分式小结与复习(2)
高中第一册(下)数学小结与复习(2-3-4-5-6)

小结与复习(2)一、讲解X 例:例1在△ABC 中,已知cosA =135,sinB =53,则cosC 的值为…………() A. 6516 B.6556 C. 65566516或 D. 6516- 例2在△ABC 中,∠C>90︒,则tanAtanB 与1的关系适合………………()A. tanAtanB>1B. tanAtanB<1C. tanAtanB =1D.不确定例3已知434π<α<π,40π<β<,53)4cos(-=α+π,135)43sin(=β+π, 求sin(α + β)的值 例4已知sin α + sin β =22,求cos α + cos β的X 围 例5设α,β∈(2π-,2π),tan α、tan β是一元二次方程04332=++x x 的两个根,求α + β例6 设方程sin x x m =在开区间(0,2π)内有相异的两个实数根α,β,求m 的取值X 围及α+β的值.例7 已知sin(π-α) -cos(π + α) =42(0<α<π),求sin(π + α) + cos(2π-α)的值 例8 已知2sin(π-α) -cos(π + α) = 1 (0<α<π),求cos(2π-α) + sin(π + α)的值 三、作业:《精析精练》P66 能力测试小结与复习(3)一、讲解X 例:例1已知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值 例2已知3sin 2α + 2sin 2β = 1,3sin2α- 2sin2β = 0,且α、β都是锐角,求α+2β的值 例3已知sin α是sin θ与cos θ的等差中项,sin β是sin θ、cos θ的等比中项, 求证:α=θ+π=β2cos 2)4(cos 22cos 2 例4已知sin α = a sin(α+β) (a >1),求证:a-ββ=β+αcos sin )tan( 例5如图半⊙O 的直径为2,A 为直径MN 延长线上一点,且OA=2,B 为半圆周上任一点,以AB 为边作等边△ABC (A 、B 、C 按顺时针方向排列)问∠AOB 为多少时,四边形OACB 的面积最大?这个最大面积是多少?解:设∠AOB=θ则S △AOB =sin θ S △ABC =243AB 作BD ⊥AM, 垂足为D, 则BD=sin θ OD=-cos θAD=2-cos θ∴22222)cos 2(sin ϑϑ-+=+=AD BD AB=1+4-4cos θ=5-4cos θ∴S △ABC =43(5-4cos θ)=ϑcos 3435- 于是S 四边形OACB =sin θ-3cos θ+435=2sin(θ-3π)+435 ∴当θ=∠AOB=65π时四边形OACB 的面积最大,最大值面积为2+435例6 求函数y=3tan(x 6π+3π)的定义域、最小正周期、单调区间。
初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。
分式的小结与复习 教学设计(一)

分式的小结与复习教学设计(一)一、教材分析:分式的主要内容是与分数的有关内容对比着学习的.复习时应加强这种对比.从比较高的层次上认识分数与分式及其有关内容的内在联系和区别,以提高这一部分内容的学习质量.具体说来,1.分式的概念和分式的基本性质是学习本章的基础.这一点,如果在一开始,虽然作了说明,学生还体会不深的话,那么在学完本章各项内容之后,在小结与复习中,再一次提出这一问题,学生应该有较深刻的认识和体会.对于分式概念,主要是搞清楚分式与分数的区别以及分式何时有意义的问题.对于分式的基本性质,则主要是在分式变形和运算中能够正确灵活地运用.2.分式四则运算法则可以对比分数四则运算法则得出,这一点学生应深切体会.要使学生深刻认识到,具体的分式运算往往可以归结为整式的运算,当然还要注意分式基本性质与符号法则的运用.3.公式变形的基本思想,在今后教学及其他各科的学习中占有重要地位,公式变形往往可以归结为解有字母已知数的方程,解含有字母已知数的方程和解只含有数字已知数的方程类似,只是要注意字母允许值的范围,这一点,在现阶段不作要求.以后,随着学习的深入,结合具体问题的讨论,逐步掌握这部分内容是不难的.本章是打个初步基础,不应过高要求.二、教学建议:回顾知识内容,在做题时查漏补缺。
在复习小结时,还是应当结合典型问题的研究,提高学生分析问题、解决问题的能力.三、教学设计思想:这节课的主要任务是将全章的知识点加以复习,复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力。
因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。
四、重点:熟练掌握分式的四则混合运算.难点:四则混合运算中的去括号及符号问题五、教学目标1、经历总结本章的知识结构及知识内容过程.进一步培养反思的学习习惯。
2、熟记分式的四则运算法则及它们之间的内在联系.熟练地进行分式的四则混合运算。
湘教版初中八年级数学上册第一章《分式》复习知识点

