立地控制输出有功和无功功率,具有高度的可控性和灵活性,无最低输送有功功率限制,不仅不需要交流侧提供无功功率,而且能够起到静止同步补偿器(STATCOM)的作用,稳定交流母线电压。

但柔性直流输电在输电容量、输电距离和电压等级方面有限制。

由于没有很好地解决架空线传输的问题,柔性直流输电工程的电压普遍不高,同时,柔性直流系统相对损耗较大,这就限制了其有效的输电距离。

3)系统在潮流反转时,柔性直流仅电流方向反转而直流电压极性不变,因此柔性直流特别适于多端直流连接,克服了传统多端HVDC系统并联连接时潮流控制不便、串联连接时又影响可靠性的缺点。

4)谐波含量小,需要的滤波装置少。

无论是采用SPWM脉宽调制技术的二电平拓扑还是采用最近电平逼近(NLS)的子模块多电平拓扑结构的柔性直流输电技术,其开关频率相对于传统直流较高,产生的谐波比传统小很多,需要的滤波装置容量小,甚至可以不需要滤波器。

5)柔性直流输电有换流站占地面积小、设备模块化设计,从而具有设计、生产、安装和调试周期大大缩短的工程经济特点。

柔性直流输电由于滤波器容量相对较小甚至没有等原因,设备比较少,从而比传统直流换流站占地面积小(目前同等容量可以小40%),柔性直流换流站更容易建在城市等土地紧张的区域。

但柔性直流换流站满载损耗率大,造价昂贵,需综合考虑。

3柔性直流输电技术在输电领域的应用目前,从柔性直流的在输电应用领域来看,世界范围内27项已投运或在建的柔性直流输电工程中:9项工程应用于风电场并网,其中德国北海海上风电场(世界上最大海上风电场)采用400MW 柔性直流海底电缆接入系统,使得柔性直流在大型海上风电场接入方面有了实际工程范例;3项应用于城市中心供电[2];3项应用于异步电网互联;4项应用于电能质量优化;3项应用于海上平台[7]。

(1)连接小规模发电厂到电网由于地域和环境限制,风能发电,太阳能发电,潮汐发电,小水电厂,以及海上钻井平台的气体涡轮发电等电厂往往远离电网和主负荷区。

柔性直流输电已应用于解决将这些地域分散,规模较小的电厂用较低成本连接到电网的问题。

该技术允许发电机工作在不同于电网的频率甚至是变频率方式。

值得一提的是,柔性直流输电技术对交流电压的控制能力尤其适合于风力发电的传输,同时还可以解决在输电途中无法对进行无功功率补偿的问题。

为了较好的应对这风力风向变化给电网的规划和运行提出的挑战,建立了相应的柔性直流输电工程来适应这类变化。

如果风电厂进行扩建,新的机组可以方便地加入柔性直流输电系统,如图2所示。

同时,柔性直流输电对于无功的控制独立于有功的传输,这种控制在发电和负荷急剧变化时给电网系统增加了稳定裕度。

图2风能发电与电网通过HVDC Light进行连接(2)替代传统直流的大规模送电和交直流联网我国西部能源多负荷少,全国90%水电集中在西部地区;而东部能源少负荷多,仅东部7省的电力消费占到全国的40%以上。

能源资源和电力负荷分布的严重不均衡,决定了大容量、远距离输电的必要性。

而且随着越来越多的特高压直流线路接入电网,许多传统直流固有的如换相失败、多条直流溃入同一交流电网的相互影响等问题开始出现。

与此同时,通过增加新的交流线路来给城市增加供电非常昂贵且很难得到许可证[8]。

而柔性直流输电对接入的交流电网没有特殊要求,可以方便地进行各种形式的交直流联网,而且只需要很少的空间就可以输送更多的电力;同时轻型柔性直流输电系统不会增加直流网络的直流,因此柔性直流输电系统在城市供电的扩容应用效果较好。

由于目前柔性直流的输送容量受到限制,且没有适用于大电流开断的直流断路器,柔性直流工程直流侧故障自清除能力较差,所以大多数柔性直流工程采用电缆送电。

(3)在异步电网互联方面的应用地区电网之间的互联是电网未来的发展方向,而且一些弱系统一般都远离主网,交流线到主网的跳闸次数较高,系统稳定性较差。

随着经济的发展,弱电网地区有更大的容量需求,随着负荷的增加,不稳定可能引起更频繁的跳闸,线路的功率振荡会减少可用的有功容量,且不能接受功率环流。

为了增加系统运行的灵活性和可靠性,同时发展电力市场,柔性直流输电技术能够将弱系统间形成互联,同时具有很强的电网恢复控制能力。

随着多个柔性直流输电工程的建立,其技术优势已在异步联网工程中得到充分体现。

(4)在电能质量优化方面的应用柔性直流输电可以对交流电网进行快速的动态无功补偿和有功调节,相当于一个无惯性的发电机,可以发挥稳定交流电网电压和频率的作用,有效提高电网供电质量。

在暂态情况下,可以利用动态无功补偿快速响应的特点,可有效地改善系统的电压稳定性,增强抵御电网大事故的能力。

而且,柔性直流的快速响应能力使得柔性直流能够在故障后的第一摆时间内提供能量,延缓发电机加速过程,有一定的增强第一摆稳定的能力,这是其他普通输电或补偿设备所难以做到的。

某些情况下,在提高系统动态稳定性方面,同等容量的柔性直流相当于4倍容量的并联动态无功补偿设备[9]。

(5)向远方孤立负荷供电远方孤立负荷,如海上钻井平台和海岛,通常靠柴油或天然气来发电,不但发电成本高、供电可靠性难以保证,而且污染环境。

采用该技术和海底电缆取代当地发电,降低了成本,改善了环境,同时多余的电能(如用石油钻井产生的天然气发电)还可以反送给系统。

有些海上大功率负荷,如大功率压缩机,需要调速功能,专用一条HVDC Light线路向该负荷供电,加上ABB于1998年开发的技术——一种新型高压电动机[10],其特殊的设计使得其供电电压可高达150kV,可以省掉变压器,从而将电动机和柔性直流输电直接相连,实现变频调速。

4国内外柔直应用工程简介(1)丹麦Tjaereborg发电工程Tjaereborg工程是世界上第一个用于示范的风力发电的柔性直流输电工程,为解决风力发电接入所导致无功功率和电压稳定问题提供了参考。

相关文档
最新文档