变形监测技术在高层建筑施工中运用
高层建筑变形监测

高层建筑变形监测在现代城市的天际线上,高层建筑如林立的巨人般矗立。
然而,这些宏伟的建筑并非一成不变,它们可能会在各种因素的影响下发生变形。
为了确保高层建筑的安全与稳定,变形监测成为了一项至关重要的工作。
高层建筑变形的原因多种多样。
首先,地质条件是一个重要的影响因素。
如果建筑所在的地基不均匀,或者地下存在软弱土层、溶洞等不良地质现象,就可能导致建筑的不均匀沉降。
其次,建筑物自身的重量以及内部结构的变化也会引起变形。
比如,随着时间的推移,混凝土可能会收缩、徐变,钢结构可能会产生疲劳变形。
再者,外部环境的作用也不容忽视。
风荷载、地震作用、温度变化等都可能使高层建筑产生变形。
为了有效地监测高层建筑的变形,需要采用一系列科学的监测方法和技术手段。
水准测量是一种常见的方法,通过测量不同监测点之间的高差变化,可以了解建筑物的沉降情况。
全站仪测量则能够精确地测量监测点的三维坐标,从而全面掌握建筑物的空间变形。
全球导航卫星系统(GNSS)技术的应用也越来越广泛,它可以实现对建筑物的实时动态监测。
此外,还有一些新型的监测技术,如测量机器人、激光扫描、摄影测量等,为高层建筑变形监测提供了更多的选择。
在进行高层建筑变形监测时,监测点的布设是一个关键环节。
监测点应布置在能够反映建筑物变形特征的关键部位,如建筑物的四角、拐角处、大跨度结构的中部、基础的沉降缝等。
监测点的数量要足够,且分布要合理,以确保能够全面、准确地获取建筑物的变形信息。
同时,监测点的埋设要牢固,避免在监测过程中发生位移或损坏。
变形监测的频率也需要根据建筑物的施工阶段、使用情况以及变形的速率等因素来确定。
在施工期间,由于建筑物的荷载变化较大,变形较为明显,监测频率通常较高。
而在建筑物投入使用后,监测频率可以适当降低,但对于变形较大或存在安全隐患的建筑物,仍需要加密监测。
监测数据的处理和分析是变形监测工作的核心内容。
通过对监测数据的整理、计算和统计分析,可以得到建筑物的变形量、变形速率、变形趋势等重要信息。
脚手架施工方案中结构变形监测与控制技术解析

脚手架施工方案中结构变形监测与控制技术解析脚手架是建筑施工中常用的辅助工具,能够提供临时支撑和平台,方便工人操作。
然而,在实际施工中,由于脚手架的构造和材料特性,会存在一定的结构变形问题。
为了确保施工安全和质量,结构变形监测与控制技术显得尤为重要。
一、脚手架结构变形的原因脚手架结构变形的主要原因可以分为以下几个方面:1. 自重变形:脚手架自身所承受的自重会导致结构变形,尤其是在高层建筑施工中更为明显。
自重变形主要包括梁的挠曲和柱子的弯曲等。
2. 负载变形:脚手架在使用过程中承受各种负载,如人员、物料和设备等,都会引起结构变形。
特别是在风大、振动频繁的施工环境下,负载变形更为显著。
3. 温度变形:高温或低温环境下,脚手架材料的热胀冷缩现象会导致结构变形。
温度变形主要表现为材料长度、弹性模量和导热系数的变化。
二、脚手架结构变形监测技术为了及时掌握脚手架结构的变形情况,以便采取相应的控制措施,监测技术起到了至关重要的作用。
以下是常见的脚手架结构变形监测技术:1. 光纤传感器技术:通过布置在脚手架结构上的光纤传感器,实时监测结构的变形情况。
光纤传感器具有高灵敏度、高分辨率和远程无损等特点,可以实现对脚手架结构变形的精确测量。
2. 振动传感器技术:通过安装振动传感器,在脚手架结构上监测振动信号。
振动传感器可以检测结构的共振频率、振动速度和位移等信息,从而判断结构的变形状况。