湘教版初中八年级数学上册第一章《分式》复习知识点教学目标1 使学生系统了解本章的知识体系及知识内容;2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分式的运算。
重点、难点重点:梳理知识内容,形成知识体系。
难点:熟练进行分式的运算。
教学过程一 知识结构与知识要点1浏览第2章目录,阅读p 61---63 复习与小结 2 这章学习了哪些内容?(学生交流) 教师投影本章知识结构图 3 你还记得下面知识要点吗? (1)什么叫分式?设f 、g 都是整式,且g 中含有字母,我们把f 除以g 所得的商记作f g ,把f g叫做分式。
(2)分式基本性质 设h ≠0,则f f hg g h⋅=⋅即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。
(3)分式的符号变换法则是什么?,f f f f fg g g g g−−===−−− 形象的理解为:分式的分子分母的符号可以移动 ⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎨⎪⎩⎩分式的概念约分分式的性质通分分式的符号变号法则分式乘除法分式的运算乘方加减法分式方程的解法分式方程分式方程的应用(4)分式的运算法则①分式的乘法:f u f ug v g v⋅⋅=⋅可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。
②分式的除法:f u f v f vg v g u g u⋅÷=⋅=⋅,分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘。
③分式加减法:同分母:f h f hg g g±±=,分母不变,分子相加减。
异分母:先通分,化为同分母的分子然后相加减。
怎样找最简公分母?系数:取各分母的系数最少公倍数。
字母因式:取所有的,指数最高的。
(5)整数指数幂的运算法则①同底数的幂的除法:(n m n m n a a a m −÷=≠、都是正整数,m>n,a 0) ②零次幂和负整数指数幂:01(0)a =≠a ,1(0,n n a a n a−=≠是正整数),11(0a a a−=≠)③整数指数幂有哪些运算法则:设a ≠0,m,n 都是整数,则:()(),nnm n m n m mn n n a a a a a ab a b +⋅===,二 例题精讲w W w .x K b 1.c o M 例1 填空:当x=_____,分式()3(5)(1)2x x x −−+无意义。
初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
分式小结与复习

n
(1)a a a
m n
m n
(m, n是整数)
相 关 小 结
(2)(a ) a (m, n是整数)
m n mn
(3)(ab) a b (n是整数)
n n n
(4)a a a
m n
mn
(a 0, m, n是整数) n n a a (5) n (n是整数, b 0) b b
⑵若分式 有意义,则x应满足的 条件是_______ x≠5、x≠7且x≠-9
x3 x9 x5 x7
B
{且 B≠0 .
的值为0.
⑶当x= -2
x 2 4 时,分式 x 2 5 x14
(2)分式有关的条件问题:
分式
分式
A B
> 0 的条件
A>0 ,B>0 或 A<0, B<0 A>0 ,B<0 或 A<0 ,B>0
A B
=
A÷M ( B÷M )
(其中M 不为0 的整式).
(2)分式的符号法则:
A B -A -B A ( B )
= ( -A ) =
A
( -B )
=
-A ( -B )
B
=
=
( -A ) B
=
-A ( B )
⑶约分: 把一个分式的分子与分母的 公因式 约去, 叫做分式的约分. ⑷通分: 把几个异分母的分式化成 同分母 的分式, 注意: 分式的分子、分母是多项式的,应先分解因式, 叫做分式的通分.
强化训练:
2x 1.把分式 中的x, y的值都扩 3x 4 y 大3倍,则原分式的值( A.不变 1 C.缩小为原来的 3
八年级数学下册 第十六章分式复习教案 人教新课标版

《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。
人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)

x+5=10.
解得
x=5.
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义.因 此x=5虽是整式方程x+5=10的解,但不是原分式 方程的解,实际上,这个分式方程无解.
巩固练习
练习3 解方程并检验.
1 2 . 2x x 3
解:最简公分母为
巩固练习
练习4
解关于x 的方程
x
a
a
b
1( b ≠ 1).
解:方程两边同乘x-a,得
a+b(x-a)= x-a
去括号,得 a+bx-ab =x-a
移项、合并同类项,得
(b-1)x = ab-2a
∴x
ab 2a b 1
检验:当 x
ab b
2a 1
时,∵
b
≠
1,∴b-1
≠0,
x ab 2a
方程① 当v=6时,(30+v)(30-v)≠0,这就是说,去分
母时,方程①两边乘了同一个不为0的式子,因此
方程② 所当得x=整5时式,方(程x的-5)解(与x①+的5)解=相0,同这. 就是说,去分母
时,方程②两边乘了同一个等于0的式子,这时所 得整式方程的解使②出现分母为0的现象,因此这 样的解不是②的解.
解:设该厂原来每天加工x个零件,则采用新技 术后,每天加工2x个零件,
根据完成时间的等量关系,得
100 600 100 7
x
2x
去分母,得200 + 500 =14x,
解得
x = 50.
检验:x = 50时,2x ≠ 0.
所以x = 50是原方程的根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习二:
1、分式
ab c ,,
2b 3a 2 4ab
的最简公分母是
12a2b
2、分式
1 x
,
x
1 1,x1 Nhomakorabea1,
1 x2 1
的最简公分母是
x(x+1)(x-1)
练习三:
下列各式的运算对不对?如果不对,错在哪里?
应怎样改正?
⑴ a b 1 a 1 a
b
⑵ a (b c) a b a c
再通分
2a 1
a 1
(a 2)(a 1) (a 2)(a 1)
2a 1 a 1 (a 2)(a 1)
化成最 简
a2
1
(a 2)(a 1) a 1
3、先化简,再求值:
3 x (x 2 5 ) ,其中x=-2。
2x 4
x2
解:原式 x 3 ( x2 4 5 )
2(x 2) x 2 x 2
(x 1)( x 2) (x 1)( x 2)
A(x 2) B(x 1) x 5
Ax 2A Bx B x 5
(A B 1)x (2A B 5) 0
A B 1 0 2A B 5 0
解得:BA
2 1
再见
x 3 x2 9
2(x 2) x 2
x3 x2
1
2(x 2) (x 3)( x 3) 2(x 3)
当 x 2 时,原式 = 1
2
4、如果整数A、B满足等式
A B x5
,求A与B的值。
x 1 x 2 (x 1)( x 2)
解: A(x 2) B(x 1) x 5
a b ab ab a2 b2 a2 b2 (a b)(a b)
⑷ 1 1 2b
a b a b a2 b2
a bc
1 bc
a b (a b) 2b 0
a b (a b) 2b (a b)(a b)
三、练习评讲,双向反馈
1、计算:
(a 2
1)
2a 2 a2 2a 1
分式小结与复习(2)
初二数学备课组
一、练习说讲,巩固知识
练习一:化简
1 x 2 并写出每一步变形
x2 3x 2
的名称与依据 。
解: 1 x2 = (x 1)( x 1) = x 1
x2 3x 2
(x 1)( x 2)
x2
主要变形有: 因式分解、分式的符号法则、分式约分,依据
是分式的基本性质。
a 1 2a 2
解:原式 (a 1)(a 1) 2(a 1) 2(a 1)
(a 1)2 a 1
4a 4
化除为 乘
2、计算: 2a 1 a 2
a2 a 2 a2 4
先约分
解:原式 2a 1 a 2
(a 2)(a 1) (a 2)(a 2)
2a 1 1 (a 2)(a 1) a 2
⑶
ab a2 b2 b2 a2
a2
a b2
a2
b b2
ab ab (a b)(a b)
⑷
1 1 2b a b a b a2 b2
a b (a b) 2b =
0
⑴ a b 1 a 1 a
b
a b2
⑵ a (b c) a b a c
⑶
ab
a2 b2 b2 a2