3. 影像监测技术:利用摄像机等设备,对脚手架结构进行连续拍摄,并进行图像处理,以获取结构的变形信息。
影像监测技术可以实现对整个脚手架结构的一次性监测,具有全面性和实时性的优势。
三、脚手架结构变形控制技术除了监测技术外,结构变形的控制也是脚手架施工方案中的关键环节。
以下是常见的脚手架结构变形控制技术:1. 刚度调整:根据监测结果,通过调整脚手架的横向和纵向刚度,以提高结构的稳定性和抗变形能力。
2. 加固措施:在脚手架结构中增加支撑、增强柱子和梁的截面等加固措施,以提高结构的承载能力和刚度。
高层建筑变形监测的作用与目的

高层建筑变形监测的作用与目的近年来,伴随着建筑行业的发展,高层建筑如雨后春笋般涌现,由于其自身主体高、层数多、结构复杂等特点,加之外部荷载的作用,使高层建筑的变形问题相当严重,并不仅影响着建筑本身的质量,同时也对人民的生命财产安全构成了很大的威胁。
对高层建筑变形进行监测,能够对建筑变形的地点、范围和程度进行全面的反映,在风险发生之前做好转移工作,为人民的生命财产安全提供保障。
可见,对高层建筑物进行变形监测具有重要的意义。
基于此,本文首先阐述了几种高层建筑物变形监测的主要方法,并围绕高层建筑变形监测的作用与目的展开探讨。
标签:高层建筑变形监测作用目的0引言对高层建筑物进行变形监测,是整个建筑物生命周期内一项必要的工作,通过对建筑物的运营状态进行全面的安全性能监控、评价和预报,能够及时的发现建筑物在运营过程中产生的问题,在危险发生之前及时的预测,最大程度的降低危险与损失。
加强对变形监测技术的研究,不断提高该项技术的性能与先进性,能够更好的保障建筑物的安全性与稳定性,不仅对建筑行业的发展意义重大,对社会经济的稳步前进更具有重要的推动作用。
1高层建筑变形监测的目的高层建筑的安全问题,始终是施工队伍、居民与政府关注的重点社会事务,对高层建筑物进行变形监测,也逐渐被作为一项重点的工作内容。
对高层建筑物的变形进行全面的监测,主要的目的在于对高层建筑的运营状态进行安全监控、评价和预报[1]。
首先,通过对建筑物的运营状态进行综合评定与分析;其次,在此基础上采用有效的方法验证设计参数;再次,验证之后通过对整个高层建筑物的设计与施工的质量进行反馈,能够预测与评价出当前建筑物产生变形的规律、范围和程度。
2高层建筑变形监测的作用自上世纪90年代起,对高层建筑物进行变形监测的技术手段得到了全面的更新,不论是硬件还是软件方面的水平都有了大幅度的提升,研究出了一系列自动化的监测系统和更高超的监测方法,并且也提升了对数据进行处理的精准度,在监测结果、监测范围和监测深度上都得到了进一步的拓展,在对高层建筑变形的实际监测工作中,根据建筑工程不同的构造与特点,采用不同的方法与技术来完成监测工作,使监测结果更加精准与直观,更加全面的反映了高层建筑整体的运营状态。
超高层建筑及周边建筑的变形监测

超高层建筑及周边建筑的变形监测摘要:随着我国经济建设的发展,城市化的脚步不断进步,高大的建筑在城市中不断增多,但是也这些迅速拔起的高大建筑也给我们带来里一些担忧。
因为在建造这些建筑物的同时,必须要打下深厚的堤基,以是建筑物保持稳定。
这样就要把原来的土地的稳定性破坏掉。
这不仅对于建筑物的本身产生了影响,对周围的建筑物造成了隐患,为了保证其本身及周围建筑的安全性,就要定期的对建筑物进行检测,这就需要专业的变形检测工进行作业,以确保人们的自身安全。
关键词:高层建筑;周边建筑;变形监测现今我国的建筑事业发展迅速,不断有商业建筑、居民建筑等等快速拔起,随着这些高层、超高层的一一建立,城市中的各个行业也不甘落后,都把建筑此向着更高,面积更广的方向发展,施工的速度也不断加快。
因此所带来的安全隐患也大大增加,没有空中楼阁,也没有平地而起的建筑,所以建筑物的高度与宽度决定着地基的大小。
地基的开挖势必会影响性原来土质的稳定性。
所以在惊叹建筑物的雄伟时,潜在的危险也在向人们逼近。
所以变形监测就显得尤为重要。
由于人工监测方法的准确性不高,不能确切地呈现建筑的破损程度。
所以就需要有一个精准的监测系统。
一、超高层建筑结构的相关特点1超高层建筑结构特点超高层的使用材料多种多样,则投入的资金就相对增加,由于它的体积过大,所以其地面损害就越大,由此企业部门还在施工前几施工期间,严格要求建筑的稳定性,及耐受性。
在建筑使用期间,受到材料及人为的影响,容易发生损害,所以对于建筑的安全检查要彻底全面。
超高层建筑可以分为施工期、运营期和老化期。
施工期间主要考虑竖向变形差异,因为其承重构件的竖向变形差异会直接影响施工质量;徐变和收缩因素,超高层建筑中混凝土材料受到徐变和收缩应力的影响,产生的弹性变形会有附加变形,并随着时间逐步增加,所以是不可忽略的;施工过程引起的结构形式改变,会引起内力和变形的变化。
所以超高层建筑不仅进行设计时的理论分析,还要实施全面监测,进而掌握施工情况。
浅谈高层建筑变形监测

浅谈高层建筑变形监测高层建筑由于在勘探设计、施工和使用过程中存在失误,发生沉降、倾斜、位移、挠曲、裂缝等变形现象,需要每隔一定时期,对控制点和观测点进行重复测量,通过计算相邻两次测量的变形量及累积变形量来确定建筑物的变形值和分析变形规律,及时采取措施,避免发生事故。
文章主要探讨高层建筑变形检测的方法。
标签:高层建筑;变形检测;建筑沉降;建筑倾斜;建筑裂缝1 变形监测的目的和特点1.1 变形监测的目的通过对变形体动态监测,获得精确观测数据,对监测数据综合分析,对各种工程建筑物在施工或使用过程中的异常变形做出预报,提供施工和管理方法,以便及时采取措施,保证工程质量和建筑物安全。
同时对采用新结构、新材料、新工艺性能做出客观评价。
1.2 变形监测的特点第一,测量精度高,一般位置精度为1mm;第二,需要重复观测,测量时间跨度大,观测时间和重复周期取决于观测目的、变形量量大小和速度。
第三,需要严密的数据处理,数据量大,变形量小,变形原因复杂。
第四,要求变形资料提供快和准确。
2 变形监测测的内容根据变形的性质,建筑物变形可分为静态变形和动态变形两类。
静态变形是时间的函数,观测结果只表示在某一期間内的变形。
静态监测的内容有内部应力、应变监测、动力特性监测和加速度监测。
动态变形是指在外力作用下产生的变形,它是以外力为函数表示的,对于时间的变化,其观测结果表示在某一时刻的瞬时变形。
动态监测内容有沉降监测、位移监测、倾斜监测、裂缝监测和挠度监测。
3 基坑回弹观测3.1 回弹观测点的布设回弹观测点的布设和数量,一般沿基坑的纵横轴线布设,还可根据建筑物分布及地层情况进行布设,要求布设点能够反映基坑回弹的纵横断面。
3.2 回弹标的埋设回弹标埋设时使用钻机至设计基坑底板下20cm-30cm(深度应精确计算)。
下套管的深度应回弹标上半部分(1/3处)在套管内。
用清水洗静孔底的沉积物,然后投入适量的混凝土,用钻杆将回弹标送下埋入混凝土中轻压,使其与周围土固结,待观测完回弹标后,取出套管,做好标记,即完成回弹标的埋设工作。
沉降观测在高层建筑物变形监测中的应用研究

沉降观测在高层建筑物变形监测中的应用研究发布时间:2022-12-06T03:28:21.966Z 来源:《工程建设标准化》2022年第15期8月作者:戚小敏[导读] 随着建筑层数的不断增加戚小敏清远市清新区城乡建设测绘队 511800摘要:随着建筑层数的不断增加,也会相应提升荷载力,由于存在上部结构和地基的共同作用,会导致建筑出现不均匀沉降问题,不仅会导致其发生倾斜和裂缝影响,还会对建筑使用安全性造成影响,所以社会开始广泛关注高层建筑等稳定性和安全性问题。
对于建筑施工人员来说,应当注重观测建筑变形情况,在深入了解和掌握变形规律之后,还可以对建筑未来变形情况进行预测,采取合理有效的整改措施。
在建筑变形监测当中要全面注重沉降监测问题,此次研究就高层建筑沉降变形问题进行讨论。
关键词:沉降观测;高层建筑;变形监测在对建筑物沉降变形进行监测过程中,我们应该根据建筑物的实际情况来进行观测方法的选择,并且要对沉降观测的结果进行科学的处理和分析,还要对建筑物沉降变形监测过程中常见问题进行合理的解决,将沉降变形变化的规律进行准确的掌握,最终为建筑物的防灾减灾工作提供一个科学、准确的依据。
1高层建筑变形沉降的必要性分析在采用沉降观测法对高层建筑变形情况进行监测分析时,首先需要深入分析建筑物变形产生的原因,这样才能够提出针对性的处理措施。
导致高层建筑出现变形的原因主要包括以下几个方面:首先,建筑物自身原因,该项原因主要包括建筑物自身结构形式和荷载重力。
其次为自然条件因素,该因素主要是建筑物地基的地质情况,土壤物理性质以及水文条件。
除上述原因之外,建筑工程前期规划设计不合理,施工技术不规范等都会导致建筑物出现沉降问题。
对于以上所导致的沉降原因来说,使用沉降观测法可以按照建筑变形原因进行正确有效的监测。
由于高层建筑的沉降观测主要是按照水准基点,对变形体上所设置的变形点高程变化值进行测量。
建筑沉降观测需要使用液体静力水准或者几何水准测量方法,当和构件则可以使用机械倾斜仪器进行测量。
高层建筑水平位移变形监测

高层建筑水平位移变形监测高层建筑在现代城市中占据着重要的地位,然而,由于种种原因,如自然地质条件、地震等,高层建筑在使用过程中的水平位移变形问题一直备受关注。
为了确保高层建筑的安全和稳定,相关部门需要进行水平位移变形监测。
本文将探讨高层建筑水平位移变形监测的重要性、监测方法及其在实践中的应用。
一、水平位移变形监测的重要性高层建筑的水平位移变形问题是导致建筑物结构破坏的主要原因之一。
当建筑物发生水平位移变形时,不仅会影响建筑的安全性,还会对周围环境和居民的生活造成威胁。
因此,对高层建筑的水平位移变形进行准确的监测是至关重要的。
二、水平位移变形监测的方法1. 全站仪监测法全站仪是一种精密的测量仪器,广泛应用于工程测量。
在高层建筑水平位移变形监测中,全站仪可以通过测量建筑物不同位置的横截面坐标,实时监测建筑物的水平位移变形。
这种方法可通过激光技术等精确测量手段实现高精度监测,准确度较高。
2. GPS监测法GPS(全球定位系统)技术已被广泛应用于地理定位与导航领域。
在高层建筑水平位移变形监测中,通过在建筑物上设置GPS接收装置,可以实时获取建筑物的位置信息,从而实现对水平位移变形的监测。
GPS监测法具有无需建立测量控制点、操作简单、实时性好等优点。
3. 基于传感器的监测法基于传感器的监测方法是一种常用的高层建筑水平位移变形监测手段。
通过在建筑物的关键部位安装压力传感器、位移传感器等仪器,可以实时采集建筑物的位移、变形等数据,并通过监测系统进行分析和处理。
这种方法操作简单,监测精度较高。
三、水平位移变形监测的实践应用高层建筑水平位移变形监测在实践中得到了广泛的应用,并取得了显著的效果。
首先,水平位移变形监测可以为高层建筑的设计和施工提供重要的参考数据。
通过对建筑物水平位移变形进行长期监测,可以获取实际数据,并结合结构设计理论进行分析和验证,从而提高建筑物的结构安全性。
其次,水平位移变形监测可以及时发现建筑物水平位移变形情况,对于预测建筑物的失稳、滑移等问题具有重要意义。
高层建筑的变形监测

0建筑与工程 O
S IN E&T C N L G F R A I N CE C E H O O YI O M TO N
21 年 01
第 2 期 3
高层建筑的变形监测
李 超 ( 宁夏 回族 自治 区煤 田地 质局 宁夏
银 J 7 0 1 ) l 5 0 I 1
【 要】 摘 高层 建筑物在 建筑施 工期 , 由于荷载 增加 。 或者地基 的可靠性 和工程 结构设 计等诸 多原因造 成不规 则( 或不均 匀) 下沉趋 势, 这种 趋势 必将影响 到建 筑物本 身倾斜 和危及 临近建筑物 的安 全。高层建筑物从施 工到使 用都应进行 变形观 测, 分析 变形产生的原 因, 采取控制措 施. 保证施 工安 全和运 营安全 。 监理预报 , 提供 按照有 关技 术规范及工程要 求, 建筑物的外 围和 内部都 应布设观测点 , 在 结合地质 因素 , 依据 建 筑物 的结构 、 栽及其 它因素进行 定期观测 , 荷 严格操作过程 , 而避 免因沉降原 因造成 建筑物 的主体 结构的破 坏, 从 危及建 筑物的安全使用。 本文 根据 森林半岛 1#和 2 #楼施 .L 程 . 建筑力学、 8 2 z  ̄ 结合 - 土力学和工程信 息 . 出高层 建筑物的变形观 测产生的若干问题 , 提 以供 同仁参考。 【 关键词 1 高层 建筑: 变形观 测: 变形监 测网; 不均匀沉降 ; 主体 结构
1 变 形 观 测 网
变形监测 网布设主要是为了建立变形监测基本体系 。 确定变 形监 测体变形量 的大小 . 保证监测 体在施工 和运营期 间的安 全 . 防止 工程 事故发生。 变形监测 网是 由水平监测网和垂直监测网组成 . 水平监 测网可采 用三角 网、 导线 、 P G S网布设 。森林 半岛工程监测 网布什 6 个监 测点 , 采用双频机南 方 ¥ 6 8 进行观测 . 采用精密 星历进行数据 处理 . D网 按 进行观测 ,各项指标高于规 范要 求 :垂直监测 网使用 WID N 水准 L 2 仪 . 用三等水 准测 量方法 观测 . 准点利 用原 G S , 采 水 P 点 精度满 足规 程要求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变形监测技术在高层建筑施工中的运用摘要:本文根据作者的工作经验探讨了变形监测方案的设计思路和观测周期的确定方法,在此基础上,建筑变形监测的具体方法,相信对从事相关工作的同行参考。
关键词:建筑工程环境监测方案观测静态变形监测
1 高层变形监测陈述
1.1变形监测的内容
工程设计采用新的可靠度设计理论与方法以来,变形监测成为
提供设计依据、优化设计和可靠度评价不可缺少的手段,成为工程设计和施工质量控制的重要手段。
由于工程自身的特殊性和复杂性,在一般情况下,直接采用变形监测原始数据对高层建筑安全稳定状态进行评估和反馈是困难的。
因此,为了实现高层建筑安全运营的设计目的,一般需要结合具体的工程和变形监测不同时段的不同特点和要求分别选用不同的手段和方法,认真做好监测数据和资料的整理分析工作,对高层建筑的安全稳定状态进行评估、预测和预报,并为改进建筑工程设计、施工方法和运营管理提供科学的依据。
1 .
2 基坑工程周围环境监测
在城市建筑密集地区施工,不仅要求保证高层建筑本身的安全性,还必须保证邻近建筑的安全使用。
在基坑开挖以及以后的施工过程中,由于地下水位下降、荷载增加以及其它一些不确定因素,必然引起周围环境变化,这在工程中称为基坑工程环境效应。
基坑工程环境效应包括支护结构和工程桩施工、降低地下水位、基坑土方
开挖各阶段对高层建筑的影响,主要表现在以下几方面。
(1)基坑土方开挖引起支护结构变形以及降低地下水位造成基坑四周地面产生沉降、不均匀沉降和水平位移,导致影响相邻高层建筑及市政管线的正常使用,甚至造成破坏。
(2)支护结构和工程桩若采用挤土桩或部分采用挤土桩,施工过程中产生的挤土效应将对邻近高层建筑及市政管线产生影响。
(3)因设计、施工不当或其它原因造成支护体系破坏,导致相邻高层建筑及市政管线被破坏。
其中,由于基坑土方开挖引起支护结构变形以及降低地下水位造成基坑四周地面产生沉降和不均匀沉降,从而对周围高层建筑和市政设施的影响是最主要的方面。
深基坑开挖是一项复杂的工程,在支护加固不当时,常可因周边地面的沉降而危及各种高层建筑的正常使用。
基坑开挖引起的地表移动与变形取决于其侧壁(支护或无支护)的变形程度及变形形式。
边坡、基坑工程稳定是其邻近地表及高层建筑安全的必要条件,但决不是充分条件,因为即使边坡、基坑稳定,近邻地表同样存在由于开挖引起的地表移动与变形,甚至破坏。
因此,在基坑工程中,必须对周围的高层建筑进行安全监测,以确保其安全使用,其中主要是对高层建筑进行沉降观测和倾斜观测。
2 变形监测方案设计
2.1 观测精度的确定
高层建筑变形量应能确切反映高层建筑、构筑物及其地基的实
际变形情况或变形趋势,并以此作为确定监测方案和检验成果质量的基本要求。
由于观测精度直接影响到观测成果的可靠性,同时也受到观测方法和仪器设备等的影响,因此,确定合理的测量精度是变形监测方案设计的重要内容。
国内外对变形监测的精度要求还存在不同看法,但可以确定的是,变形监测的精度取决于观测的目的。
国际测量工作者联合会(fig)第十三届会议(1971年)工程测量组提出“:如果观测的目的是为了使变形值不超过某一允许的数值而确保高层建筑的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测目的是为了研究其变形过程,则其中误差应比这个少得多”。
对于不同的高层建筑,其变形监测的精度要求差别比较大,同一高层建筑的不同部位在不同时间对观测精度的要求也有可能是不同的。
变形监测采用哪个等级,主要按下列方法确定。
(1)以高层建筑阶段平均变形量为依据;(2)以某些固定值为依据;(3)以高层建筑最小变形值为依据;(4)以预估变形量或变形速度为依据;(5)以地基允许变形值为依据。
在实际监测中,通常根据高层建筑的地基允许变形值来推算,高层建筑的地基允许变形值一般是由设计单位给定的或者由相应的建筑规范规定的。
地基允许变形值包括沉降量、沉降差、倾斜和局部倾斜四种。
沉降量——基础某点沉降大小,一般指基础中心的沉降量;沉降差——基础上任意两点沉降量之差,一般指相邻两单独基础的沉降量之差;倾斜——基础倾斜方向两端点的沉降差与其距
离的比值;局部倾斜——砌体承重结构沿纵向6m~8m内基础两点的沉降差与其距离的比值。
根据《建筑地基基础设计规范(gbj7-89)》规定 ,常用的高层建筑地基允许变形值,可以求出相应的允许变形量,根据允许的变形
量来确定测量精度。
由此可进一步确定采用的观测手段、仪器设备等,也为监测网网形的设计和优化提供参考。
2.2 观测点位的布设
变形观测点包括基准点和监测点,基准点分为稳定基准点和工
作基点,它们在监测中各自作用不同。
基准点的布设主要考虑稳定性,不受干扰,且要考虑测量技术,一般埋设在变形影响范围以外或基岩上,基准点埋设过远,则测量工作不方便,观测误差大,埋设近了,有可能不稳定。
所以,一般在基准点和监测点之间加设工作基点。
同时要在基准点周围设置保护点,当基准点受到破坏时可用保护点来恢复,平时则可以用于检核基准点。
由基准点和工作基点构成变形监测网,既保证了基准的稳定性,又方便了测量工作。
基准点的布设主要考虑测量工作的需要,而监测点的布设则需
要与其它学科相结合。
总的说来,监测点的位置必须布设在能够反映高层建筑变形特征和变形明显部位。
实践表明,监测点一般布设在如下位置:(1)基础类型、埋深、荷载有明显不同处。
(2)沉降缝、伸缩缝、新老建筑连接处两侧。
(3)高层建筑角点、中点处,且每边不少于3个监测点。
(4)圆形、多边形高层建筑纵横轴线对称处。
(5)工业厂房独立柱基础。
3 观测周期的确定
变形是一个渐变过程,是时间的函数,而且变形速度不均匀,但
变形观测次数是有限的,因此,合理的选择连续观测的周期,正确分析变形结果是确保高层建筑自身安全的重要因素。
变形观测从高层建筑施工开始,到停止使用结束,贯穿整个过程,相邻两次变形观测的时间间隔就是一个观测周期。
确定变形观测周期的基本原则为:根据高层建筑的特征、变形速率、观测精度要求和工程地质条件及施工过程等因数综合考虑。
水平位移观测的周期,对于不良地基土地区的观测,亦可与沉降观测协调考虑确定;对于受基础施工影响的相关观测量,应按施工
进度的需要确定,可每天或隔几天观测一次,直至施工结束。
4 静态变形监测常用方法
变形监测目的是为了实时的了解高层建筑的变形情况,确保高
层建筑的安全使用,就静态变形监测而言,监测的主要内容包括:沉降观测、倾斜观测、水平位移观测和裂缝观测。
监测方法包括常规地面测量方法、近景摄影测量以及特定条件下采取一些特殊的测量方法。
沉降观测常用水准测量的方法,也可以采用液体静力水准测量
的方法。
一般高层建筑物和深基坑开挖的沉降观测,通常用精密水准仪,按国家二等水准技术要求施测,将观测点布设成闭合环或附
合水准路线联测到水准基点上。
采用水准测量进行变形监测,必须做到固定观测时间、固定观测路线、固定观测人员、固定观测仪器。
由于现场条件限制,变形观测时很难做到前后视距离相等,在每次观测前,必须对仪器进行检验校正,特别是对仪器i角误差和调焦误差进行检验。
倾斜观测方法比较多,对于基坑监测,常采用钻孔测斜仪对支护桩进行倾斜观测。
对于高层建筑上部的倾斜观测,传统的测量方法包括经纬仪投点法、全站仪坐标测量法等等,在实际工程中常采用回归平面法。
通过回归平面方程,只须对监测点进行沉降观测,而不必专门进行倾斜观测就可以确定高层建筑在相应方向上的倾斜率。
采用回归平面法计算倾斜前提是高层建筑以刚体的形式做整体性沉降,若高层建筑结构遭到破坏,高层建筑将不以整体作沉降,此时采用回归平面法将得不到正确的倾斜结果。
水平位移观测根据高层建筑类型不同采用不同的方法,直线型建筑常用基准线法、引张线法、距离丈量法;曲线型建筑常用测角前方交会、精密导线法;高层建筑顶部相对于底部的偏移、竖直中心是否铅直(挠度)可用测角前方交会法、经纬仪投点法等。
当基础挠度过大时,高层建筑可能由于剪力破坏而出现裂缝。
裂缝观测可在裂缝两端分别固定一铁片,其中一片紧压在另一片上,在边缘涂上油漆,当裂缝发生变化时,便会露出未涂漆的部分,这个就是裂缝的变化量,采用千分尺或游标卡尺量取其变化量。
铁片可分别布设在裂缝最窄和最宽处,当裂缝比较长时,在中间部位增加观测点位。
参考文献
[1] 黄声享 ,尹晖 .变形监测数据处理 [m].武汉:武汉大学出
版社,2003.。